TESTING NOWNESTED HYPOTHESES¥

by

Richard E. Quandt

ECONOMETRIC RESEARCH PROGRAM
Resesarch Memorandum No. 140

May 1972

¥1 am indebted to Gregory C. Chow, David R. Cox,
Stephen M. Goldfeld and Alan Stuart for helpful
comments and suggestions. Of course, I am alone
responsible for errors. Financial support from
the National Science Foundation is gratefully
acknowledged.

Tconometric Research Program
PRINCETON UNIVERSITY
207 Dickinson Hall
Princeton, ¥ew Jersey



TESTING NONNESTED HYPOTHESES

by

Richard E. Quandt

1. Theoretical Considerations

The standard problem of testing hypotheses arises as follows: Let y be
a rendom variable with probability density function (pdf) f£(y.6)., where ©
is a p-~dimensional vector of parameters. Letting € represent p-dimensional
Cartesian space, 6eQ in general. The null hypothesis Ho is expressed by
the restriction 6 ¢ Qo , Where Qoﬂ o= QO . It is this circumstance which
makes likelihood ratio tests possible, for denoting the loglikelihood function

by L(8), it guarantees that

% = supL(6) - supL(e) < O

GEQO 6efd (1-1)

This condition is obviously also necessary for the asymptotic theorem, which
holds under certain broad regularity conditions, that -22 has X2 distribution
with degrees of freedom equal to the number of restrictions imposed by the
hypothesis on @ .1

The standard theory is not applicable if the nudl hypothesis and the
alternetive hypothesis are disparate or nonnested in the following sense. Let
there be two hypotheses denoted by Hl and H2 . According to Hl5 the
random variable vy has pdf fl(y, 61) with 6, € and according to H, ,

- . O )
y has pdf fg(yg 62) with 8, € O, . Finally, assuue that 2,00, # 2,

lsee [10], pp. 230-1.



and erlﬂz £ Q Cases of this type may be more common in econometrics than

5
is usually recognized. A brief list of examples is as follows: (1) Test of
the hypothesis that personsl incomes have the lognormal distribution as against
the alternative that they have Pareto distribution: (2) Test of the hypothesis
that the error term in a Cobb Douglas type production function enters the equation
multiplicatively as e against the alternative that it enters additively as
+u; (3) Test of the hypothesis that the regression equation has one form against
the alternative that it has some other form.

Although these and other questions of this type have been investigated
frequently by various more or less ad hoc methods,2 only few studies have
explored systematically the statistical aspects of choosing between competing models
and of testing hypotheses of this type. In a regression context and under the
classical assumptions Theil has shown that a choice between models based on
maximizing the multiple r2 . adjusted for degrees of freedom, will on the average
produce the correct statistical decision.3 More general are the works of Cox
and Atkinson.Lt Cox's main procedure is based on the generalized loglikelihood
ratio Ll(el) - L2(62) where L, and L, are the likelihood functions appropriate
for Hl and H2 respectively. In a recent paper Pesaran specializes this approach
to the choice between conmpeting regression models, both under the classical

assumptions and also in the presence of first order serial correlation of the

p

error term.

®see [2], [4], [15].

35ee [16], pp. 211-21k for Theil's argument and Pesaran's work [12] for
some criticisms of it.

Ysee [11, [5], [6].

5See [12].



Cox introduces and Atkinson further elaborates another procedure by which
two competing pdf's are combined and their respective parameters are embedded in
a larger space with the aid of a choice parameter A . The pdf generating the
sample is taken as

A 1-2

and it is suggested that this combined pdf, representing a compound statistical

6

model, be used to make inferences about A

The difficulty with (1-2) is that in order for h(y,6 egsx) to be a

19

density function, the factor of poportionality must be

1

A 1-A
J £ (y,8,)" £,(y.0,)" "ay

w00

Hence the loglikelihood function is

n n n
L= % 1ogh(yi,el,eg,x) =\ I logfl(yigel) + (1-2) T 1ogf2(yi,92)

i=1 i=1 i=1
n
A 1A (1-4)
- iil log j fl(yﬁel) f2(Y392> dy

00

which must be maximized with respect to 6 and A . Since, in general,

19
the integral in (1-4) will be computable only by numerical quadrature, the

maximization of (1-4) is likely to be a difficult task.

For further discussion of these and related issues see [T7].



Even though the exponential combination of pdf’s 1is convenient for many
frequently occurring distributions, it is of some interest to explore the
Possibilities of hypothesis testing with the linear combination of pdf's given
by

h(y,8,.0,,1) = Af  (y,0,) + (1-3) £,(y,6,) (1-5)

There are several reasons for preferring (1-5) to {(1-4). (1) The resulting
pdf is a convex combination of pdf’'s and is capable of intuitively easier
interpretation. (2) It is formally identical with the pdf of a random variable
that is produced by a mixture of two distribu.tions.T Under the interpretation
of a mixture distribution, A may be interpreted (unlike in (1-4)) as the
probability that nature has chosen pdf fl(ygel) for generating values of y .
(3) wo normalizing constant is required in this case and the maximization of
the likelihood function becomes a relatively straightforward numerical
optimization problem.

There are also some difficulties associated with using a composite pdf
such as (1~5). (1) Departure from one hypothesis not in the direction of the
Oother but in the opposite direction may yield values of A outside the (0,1)
interval which may cause some values of the density h(y,el,eg,k) to become
negative. (2) The reasonsble restriction that A not be outside the (0,1)
interval means that we are attempting to estimate a boundary point of the range
of A's ; hence there will not exist an interval containing the true value of A
in which the regularity conditions guaranteeing the asymptotic normality of

8

maximum likelihood estimates hold.

7See [9] and [1k].

8See [10], pp. 43-bk. There is a singularity of a sort in the likelihood
function at A = 0 or 1 since wvhen A = 0, h(y,el,egjk) is not a function of

61 and when A =1 it is not a function of 92 .



In spite of some possible advantages that (1-5) may have over (1-4), it is
clear that any embedding of this type retains a degree of arbitrariness, since
a compound statistical model can be constructed in numerous ways. It is
recognized that serious problems can arise if one type of embedding results in
rejecting Hl in favor of H2 and another type in the reverse.

The remainder of this paper reports some computational experience with the
formulation resulting from (1-5). Section 2 contains the results of some
illustrative sampling experiments, while Section 3 is devoted to applying the

test procedures to two concrete economic examples.

2. Bome Sampling Experiments

Experiments were performed in a regression context designed to test the
hypothesis that a linear regression equation generated the data as against the
alternative that a linear regression equation holds for the data deflated by some

other Variable.9 Specifically, let the two hypotheses be given by

Hl: y; Ta tb X+, (2-1)
y. X, v,
i i 1
T == + it et -
H, S-=a, +tb, —t (2-2)
1 i i

with u;, and v, being distributed as N(O,G2) in either case and with X,

and z, being nonstochastic. Fqu. (2-2) is equivalent to

9Obviously this problem could be approached more directly by employing
the residual sums of sguares of a composite equation incorporating both
hypotheses and of the equation incorporating only one of them. See (11,
p. 327.



¥ = asZs + ngi + v, (2-3)

and the density function (1-5) is then

= A 1 2
hly;) = Vero, exp{ - “%(Yi“a b Xi)g} + ) expt - alyymagzibx, ) (2-h)

o¢ 171 enc 20

1 1 2
Maximum likelihood estimates are obtained by maximizing

n
L= % logh(yi) (2-5)
i=1

with respect to al, bl’ 01, 5o b25 02 and A

The embedding of the parameters el and 62 in a larger space with the

aid of A thas the consequence that we no longer test H against H. but rather

1 2

Hl against the compound hypothesis H3 (in which Hl and H2 are weighted by

A and (1-A) respectively) and also H, against Hy . Vhatever the decision

criterion, the following cases may arise: (1) H, is rejected and H, is not;

1 2
(2) H2 is rejected and H1 is not; (3) both Hl and H, are rejected, (&)
neither Hl nor H2 is rejected. The first two cases are straightforward
and answer the original question of choice between H) and H, . Case (3)
is equivalent to accepting the compound hypothesis Hy . Case (4) signals that
there is inadequate information to diseriminate between the hypotheses.
There are at least two standard procedures that could be employed for the

test procedure. First., one could attempt to estimate the asymptotic covariance

.
matrix of the maximum likelihood estimates by*o

1056 [10], pp. 52-55.
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3698 (2-6)

Denoting by A the maximum likelihood estimate for A and by GX the

~

squareroot of the asymptotic variance for A, H

1 would be rejected (at some

A

appropriate significance level) if the interval (A - klci9 A+ kzai did not

overlap 1.0 for some appropriate positive constants kl and k2 5 H2 will be
rejected if the interval does not overlap 0.0; both hypotheses will be rejected
if the interval overlaps neighter 1.0 nor 0.0 and finally neither hypothesis will
be rejected if the interval overlaps both 1.0 and 0.0. If asymptotic normality
could be assumed, the value of 1.96 would be appropriate for kl and k2

for a .05 level of significance. We shall examine the extent to which the use of
1.96 for kl and k2 produces the correct statistical decision.

Secondly, we may consider the loglikelihood ratios Zl and 22 defined in
(1-1) where @, 1is the space of parameters obtained by setting A alternately
equal to 1.0 or 0.0 and Q 1is the space of all parameters. A large value of
either likelihood ratio leads to rejection of the corresponding hypothesis. Since
the asymptotic theorem concerning -2¢ alluded to in Section 1 cannot be expected
to hold, we will attempt to ascertain critical values by the sampling experiments.

Bampling experiments were carried out for varying values of the number of
observations n . Data were generated from (2-1) witha = b = 1.0, o¢° = 20.0.

The set of x's used was identical in repeated samples and was chosen from the
uniform distribution over the (0,20) interval. The set of z's used was also
identical in repeated samples and was chosen to be distributed uniformly over the
(0.8, 1.2) interval and independently of x . Error terms were normally distributed

with variance oi - In the experiments H, (i.e., Equ. (2-1)) was true and

H2 was false.



The experiments were replicated &S many times as was necessary to produce
30 successful replications. Failures occurred because at the point at which
the maximization algorithms terminated the matrix of second partial derivatives
was not always negative definite.ll

Table 1 displays the failure rate and the results of testing A directly

on the assumption of asymptotic normality.

TABLE 1. Results of Sampling Experiments when
H, dis True, Using Estimate of
Asymptotic Variance of A.

Fraction of Fraction of Cases Fraction of Cases

Cases in in Which H in Which H

Sample Size Failure Rate Which A < .5 is Accepted is Accepted
30 .30 .Loo .300 .200
60 .09 .500 267 267
90 .26 .067 .567 .000
180 .29 .C00 .633 .000
360 .21 .000 .833 .000

The failures appeared to be caused by flatness of the likelihood surface, making
it difficult to get a good estimate of 82L/8§85' by numerical differencing.
The results employing an interval around X exhibit the expected qualitative
behavior but convergence is not quite as rapid as might be desired; for n = 60,
for example, only 26.7 percent of the cases are decided correctly although for
n = 90 and greater no wrong decisions are made and the fraction of undecided

cases shrinks progressively as n increases. Less formally one might accept

M Maximization employed the two algorithms described in [8] and [13].
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Hl if A > .5 and H2 otherwise. The fraction of cases in which i ::.5

is also displayed and shows the correct qualitative behavior (but note the
reversal between n = 30 and n = 60) but, again, satisfactory convergence cannot
be said to have taken place for n < 90.

The conjecture that the sample values of -2¢ will not have the x2
distribution was tested by the Kolmogorov-Smirnov test for x2 distributions
with, alternately, 1, 2,...,10 degrees of freedom. If the asymptotic theorem
concerning -2% were true, one would expect xg(l) to provide a good fit.
This null hypothesis is categorically rejected for every value of n . For
example, if in the case of n = 360 we had employed the appropriate critical
value at the .05 level, we would have rejected Hl when it was in fact true in
80 percent of the cases.

The best-fitting X2 distributions are x2(9) for n = 30 and, X2(8)
for n = 60 and 90. For larger values of n one must reject altogether the
hypothesis ©0f a X2 distribution with degrees of freedom < 10. Since it
appears extremely difficult to determine exactly the distribution of -2% we
Obtain empirically determined critical values from the sampling experiments.
These are displayed in Table 2.

TABLE 2. Empirically Determined Critical
Values for 221 for the .05 level

n Critical Value
30 17.88

60 1b.11

90 19.32
180 13.85

360 14.90
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We can now examine the behavior of the likelihood ratio based on H2
when Hl is true. Denote the loglikelihood ratios based on Hl and H2 by
ll and 22 - For n =30 and 60 the behavior of these two is very similar.
For larger values of n the values of 22 become quite large compared to 2

If the empirically determined critical values derived from the actual sample

1

distribution of 2 were used, the test of H

1 would have

5 based on %2
resulted correctly in rejection of H2 in 63 percent of the cases for n = 90,
and 100 percent of the cases for n = 180 and 360. These empirically determined
critical values may therefore be useful in performing tests of hypotheses. Since
the sample distributions of m221 appear fairly stable for varying values of

n , a better estimate may be given by the average of the values in Table 2 which

is 16.01. A corresponding estimate obtained by pooling the samples for different
values of n is 18.08
3. Some Economic Examples.

Klein's Model II. Klein's Model II is a reduced form model which is given
12

by
¥ v M, I, + G - T,
Ly 4 o Pt"'l- + oy + agl - ) *+ v, (3-1)
Py © R ] Py g Py

where Ve is per capita disposable income, M% is total per capita deposits

and currency outside banks, It is gross per capita investment, Gt is per

capita govermment expenditures on goods and services, pt is the cost of living

index; and Tt is per capita GNP, minus Yy - The parameters ays @

t 1° %2 O3

1%5ee [11], pp. 80-8L.
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are related to the original structural parameters but this relationship is of
no interest here. We shall contrast the hypothesis expressed by (3-1), referred

to as H,, with the hypothesis H. that the equation is in terms of money

2° 1

terms rather than real terms§l3 i.e., that

= 1 . -
Ve T Oy * Oy ¥y g FopM g tagy (I # G- T) +u (3-2)
Equ. (3-1) is transformed to
= + - +
Yy T OGPyt Op¥y g *opdly g T ogy(Ty H Gy =T ) w5 g

where u and w are both agsumed to be homoscedastic. It will be assumed

t t

here that both ut and Wt have first-order autocorrelation and maximum likelihcod
estimates will be obtained on this assumption. The results are therefore

not directly comparable with those of Klein. Rewrite (3-2) and (3-3) as

vy, =T, +u (3-h)

where ft and gt represent the systematic parts on the right hand side of

(3-2) and (3-3). The pdf's for Y (t=2,...,n) are taken to be

R S 1 2
hl(yt) /5?61 exp {- __E(yt"plytwl - (ft"plftml)) } (3-6)
201
ho(y,) = === exp {~ ~=(y. ~p.y - (g, P8 ))%} (3-7)
27" Voo, b 5o2 b Rt t 2581
z 2

13Klein was primarily interested in whether o5 is significantly
different from zero.
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The density functions for y, are taken %o be

1
(l~p§)l/2
) = e e 1 5l 1)) (3-8)
1 20
1
(o) (l»—pi)l/2 i 1 ( )2} ( )
h (y = Teepmme——s @XD e YL 8 3-9

from which the loglikelihood function is immediately obtained. The results
of maximizing it are displayed and contrasted with Klein's results in Table 3.

The results

TABLE 3. Results for Klein's Model II

Klein's Max. Like. Max. Like.
Coefficient Klein's Result Standard Error Regult Standard Error
gy R ~B¥ 85.570 15.651
o q —® ¥ .073 Nonn
oy ~ % e ~-.170 .ok2
sy K% ~ %% .TOL .008
%50 186.53 % T7.310 2.082
a5 .30 .13 176 .00k
a22 A3 .10 -.258 .007
Ggp 2.36 .35 .695 .018
Py ~ %% R% .269 .3h1
oy R - BE .678 .037
A Kl %% .T65 116

*Not reported

**Not relevant
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of maximum likelihood estimation for the composite pdf differs from those
of Klein in that the coefficient of lagged income is negative. The

(x - 1.96 axj A+ 1.96 ak) interval does not contain either zero or one.
This suggests that the compound hypothesis should be accepted. The
likelihood ratio statistic for the monetary hypothesis, ~22m, is 5.02 and
for the real hypothesis, ‘er, is 0.02. In terms of the empirically
established critical values neither pure lypothesis is rejected in favor

of the compound one (although the real hypothesis seems better than the
monetary one: a view that tends to be confirmed by the very small asymptotic
variances associated with the estimates for the real part of the compound
pdf). The first type of test suggests that the consumption function is a
hybrid between a version expressed in real terms and one expressed in money
terms; the second one suggests that the two pure hypotheses and the compound
One are of comparable degree of acceptability. Both lend some support to the
findings of Branson and Klevorick [3] that money illusion is present in the

consumption function.

Chow's Model of Computer Growth. In [4] Chow fitted Gompertz and logistic

curves to explain the quantity of computers used in the years 1954-1965.

Approximating derivatives by finite differences, the Gompertz formulation
yields

Y

t o
log t—l_ ot a,,logp, + agllogyt_l (3-10)

and the logistic yields

Yy

MB
log—— = @ + 0 + o v -13
gyt_] o2 12P¢ 227 -1 (3 )
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where y, measures the quantity of computers and A is a price index of
computers deflated by the GNP deflator.

In attacking this problem we have assumed that the error term enters
both equations additively and that, following Chow, serial correlation of
the error term may be disregarded. The parameter )\ was associated with the
Gompertz formulation. Maximum likelihood estimates as well as the squareroots

of the estimated asymptotic variances are given in Table 4.

TABLE 4. Results for Chow's Model

Max. Like. Max. Like.

Coefficient Chow's Result Chow's Standard Error Result Standard Error

Gy 2.950 - 3.1h4k .681

0y 4 -.364 173 -.408 .196

Gy -.253 LOTh -.279 .070

%o % % 787 .021

5 .05k .05 .05k .012

. ~1.012x1077 .608x107° 1.022x107°  2.172x107°

B 2.500 ~# 2.hhs5 .188

A K KK .540 .20k

#*Not reported

¥¥Not relevant

The coefficients and standard errors estimated from the compound model
are quite close (wherever such comparison is relevant) to the corresponding
gquantities estimated by Chow, particularly for the Gompertz model. The

correspondence is more pronounced than for the Klein model and is presumably
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due, at least in part, to the fact that in this case the basic statistical
model has not been altered. The value of i is greater than .5 and thus
gives slight evidence in favor of Chow's conclusion that the Gompertz hypothesis
is preferable. The interval (i -~ 1.96 3£9 i + 1.96 3X) does not include either
zero or unity and leads to an inconclusive result which is not surprising in the
light of the few observations used. The value of the likelihood ratio test
statistic -2 is 1.94 for the Gompertz and 19.46 for the logistic hypothesis

and . -
on the basis of the empirically established critical values discussed in

Secti ig i
ction 2 the Gompertz hypothesis is accepted and the logistic hypothesis is

rejected.

L. Summary

To test the nonnested hypotheses it is proposed to transform the problem
so that it becomes one of testing either pure hypothesis against a compound
hypothesis obtained by weighing the pdf's of the pure hypotheses by A and
1-\ . Maximum likelihood estimates are obtained in sampling experiments and
although the maximum likelihocd estimates cannot be assumed to be asymptotically
normal, the qualitative behavior of i as well as of the likelihood ratio test
statistic mekes the test procedure workable. They have been applied to Klein's

Model II and Chow's Model of Growth in computer demand and produce reasonable answere.

Several important questions remain for further research: (1) Vhat is the

asymptotic distribution of the maximum likelihood estimates and of the likelihood
ratio statistic? (2) Are these distributions invariant with respect to

sufficiently large classes of econometric models? (3) Are tests based on asymptotic

distributions going to be sufficlently powerful to be useful in concrete examples?
(4) What difference will result from different types of embeddings? Successiul

answers to even some of these may permit testing of mdels against specific

alternatives more routinely than is now possible.
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