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TESTING NONNESTED HYPOTHESES

by

Richard E. Quandt

1. Theoretical Considerations

The standard problem of testing hypotheses arises as follows: Let y be
a random variable with probability density function (pdf) f(y.,8), where @
is a p-dimensional vector of parameters. Letting € represent p-dimensional
Cartesian space, 6eQ in general. The null hypothesis HO is expressed by
the restriction 6 ¢ Qo , Where Qof¥9 = QO . It is this circumstance which
makes likelihood ratio teéts possible, for denoting the loglikelihood function

by L(8), it guarantees that

% = supL(8) - supL(6) < O

BEQO 6eQ (1-1)

This condition is obviously also necessary for the asymptotie theorem, which

1,

holds under certain broad regularity conditions, that -2% has X2 distribution
with degrees of freedom equal to the number of restrictions imposed by the
hypothesis on @ .l

The standard theory is not applicable if the mil hypothesis and the
alternetive hypothesis are disparate or nonnested in the following sense. Let
there bte two hypotheses denoted by Hl and H2 . According to ng the
l) with 6, € 0, and according to H2 .

] 1 =) 0 k -
y has pdf fg(y% 62) with 0, € §, . Finally, assume that 0,00, # 2,

random variable y has pdf fl(y3 B

15ee [10], pp. 230-1.




and Qlf792 £ 0 Cases of this type may be more common in econometrics than

5 -
1s usually recognized. A brief list of examples is as follows: (1) Test of
the hypothesis that personal incomes have the lognormal distribution as against
the alternative that they have Pareto distribution; (2) Test of the hypothesis
that the error term in a Cobb Douglas type production function enters the equation
multiplicatively as .eu against the alternative that it enters additively as
+u; (3) Test of the hypothesis that the regression equation has one form against
the alternative that it has some other form.

Although these and other questions of this type have been investigated
frequently by various more or less ad hoc methods,2 only few studies have
explored systematically the statistical aspects of choosing between competing models
and of testing hypotheses of this type. In a regression context and under the
classical assumptions Theil has shown that a choice between models based on
maximizing the multiple r2 , adjusted for degrees of freedom, will on the average
produce the correct statistical decision.3 More general are the works of Cox
and Atkinson.h Cox's main procedure is based on the generalized loglikelihood
ratio Ll(el) - L2(62) where Ll and L, are the likelihood functions appropriate
for Hl and H2 respectively. In a recent paper Pesaran specializes this approach
to the choice between competing regression models, both under the classical

assumptions and also in the presence of first order serial correlation of the

p

error temm.

2See [2], [4], [15].

3see [16], pp. 211-214 for Theil's argument and Pesaran's work [12] for
some criticisms of it.

Ysee [1], [5], [6].

5See [12].




Cox introduces and Atkinson further elaborates another procedure by which
two competing pdf's are combined and their respective parameters are embedded in
& larger space with the aid of g choice parameter A . The pdf generating the

Sample is taken as

_ A 1-A

and it is suggested that this combined pdf, representing a compound statistical

model, be used to make inferences about A .6
The difficulty with (1~2) is that in order for h(y,el, eggx) to be a
density function, the factor of poportionality must be
= - 1
k = poy (1"3 )
A 1.2
[ fl(y,el) fg(yﬁ62) dy
w00
Hence the loglikelihood funection is
n n n
L = -E 1ogh(yi,el,eg,x) =2z logfl(yi,el) + (1mx)_z 1ogf2(yi,92)
i=1 i=1 i=1
n b . .
- % log | £.(y,8.)" £ (y,6,) ey (1-4)
R 1 1 2 2
i=1 e
which must be maximized with respect to 91,62 and A . 8ince, in general,

the integral in (1-h) will be computable only by numerical quadrature, the

maximization of (1-4) is likely to be a difficult task.

For further discussion of these and related issues see [71.




Even though the exponential combination of pdf s is convenient for many
frequently occurring distributions., it is of some interest to explore the
rossibilities of hypothesis testing with the linear combination of pdf's given
by

Bly.01,0550) =A%) (7,0,) + (1-3) £,(y,0,) (1-5)

There are several reasons for preferring (1-5) to (1-4). (1) The resulting
Pdf is a convex combination of rdf's and is capable of intuitively easier
interpretation. (2) It is formally identical with the pdf of a random variable
that is produced by a mixture of two distributions.7 Under the interpretation
of a mixture distribution, A may be interpreted (unlike in (1-4)) as the
probability that nature has chosen pdf fl(y,el) for generating values of 7y .
(3) wo normalizing constant is required in this case and the maximization of
the likelihood function becomes a relatively straightforward numerical
optimization problem.

There are also some difficulties associated with using a composite pdf
such as (1-5). (1) Departure from one hypothesis not in the direction of the
other but in the opposite direction may yield values of A outside the (0,1)
interval which nay cause some values of the density h(y,el,eg,x) to become
negative. (2) The reasonable restriction that ) not be outside the (0,1)
interval means that we are attempting to estimate a boundary point of the range
of X's ; hence there will not exist an interwval containing the true value of 2
in which the regularity conditions guaranteeing the asymptotic normality of

maximum likelihood estimates hold.8

7See [9] and [14].

8See [20], pp. 43-Lh. There is a singularity of a sort in the likelihood
function at X = 0 or 1 since when A = 0, h(yﬂel,egjk) is not a function of

61 and wvhen A =1 it is not a function of 62 .




In spite of some possible advantages that (1-5) may have over (1-4), it is
clear that any embedding of this type retains a degree of arbitrariness, since
& compound statistical model can be constructed in numerous ways. 1t is
Tecognized that serious problems can arise if one type of embedding results in
rejecting Hl in favor of H2 and another type in the reverse.

The remainder of this paper reports some computational experience with the
formulation resulting from (1-5). Section 2 contains the results of some
illustrative sampling experiments, while Section 3 is devoted to applying the

test procedures to two concrete economic examples.

2. BSome Sampling Experiments

Experiments were performed in s regression context designed to test the
hypothesis that a linear regression equation generated the data as against the
alternative that a linear regression equation holds for the data deflated by some

other variable.9 Specifically, let the two hypotheses be given by

Bt ¥y e vbyox +u, (2-1)
y. X. v,
1 1 1
SR S + ~Z 4 L -
Hy 2, %2 b, e, (2-2)

with u, and V. being distributed as N(O,OQ) in either case and with X,

and z; being nonstochastic. Equ. (2-2) is equivalent to

gObviously this problem could be approached more directly by employing
the residual sums of squares of a composite equation incorporating both

hypotheses and of the equation incorporating ounly one of them. See (11,
p. 327.




Vi T o8g%y Fbyx + v, (2-3)

and the density function (1-5) is then

2

A 1
hiy,) = —=— O, 2 1-2) {- =5(y.~2,2.-b_x. )} (2-})
i Xp1 - V.~a.-b.x, )7} + €xp Yima, 2, X
Vﬁml %f i 71 1% /%%- %g i 7271 271
Maximum likelihood estimates are obtained by maximizing
n
L = I logh(y.) (2-5)
\ i
i=1

with respect to al, bl’ clS 8ns b29 02 and A
The embedding of the parameters 91 and 62 in a larger space with the

aid of A has the consequence that we no longer test H against H, but rather

1 2

Hl against the compound hypothesis H3 (in which Hl and H2 are weighted by

A and (1-1) respectively) and also H, against H3 . VWhatever the decision

criterion, the following cases may arise: (1) Hl is rejected and H2

(2) H, 1is rejected and H is not; (3) both H) end H, are rejected, (L)

is not;

neither Hl nor H2 is rejected. The first two cases are straightforward

and answer the original question of choice between H, and H Case (3)

5 ¢
1s equivalent to accepting the compound hypothesis Hy . Case (k) signals that
there is inadequate information to discriminate between the hypotheses.

There are at least two standard procedures that could be employed for the

test procedure. First, one could attempt to estimate the asymptotic covariance

.
matrix of the maximum likelihood estimates by*o

Osee 101, pp. 52-55,




(2-6)

Denoting by A the maximum likelihood estimate for A and by GX the

Squarerocot of the asymptotic variance for X, H, would be rejected (at some

1
appropriate significance level) if the interval (r - k, 02, A+ k28i) did not
overlap 1.0 for some appropriate positive constants kl and k2 5 H2 will be

rejected if the interval does not overlap 0.0; both hypotheses will be rejected
if the interval overlaps neighter 1.0 nor 0.0 and finally neither hypothesis will
be rejected if the interval overlaps both 1.0 and 0.0. If asymptotic normality
could be assumed, the value of 1.96 would be appropriate for kl and k2

for a .05 level of significance. We shall examine the extent to which the use of

1.96 for kl and k2 produces the correct statistical decision.

and % defined in

Secondly, we may consider the loglikelihood ratios & 5

1
(1-1) where QO is the space of parameters obtained by setting A alternately
equal to 1.0 or 0.0 and © is the space of all parameters. A large value of
either likelihood ratio leads to rejection of the corresponding hypothesis. Since
the asymptotic theorem concerning -2% alluded to in Section 1 cannot be expected
to hold, we will attempt to ascertain critical values by the sampling experiments.
Bampling experiments were carried out for varying values of the number of
observations n . Data were generated from (2-1) with a = b = 1.0, Ui = 20.0.
The set of x's used was identical in repeated samples and was chosen from the
uniform distribution over the (0,20) interval. The set of z's used was also
identical in repeated samples and was chosen to be distributed uniformly over the
(0.8, 1.2) interval and independently of x . Error terms were normally distributed

with variance ci - In the experiments Hl (i.e., Bqu. (2-1)) was true and

H2 was fTalse.




The experiments were replicated &S many times as was necessary to produce
30 successful replications. Failures occurred because at the point at which
the maximization algorithms terminated the matrix of second partial derivatives

¥as not always negative definite.ll

Table 1 displays the failure rate and the results of testing A directly

on the assumption of asymptotic normality.

TABLE 1. Results of Sampling Experiments when
E, is True, Using Estimate of
Agymptotic Variance of A.

Fraction of Fraction of Cases Fraction of Cases

Cases in in Which H in Which H

Sample 8ize Failure Rate Which A < .5 is Accepted is Accepted
30 .30 .hoo .300 .200
60 .09 .500 .267 267
90 .26 L0677 .567 .000
180 .29 .000 .633 .000
360 .21 .000 .833 .000

The failures appeared to be caused by flatness of the likelihood surface, making
it difficult to get a good estimate of 82L/8585' by numerical differencing.
The results employing an interval around i exhibit the expected qualitative
behavior but convergence is not quite as rapid as might be desired; for n = 60,
for example, only 26.7 Percent of the cases are decided correctly although for

n = 90 and greater no wrong decisions are made and the fraction of undecided

cases shrinks progressively as n increases. Less formally one might accept

1Maximization employed the two algorithms described in [8] and [13].




Hl if X > .5 and H2 otherwise. The fraction of cases in which X 2.5

1s also displayed and shows the correct qualitative behavior (but note the
reversal between n = 30 and n = 60) but, again, satisfactory convergence cannot
be said to have taken place for n < 90.

The conjecture that the sample values of -2 will not have the x2
distribution was tested by the Kolmogorov-Smirnov test for x2 distributions
with, alternately, 1, 2,...,10 degrees of freedom. If the asymptotic theorem
concerning 22 were true, one would expect xz(l) to provide a good fit.
This null hypothesis is categorical;y rejected for every value of n . For
example, if in the case of n = 360 we had employed the appropriate critical
value at the .05 level, we would have rejected H. when it was in fact true in

1

80 percent of the cases.
s 2 . . . 2 2

The best-fitting x~ distributions are x(9) for n =30 and, x°(8)
for n = 60 and 90. TFor larger values of n one must reject altogether the
hypothesis of g x2 distribution with degrees of freedom < 10. Since it
appears extremely difficult to determine exactly the distribution of -28 we
obtain empirically determined critical values from the sampling experiments.
These are displayed in Table 2.

TABLE 2. Empirically Determined Critical
Values for 221 for the .05 level

n Critical Value
30 17.88

60 k.11

90 19.32
180 13.85

360 14.90




10.

We can now examine the behavior of the likelihood ratio based on H2

when Hl is true. Denote the loglikelihood ratios based on Hl and H2 by

21 and 22 - For n =30 and 60 the behavior of these two is very similar.
For larger values of n the values of 22 become quite large compared to Zl

If the empirically determined critiecal values derived from the actual sample

distribution of 2, were used, the test of H, based on 2, would have
[

2
resulted correctly in rejection of H2 in 63 percent of the cases for n = 90,
and 100 percent of the cases for n = 180 and 360. These empirically determined
critical values may therefore be useful in performing tests of hypotheses. Since
the sample distributions of u2£l appear falrly stable for varying values of

n , a better estimate mey be given by the average of the values in Table 2 which

is 16.01. A corresponding estimate obtained by pooling the samples for different
values of n is 18.08
3. Some Economic Examples.

Klein's Model IT. Klein's Model II is a reduced form model which is given
12

by
¥ v, M, I, + G - T,
ooy o gty (B )+ v (3-1)
Py 0 T Py 1 By

where Ve is per capita disposable income, Mt

and currency outside banks, It is gross per capita investment, Gt is per

capita government expenditures on goods and services, P, is the cost of living

is total per capita deposits

index:; and Tt is per capita GNPt minus Yy - The parameters s o Ano u3

12500 {11], pp. 80-8k4.




11.

are related to the original structural parameters but this relationship is of

no interest here.

We shall contrast the hypothesis expressed by (3-1)

» referred

to as H2, with the hypothesis Hl that the equation is in terms of money

terms rather than real termsﬁl3 i.e., that

= I - —
e T %1 T o Ve gty teg (I 46 T ) 4 u (3-2)
Equ. (3-1) is transformed to
Vo T ogPy T Mp¥yg foapl g Fag (T 4G - T) + Yt (3-3)
where ut and W£ are both assumed to be homoscedastic. It will be assumed
here that both ug and Wt have first-order autocorrelation and maximum likelihecod
estimates will be obtained on this assumption. The results are therefore
not directly comparable with those of Klein. Rewrite (3-2) and (3-3) as
= + -
Vg =T, *u, (3-k)
== + -
Yy T8t W, (3-5)

where ft and g, <Trepresent the systematic parts on the right hand side of
(3-2) and (3-3). The pdf's for Yy (t=2,....,n) are taken to be

By (7)) = v exp {~ <y -p (£, -p,2, - ))% (3-6)

1V Voro 2V P t P11

1 20
1
hy(y,) = -z exp {~ ~E=(y “D ¥ - (g, -p g, 1)) (3-7)
27 Vo ng? TR0t t T2%t-1
< 2

3Klein was primarily interested in whether o
different from zero.

2

is significantly



12.

The density functions for y; are taken to be

(1022 2
hl(yl) = - V= exp {-- .J:_é(ylmfl) } (3-8)
1 20
1
(v.) el - 1y 23 (3-9)
holyy ) = = exp {- —==(y -g ~
291 Vera, , 205 171

from which the loglikelihood function is immediately obtained. The results
of maximizing it are displayed and contrasted with Klein's results in Table 3.

The results

TABLE 3. Results for Klein's Model II

Rlein's Max. Like. Max. Like.
Coefficient Klein's Result Standard Error Result Standard Error
%oy B R E 85.570 15.651
%1 = ~HE .073 Noh
Oy e S -.170 .ok2
o " % .70 .008
%50 186.53 - T7.310 2.082
a5 .30 .13 176 .00k
%5 .13 .10 | -.258 .007
% 2.36 .35 .695 .018
Py ~ %% HR .269 .31
oy L % .678 - 037
A % - E% 765 116

¥Not reported

*%¥Not relevant
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of maximum likelihood estimation for the composite pdf differs from those
of Klein in that the coefficient of legged income is negative. The

(X - 1.96 GA” A+ 1.96 SA) interval does not contain either zero or one.
This suggests that the compound hypothesis should be accepted. The
likelihood ratio statistic for the monetary hypothesis, ~22m, is 5.02 and
for the real hypothesis, ‘2£r, is 0.02. In tems of the empirically
established critical values neither pure lypothesis is rejected in favor

of the compound one (although the real hypothesis seems better than the
onetary one: a view that tends to be confirmed by the very small asymptotic
Variances associated with the estimates for the real part of the compound
pdf). The first type of test suggests that the consumption function is a
hybrid between a version expressed in real terms and one expressed in money
terms; the second one suggests that the two pure hypotheses and the compound
one are of comparable degree of acceptability. Both lend some support to the

findings of Branson and Klevorick [3] that money illusion is present in the

consunption function.

Chow's Model of Computer Growth. In [4] Chow fitted Gompertz and logistic
curves to explain the quantity of computers used in the years 1954-1965.

Approximating derivatives by finite differences, the Gompertz formulgtion
yields
¥

t
S + + -
log 1 aol alllogpt agllogyt_l (3-10)

and the logistic yields

g
Ve o -8 N
logyt_l = O T ooy oy, o (3-11)




1k,

where Y, measures the quantity of computers and Py is a price index of
computers deflated by the GNP deflator.

In attacking this problem we have assumed that the error term enters
both equations additively and that, following Chow, serial correlation of
the error term may be disregarded. The parameter A was associated with the
Gompertz formulation. Maximum likelihood estimates as well as the squareroots

of the estimated asymptotic variances are given in Table L.

TABLE 4. Results for Chow's Model

Max. Like. Max. Like.

Coefficient Chow's Result Chow's Standard Error Result Standard Error
Ggy 2.950 - % 3.1LL .681
0y 4 -.364 L173 -.k08 .196
Gpy -.253 0Tk -.279 .070
LI % B 787 .021
@y 5 .05k .05 .05k .012
. ~1.012x107° .608x107° -1.022x107°  2.172x10°°
R 2.500 ~% 2.4hs5 .188
A - %% KR 5k .20k

¥llot reported

*%¥Not relevant

The coefficients and standard errors estimated from the compound model
are quite close (wherever such comparison is relevant) to the corresponding
quantities estimated by Chow, particularly for the Gompertz model. The

correspondence is more pronounced than for the Klein model and is presumsably




By

15.

due, i
. at least in part, to the fact that in this case the basic statistical

model has not been altered. The value of i is greater than .5 and thus

gives slight evidence in favor of Chow's conclusion that the Gompertz hypothesis
1s preferable. The interval (A - 1.96 62, - 1.96 éx) does not include either
Z2ero or unity and leads to an inconclusive result which is not surprising in the
light of the few observations used. The value of the likelihood ratio test
statistic -28 is 1.9% for the Gompertz and 19.46 for the logistic hypothesis

and o i iri
n the basis of the emplrically established critical values discussed in

Secti is i
ction 2 the Gompertz hypothesis is accepted and the logistic hypothesis is

rejected.

L. Summary

To test the nonnested hypotheses it is proposed to transform the problem
so that it becomes one of testing either pure hypothesis against a compound
hypothesis obtained by weighing the pdf's of the pure hypotheses by A and
1-A . Maximum likelihood estimates are obtained in sampling experiments and
although the maximum likelihodd estimates cannot be assumed to be asymptotically
normal, the qualitative behavior of A as well as of the likelihood ratio test
statistic mekes the test procedure workable. They have been applied to Klein's

Model II and Chow's Model of Growth in computer demand and produce reasonable answers.

Several important questions remain for further research: (L) VWhat is the
asymptotic distribution of the maximum likelihood estimates and of the likelihood
ratio statistic? (2) Are these distributions invariant with respect to
sufficiently large classes of econometric models? (3) Are tests based on asymptotic
distributions going to be sufficiently powerful to be useful in concrete examples?
(4) What difference will result from different types of embeddings? Successful
answers to even some of these may permit testing of mdels against specific

alternatives more routinely than is now possible.
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OPTIMAL CONTROL PROGRAMS:
USER'S GUIDE

Douglas R, Chapman
Gregory C. Chow

1. Introduction

This writeup describes the operation and use of two closely
related programs, OPTCFULL and OPTCDIAG. The mathematical deriva-
tions and economic applications of these programs can be found in
G.C. Chow, "How Much Could be Gained by Optimal Stochastic Control
Policies,” Memorandum No, 133, Econometric Research Program, Princeton

University, April 1972, to appear in Annals of Economic and Social

Measurement, October, 1972, and in G.C. Chow, "Problems of Economic

Policy from the Viewpoint of Optimal Control," Research Memorandum
No. 139, Econometric Research Program, Princeton University, May, 1972}
Both programs treat a linear econometric model in structural

form as

(1.1) Bvy + BpYp.p +BgXy + ByX _jte..+B X, cmaz PP tug = O

where Y is a p X 1 vector of dependent variables (including some
lagged dependent variables if the system wasz originally second or
higher order in these variables and has been converted to first order

as required in using these programs), x, is a g X 1 vector of

variables subject to control, bt summarizes the influence of all

other exogenous variables which are not subject to control, and u,

is a random vector with mean zero and covariance matrix V . The

lAlternative derivations for OPTCFULL can be found in G.C. Chow,
Optimal Control of Linear Economettric Systems with Finite Time
Horizon," International Economic Review, Vol., 13, No. 1 (Feb. 1972,

pp. 16-25,

1




structural form (l.1) is couverted in the programs to the reduced

form:
- -1 -1 -1 ~-1"
(1.2) Y = = By By¥ .y - By ByX -...-By'b, -~ Blu,
= o o0 + .
Bp¥pay + BgXpteeot BiXy nss ¥ Bg  * B
The reduced form (1.2) is further converted into:
EZ0N T S-S I N B VA O 1 B I
t 2 L*°* “m “t-1 3 o,t Tt
0]
e 0 O .., 0 Xenl I 0
0 0
(1.3) [Fe-1 | =|9 T et O 1%p + |° + 1 +
Y 0
xt_m_’_h O, . I 6] yt"m+3 0 (o]
- ) - e - -* - ! e —t L. Lo
or, in a more compact notation,
(L) Yo =B Y., *tCx_ +B_+7U,
where Ye is ;h X 1, X, remains g X 1 as before, and Bt and

Ut are defined by the right-most two vectors of (1.3).

In the notation of (1l.4), a linear feedback control equation

(1.5) e = S Ve 9

is to be applied so as to minimize the expectation of the welfare

cost



(1.6) W = E

where Kt is a diagonal weighting matrix, and z. is a vector of

targets to be specified by the user.

The difference between OPTCFULL and OPTCDIAG is that the

latter restricts the control policy of equation (1.5) to

(1.7) x, =Dx._,

where D is diagonal. Thus each Xie is restricted to constant

growth at the rate of d;; per period (e.g. 5% growth is ;= 1.05).
Also, the OPTCDIAG program is restricted to the case Kt = K in

the welfare function (1.6).

2. Job_Control Lanquage and Data Reguirements

The JCL (including linkage~editor control cards) for the two

programs is almost identical. For OPTCFULL, the following four

cards are required.for use at the Princeton University Computer Center.

// JO0B... with T= and REG= as described below.
//OPTC_EXEC_EXFORT,PROG:OPTCFULL,DSN:'U.CHOW.OPTCLIB',PARM:hK
//GO.SYSIN_DD *

(data)

/*

Note that " " indicates that at least one blank space is required.
To run OPTCDIAG, simply change "PROG=OPTCFULL" on the second card

to "PROG=0OPTCDIAG".



The two parameters time (T=) and region (REG=) on the job
card depend on the size of the model. We do not have a fixed rule
to recommend to the wser for setting ' the numbers to follow REG= and
T= . However, examples with p=9, g=2, m=4, and N=10 have been
successively run with REG=142K for OPTCFULL or REG=170K for
OPTGDIAG, taking less than 6 seconds (on the 360/91), or T=0.10.
We would recommend to the user, in case of doubt, to set higher
limits for the first run than might be required, and to lower the
limits in later runs. If the region is not large enough, at some
point the program will run out of space and print "nX REQUIRED",
perhaps several times., If the largest n is added to the region
size, the program will run successfully. If the region is large
enough, after every point in the program at which a block of space
is allocated to work areas, "nK UNUSED" will be printed. The
smallest such value may be subtracted from the region size.

The data for bkoth programs are read in "blocks". The first
block sets the dimensions and control valves. Each subsequent block
consists of data for one variable. We first provide a list of the
dimensions and control values of the first block; the use of the con-
trol values will be explained later.

For OPTCFULL, the values which may be set are:

P = number of § variables; default = 1
= number of x variables:; default = 1
M = degree of the model (subscript of B_ in (1.1)): default =

e m
minimum = 3



N = number of time periods; default = 1
EPS = convergence criterion (ratio); default = 0.0001
EXKCAP = growth rate to be used for K, i.e.,

Kt = (growth rate).K default = 1.0 (no‘growth)
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OSUP = 1 or 2, where 2 suppresses the output of Gt and Ie
for each period except the last and next to last;
default = 1 (full output)

I = 1 or 0, where 0 suppresses the computations for the
welfare cost W ; default = 1 (compute welfare)

BT = F or T, where., F jndicates B
default = F (bt =b )

& is a constant over ¢t ;

RKCS = F or T, where F indicates that only one K is pro-
vided; default = F (one K).

For OPTCDIAG, the values which may be set are:

P,Q,M,N,IU,BT,KCS: same as for OPTCFULL
DEPS = convergence criterion (ratio); default = 0.001.

The values above will be read using the "NAMELIST" feature
of FORTRAN. To demonstrate the use of this feature, we give the
following example:

_&DIMENS_P=9,0=2,M=4,N=10

_EPS=0.00005
BT=T

_&END

Besides wgprMENg"® on the first card and the "&END" card, one can
list freely the values for P, Q, M, etc. " as indicated using as
many cards in between as he pleases. However, make certain not to
use column 1 in punching the above cards, and leave no space on

either side of the "=" signs.



Each subsequent block of data consists of a header card
(giving the variable name, the format cf the data cards, and com-
ments) followed by as many data cards as are required for that
variable. Matrices are read in by row. A format can be specified
to make each row begin on a new card. The size of a vector or
matrix is given in parentheses in the descriptions below, e.g. Bp
is a vector of p elements, Bl is a p by p matrix, and B3
is a matrix with p rows of g elements. The format of the header
card is

cc. 1-8 : name, e.g. "BP" , left-justified,

cc. 9-ho: (optional) format, default = (8F10.L4);
parentheses are not required.

cc, 41-80: (optional) comments, which will be printed when
the data is read.

The data required for OPTCFULL are as follows:

Bp = Bt (p) in eq. (1.1) if BT=F ,
Bl = By (p,p) in eq. (1.1),
B2 = By (p,p) in eq. (1.1),
Bm = an(p’q) in eq. (1.1),
KCAP = main diagonal (p_) of the weighting matrix Ko in
eq. (1.6) if KCS=F (note: Py =P+ (m-3) x q) ,
Zp = initial targets zo(p+q) in eq. (1.6), and
ZRATE = rates of growth (p+g) for the current components of z

i.e. 2z, = (ZRATE).z, _, .



If IU=1 1is used (default), two more data blocks are required next:

Y= volpy) inoege (L) = [7.(p); x(a),eee,x () y(a)]
in eq. (1.3,

P

_ ~e _ T?,"v =
V = V(p,p) = Blug . ut) .

If KCS=T is specifizd in the &DIMENS block, it indicates
that more than one K 1is to be used for the same model and data.
In this case the data for K is not put in its regular place but
is placed behind all other data blocks., REach K to be used must
be in a separate data block, headed by a separate header card. The
header card for each bleck is printed as a sub-title on each page
of the output, inviting the user to put comments on the header card
as he wishes,

If DBT=T is specified in the  &DIMENS block, it indicates
a time-variant intercept for equation (1.1l). We have chosen to

~

express bt as

k. = EBEf + BINCRX BFACT, .
The Bp data is now the BY in the above equation. Two more data

blocks follow the B® bhlock:

BINCR
BFACT

]

BINCR(p) above, and
BFACT(N)=( BFACTl( 1),000, RFACTN( 1) ) above.

i

The data required for OPTCDIAG is the same as that for
OPTCFULL except that VYP is always given (fcllowing ZRATE) and
initial estimates of the main diagonal of D in eq. (1.7) must be

given after Y{ as follows:



DP = initial estimates (g) of D in eq. (1.7).

The data for V 1is still conditional on IU as with OPTCFULL.

5. Qutput
As the data block for each variable is read, the header card
and data are printed. Following this is the printout of the reduced
form, as both equations (1.2) and (1l.&), where the Y vector includes
all the Xt’Xt-l"°’ vectors except the last, i.e. up to Xt~(M~h)’
The OPTGFULL program solves for Gt(GCAP) and gt(G) by

the following equations:
HCAR = KCAP,
) i)
= ‘P *
HN RCaE N ZN

For t = N, N“l,ooe,lg

CTHC, = (cT * HCAP,_ * c}"l
m
= C * -
CH, CTHC, * C
GCRP_ = ~CH_ * HCAP_ * A
= o * - ¥ ‘
G, CH, (Ht HCAP, B, )
Output G, H_, GCAP_ ETAP_
= * G £
Ry A + C* GCRAP_
m
= ” X7 *
HCAP,__, = KCAP_ + Ry * HCAP, * R,
- t>2
= 7 * *(H - *
H._q = KCAP ¥z, +R_ (dt HCAP, Bt)



It then calculates the y,_ resulting from this policy using eq.

(1.4) and eqg. (1.5), omitting the random residuals, i.e.,

v, = A *Yeq t c(Gt Yiop * gt) + B .

Finally, the program calculates the estimated covariance matrices

Ft and welfare, both stochastic and deterministic using

r =20
o)
= C%
Rt C GCZ\P_t + A
I'n, = R_*¥T *‘RT + V

stochastic W

i

tr (KCAP_ * T )

t
e T Ye T B
s s =T, 5 =
déeterministic Wt = ut hCAPt ut
total Wt = stochastic Wt + deterministic Wt .

The OPTGDIAG program uses GRADX to minimize the average
deterministic welfare over the N pericds. The §t , estimated
covariance matrices, and welfare are then printed as for OPTCFULL

above,

L., Programmer's Guide to OPTCFULL and OPTCDIAG

The structure of OPTCFULL is:

FIML, ~——> OPTCFl ——> \

-3 subroutines below
—_
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OPTGFl reads the &DIMENS data block and calls the following

subroutines to read the rest of the data:

READBS
READKC
READZS
READYp)
READV

Qo

00

L1

o0

read B{,Bl,...
read KCAP
read Z{,ZRATE
read Y{

read V

After all the data have been read (unless KCS=T) the computation

proceeds by calling the following subroutines:

BSOLVE
GENACB
EXTNDZ
GENZTS
OPTGF6
GENV

OPTGFY
WLFARE
PLOTYZ

o0

an

oo

oo

o0

oo

¢o

solve for reduced form
set up A,C,B

extend Zs
generate Z.
compute policy
extend V. to V
generate §t
compute welfare

plot §t VS. 2,

The structure of OPTCDIAG is similar:

FIML —> OPTGDL 7>

> .
—> subroutines below

READBS

same as for OPTGFl

GENZTS
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OPTGD6 -» OPGD62 — INFUNC : initialize £(D)
L*GRADX-»FUNC : minimize f£(D)

GENV
WLFARE same as for OPTGF1l
PLOTYZ

For an explanation of the calling technique for GRADX , see the
Appendix "The FUNC subroutine for POWELL or GRADX".

Several subroutines used by OPTCFULL and OPTCDIAG were
originally written for the FIML program, as described in "Full~
Information Maximum Likelihood Program: User's Guide," by Douglas
R. Chapman and Ray C. Fair, issued as Research Memorandum No. 137,
Econometric Research Program, Princeton University, April, 1972.
Those subroutines used without any modifications are PRMAT8, DFORM,
CLEAR, AMOVE, and CUTIME. Those adapted for OPTC are MNALOC
(MNCHEK), LINECK (NEWPG, SBTITL) and PLOTYZ. The Appendix "Dynamic
allocation using MNALOC" explains the FIML main program and the
use of the vector MAINAR and the subroutine MNALOC, The routines
BINBCD and MOVSTR are assembler language routines taken from the
FLSTAT package. Extensive use is made of the MATOPS package of
matrix operators (actually written for the OPTC programs) which
is described in the Appendix "The NATOPS matrix operators." The
' GRADX subroutine used is a version originally modified for FIML
and used by OPTC without further modification. The only changes

for FIML were to put variable dimensions throughout the routine.
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In order to link-edit either OPTCFULL, or OPTCDIAG ,

four libraries must be used:

1. "U.CHOW.OPTCLIB", containing all OPTC subroutines
and those takzn from FUSTAT or modified from FIML ,

2, "U,CHOW,MATOPS", containing the MATOPS package,

3, "U,FIML,LIBRARY", containing the subroutines used from
FIML without modification, and

L, "U.FIML,GRADX", containing the version of CGRADX modified
for FIML (required only for OPTCDIAG).
Subroutines in these libraries are link-edited individually using
the "NCAL" option (see the appendix "Compiling prcgrams into a
Library"). The JCL and linkage~editor control cards to combine
the subroutines into OPTCFULL are as follows:

/[ OPTCLINK_EXZC_FORTGL
/ /LKED, SYSLIB_DD_DISP=SHR, DSN=U,CHOW,OPTCLIB

/] DD_DISP=SHR, DSN=U,CHOW, MATOPS
/[ DD_DISP=SHR, DSN=U,FIML,LIBRARY
//_ DD_DiSP=SHR, DSN=U,FIML,CRADX
!/ DD_DISP=SHR,DSN=SY31l,FORTLIB

//LKED, SYSLMOD_DD_DISP=0LD, DSN=U.CHOW , OPTCLIB, SPACE=
// LKED, GETMAIN_DD_DISP=SHR, DSN=U,FIML.GETMAIN
/ /LKED,SYSIN_DD_*

_CHANGE_F IML( OPTCFULL)
_CHANGE_FIML1(OPTGF1)
_INCLUDE_GETMAIN(FIML)
_ENTRY_FIML
_NAME_OPTCFULL(R)

/*
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To link-edit OPTCDIAG, the LKED,SYSIN cards should be:

_CHANGE_FIML( OPTCDIAG)
_CHANGE_FIML1(OPTGD1)
_INCLUDE_GETMAIN(FIML)
_ENTRY_OPTCDIAG
_NAME_OPTCDIAG(R)

5. List of Appendices

The following Appendices can be obtained from the
Econometric Research Program, Princeton University, 207 Dickinson

Hall, Princeton, New Jersey,

A. The FUNC Subroutine for POWELL or GRADX
B, Dynamic Allocation Using "MNALOC"

C. The MATOPS Matrix.Operators

D. Compiling Programs into a Library



