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. 1l. Introduction

In this paper, I will generalize the modified Newton method
previously applied in Chow (1968) to the computation of full-informa-
- tion maximum. likelihood egtimates of parameters of a system of linear
- structural equations to the case of a system of non-linear structural
equations. The success of that method for linear s*stemslhas
-stimulated my present attempt to generalize it for non-linear systems.

The subject of maximum likelihood estimation of non-linear
simultaneous equation systems has been studied by Eisenpress and
‘Greenstadt (1966). There are threoe main differences between their

approach and ours. First, their basic formulation is more general,

assuming that all parameters in the system may appear in every

e-quation,:2 ‘whereas we assume as the basic setup that there is a
distinct set of parameters belonging to each equation. Second,
partly because of the first, we are able to cbhtain simpler and more
explicit expressions for the derivatives of likelihood : function
required-in the calculations, Third, and also partly because cof the
 first, we can conveniently deal with linear restrictions on the
parameters in the same equation or in different equations, an impor-

tant problem in econometrics. A fourth feature of this paper, and




in fact a feature which has partly motivated it, is the contrast of
the linear with the non-linear case. As it will be shown, there are
many similarities in the computations of both. This demonstration
can enhance our understanding of the nature of the estimation equa~-
tions. Two additional features of this paper are the treatments of
identities in the system and of residuals which may follcw an auto-
regressive scheme.

We will derive in section 2 the estimation equations for
non-linear systems, under the assumptions that each structural equa-
tion contains a distinct set of parameters, .that the parameters
are not subject to any linear restrictions, and that the (additive)
residuals are serially uncorrelated. Section 3 treats the special
case when some equations are linear, and contrasts this case with
the non-linear case. Section I deals with identities and linear
restrictions on the parameters. Section 5 1is concerned with the

problem of autoregressive residuals.

2., Derivation of the Estimation Equations

Let the tth observation on the gth structural equation

be
(9=1,...,G)
(2.1) @g(ylt,...,ymt s Bg) = U
(£=1,...,7)




where Yie include G dependent variables followed by predetermined
variables, Bg is a row vector of ng unknown parameters in the
t 4 . - .
g h equation, and ugt are normally distributed with means zero
i = o i delta.
and covariances Eugtuhs ats gh’ Bts being the kronecker de
The logarithm of the concentrated likelihood function, after

the unknown Ggh have been eliminated by

o - S S
(2.2) sgh - . ugtuht ,

is known to be'5

T ~
(2.3) L = const. - g log|s| + = log}BtI
where
1
(2.4) S = (sgh) = (T uéuh)

with ué denoting the row vector (ugl"'ugT) whose elements are

treated as functions defined by (2.1), ang

-~

~ du :
t
(2‘5) Bt = (th,t) = (-Sg’.ﬁ.t' ) (g,h=l,oou,G)o

To maximize the likelihood function, one differentiates (2.3)
with respect to the column vector Bi s

aiﬂ_ . élongtl . '@th.t
<

1 1 .
gh Py t g,h “Pgh,t B




kg

Note that
(2.7) %%QQLﬁL - h-g element of g~ 71
“gh
s 0 : - for. ifg and ith
B! du, du, ~
i 1 (*”51 te ~—£E)u = Ly u for i=gfh
T B! oB'! h — 7% “n
i i

~1
where we have denoted by Y. the n;, X T matrix of the derivatives

of the T elements of Uy with respect to the n, elements of

B' . Also
i
dlog|B, | ~ ~
(2.9) -t Bzg = h~g element of B;l
, ) th,t
o for ifg
(2.10) éﬁﬂhLEN =
' ’aB .’ = 82 -
i u,
S for i=g
B! ayht

Using (2.7), (2.8), (2.9), ana (2.10), we rewrite (2.6) as

2
oL hi 2 -~ S Yie .
e _ X ! S © pghi 1t -
(2.11) ] : 7T Y w4 c . Bt 55{ ayht 0 (i=1,...,G).

These equations will be solved for the unknowns 51”"’BG’ to

obtain the maximum likelihood estimates.




If we let o denote the vector consisting of all the
unknowns Bl”"’BG s and £ dencte all the derivatives (2.11)

for i=1,...,G » then Newton's method for solving
(2.12) f(a) = 0
amounts to iterating by the formula

(2.13) R S R 13

where o isg the value of o in the rth iteration, and F is

the matrix of partial derivatives of the elements of f with respect
to the element of o .

To obtain the elements of F » we differentiate (2.11) with
respect to the row vector Bj (j=1,...,6) . This will. be done

separately for the two components of (2.11). «For the first compo-~

nent,
(2.18) = (-3 M Ty
3 h
.. du - hi . du.
=-ZgMty B om0 Itz At
h i Bj h i h ij h ¢ ht oBi Bj

The only term in (2.1k) that requires further evaluation is the row

vector
hi hi folz}
(2.15)  $— . z &7, mn
3 m,n mn j

which, on account of (2.8) and of the fact




hi .
(2.16) g§~~ = - g gni

mn

can be written as

hi ~ hi ~
(2-17) gg—" = % z %%—— s u'e ¥, 4+ % z é?——- u! YJ
j %in mt3 “mj
1 h ni hn ji o
= e e Z j j t 5 . .
T . (s " + g g )un IJ

Using (2.17) and (2.8), we rewrite (2.14) finally as

o) hi 2 Jjig, o o ,1: hj ni_ hn ji >
el o ! = - ' =z ~ 1y,
(2.18) aBj( s Yi U, ) s Yi Yj+TYl.h’nu1 (s™-s" "+ s ) 3

The differentiation of the second component of (2.11) can be

similarly performed.

d ~hi agul
—— PN RSN
3 2 ~“hi
th t BBiéﬁj Byht BBiByht- aﬁj ‘

Analogous to (2.15), we have, on account of (2.10),




~hi whi ~ 2
(2 20) U ?g_@_____ = 2 OBt anjt _ Z(-ghj ;ni _a_ u"[_t__
* aB : - \m N - t t a a 4
] mnd L By n 8537,
so that (2.19) becomes
2
~.:  Ou
(2.21) ‘S‘é"_‘ (= zphi, “Tiz___)
j th BBi Vhi
~ 83u 3° ~h3j u
- z}zj ( 5:::11 . it —_ e it =[ Bt nl] —__Jt_ )
- Bi%y e oy, P %, 37,

To summarize, Newton's method iterates by formula (2.13),
where the itP subvector of f£(a) is given by (2.11) and where
the i-j submatrix of F(a) is given by the sum of (2,18) and
(2.21). Note that

u

(2.22) —it _ _ o for ikj .

B! B.
Pl Py

Hence, for ilj , the third term of (2.18) and the first term of
(2.21) are zero.
The computations can be performed as follows. Given the

data Yit (i=l,c..,G7 t=l,...,T) » and Zit (i=1’.o.,K7 t=1,~."T)
th

3
and given the values for Big (i=l,...,ng: g=1l,...,G) in the r

. .k
lteration, compute




1. u_, as given by (2.1), g=1,...,q, t=1l,...,T ;

2, Sgh s given by (2.4) and 9 by (2.7), g, h=1,...,G ;

- t ~h
3‘ th’t = §§§; and Btg by (2.9)’ g, h=l,..-,G, tzl,.oo,T 7
~ du, ~
Ll'. yit - __;LE ) the tth COlumn Of Yi ’ i=1,.cc,g, t=l’olo
B!
i
82“it
5.  mmmSSe— » 2 column vector, i, h=1,...,G, t=1,...,T ;
T
; Baiéyht
. 6. £(a) by (2.11) and the preceding results ;
aeuit
T g——g—~— s an l; Xn. matrix, i=1,,..,G, t=1,...,T ¢
B!op
i
83u.t
8. & >8R 0y Xn; matrix, i, h=l,...,G, t=1,...,T
3BIPB. dv 1 1
177i “ht

9. F(a) as the sum of (2.18) and (2.21)

10, offl_ ¥ by the right-side of (2.13), or a multiple h

thereof, where h depends on the value of the likelihood at

the new estimate as explained in Chow (1968).

s

The above calculations can be accomplished by evaluating the first

derivatives of steps 3 and L » the second derivatives of steps

s Ty

e
r



5 and 7 , and the third derivatives of step 8. Since analytical

derivatives can be obtained in the TROLL system,5 we will use

the method in TROLL to evaluate the above derivatives analytically.

3. Estimating Egquations When a Structural Eguation is Linear

In order to appreciate the nature and the difficulty of
estimating the parameters of non-linear eguations, it is useful to
present the estimating equations when any structural equation is
linear. It is also of practical importance to do so, since linear
structural equations are often encountered in practice, and one
would wish to exploit the linearity to simplify computations. When
a system consists of both linear and non-linear equations, I would
suggest first setting up the estimating equations as derived from
differentiating the likelihood function with respect to the para-
meters of the linear equations. These are now derived, following
closely the development of Section 2.

If the gth structural equation is linear, we can write
the T observations on this equation as

. _ .
(3.1) Yg = Y8 ug

where *Yg is a column vector of the T observations on the gth

dependent variable, Yg consists of ng columns of observations
on the other variables appearing in equation g s With the dependent

variables listed first, to be followed by the predetermined variables,




w

10

SO that the column vecior Bé of coefficients will consist first
of coefficients of the dependent variables, and ug is as defined
in section 2.

Following the derivation of section 2, we will find that
equations (2.2), (2.3) and (2.4) remain valig here, but the gth

row of equation (2.5) will be reduced to

du du
-——.gg-—- LR 'Y __,__g.t._ = © 0
(3.5) (aylt H s ) (Bgl BgG)

where some of the coefficients ng may be specified to be zero.
Concerning the derivations from (2.6) on, one notes the following

changes. (2.8) will become

3 0 for ifg and ifh
Sgh
ow Ee

i T Y for i=gkh

where Y, consists of n; columns, each of T observations on

the variables (other than yi) appearing in equation i , as

~defined for (3.1); (2.10) will become

~

S 0 for ik
5 10) 5gh,t r 3-‘-1-9'
. ————— o for i=g; kih .
Bix 1 for i=g; k<h

The end result is that the gth subvector of f£(a) = 0 will
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become a special case of (2.11), namely,

5 l l — o— E; 119’ b E ( g ) g

where 6§»g is a column vector consisting of elements of the gth

column of 5;1 which correspond to only the unknown coefficients
of the dependent variables in equation (g) . Note also that the
derivatives (3.10) with respect to the coefficients of the pre-~
determined variables are zero, implying that the second term on the
right-hand side of (3.11) vanishes for these coefficients.
Concerning the matrix F(a) » WwWe follow the development
from equation (2.1k) on. Denoting the i~j submatrix of F by
Fij » We note that ng will be changed. It has two components

originating from (3.11). The first component, previously given by

(2.18), will become, for i=g

2

S _(.5.hgy, - L R hj ng, _hn_joy,: 3
(3.18) aﬁ'j( hs Yguh)--s YéYj+TYqh’nuh(s n +s sg)an

since the derivatives of the elements of Yé with respect to Bj
are zero. The second component, previously given by (2.21), will

become, for i=qg ,

(3.21) &= (23
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~(g)3 . . .
where Bt i1s a column vector consisting of those elements in

.

the jth column of B vhich correspond to the unknown coeffi-

t
cients of the dependent variables in equation (g) .

~

If equation (j) is also linear, Yj in (3.18) will become

Yj and (3.21) will further be reduced to the ng X nj matrix

2

~ ~ . ~ o u. ~() ~ {4 1

&z 5@gy _ @3 pgne e _ | 5593 109

(5.21a) H= (2879 = - L P I =" TBg B
j B3 W

where Bij)g is a column vector consisting of those elements in

~=l .
the gth column of 6t which correspond to the unknown coeffi-

cients of the dependent variables in equation (j).

To pinpoint the computational simplifications when the gth

equation " is linear, let us review the ten steps of section 2.

th, t = th s
step b, Y =7v In step 5 u /o ., dy equals 1 for k=
D &, g g ° 2 D2, gt ak “Ynt g - s

Steps 1 and 2 are the same. 1In step 3, and in

and equals zero otherwise. In step 6, £(a) is computed by (3.11).
The matrices in steps 7 and 8 are zero for i=g . The gth row

of submatrices of F(a) in step 9 is given by the sum of (3,18) and
(3.21), Finally, step 10 is the same as before. Thus, the main
simplifications result from avoiding the first derivatives of steps

3 and 4, the second derivatives of steps 5 and 7, and the third

derivatives of step 8.
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h. Treatment of Identities and Linear Restrictions

When an equation is an identity, it contains no unknown
parameters and no random residual. Let the first M equations in
the system be stochastic, and the remaining G-M=M' equations be
identities. We will show that the only modification to the likeli-
hood function (2.3) required in this situation is to interpret the
matrix S as an Mx M covariance matrix of the residuals. There-
fore, all the computations specified by equations (2.11), (2.18)
and (2.21) will remain valid, with the understanding that all terms
involving the elements of S and S™% will sum only to M .

To demonstrate the effect of identities on the likelihood

function, let the Mx1 vector u have the normal density

t
1

(k.1) const « | Z| 2 exp{-—% u:tz-l u

ot
and let the system consist of two sets of equations

@l(Ylt) yEt) =u
(ll"2)
%2(¥1¢ 0 ¥pe) = 0

where y.,  is M¥X1 , Yo @and @, are both M'x 1, and the

2
identities @2 are known functions. To obtain the density of Yig o

one needs the Jacobian




1k

au:t SOi 8@i a-é
(4.3 ) Sv. | = 5T Y X .
Y1t Vit Yor Yyt
From @2 = 0, we have
dy! 3 -1 3pr
(b.4) S =t () (52
Yie Yot Y1t

Hence, the Jacobian becomes

1 - 4
a®2 ) 1. a¢2
TN,
¥y Yie

a@i a@i .(

) Vg Wy

If we had ignored the fact that @2 is a 'set of identities, the

Jacobian required would be

8@5]’_ S@i
N, ™.
Y1t Yoi

-1
] 1 ? bl t 1
(4.6) l~ ) ) a@l a@l 8@2 s Yo 2| -3?2 !
y Byl = = sl 5 oo |
Yie Fop Wop 1t Yo |

Y1 ayzg

Since (4.5) and (4.6) differ by a multiplicative constant, the density

of Yie will simply be

1

-2
~ 1 -1

= . lBt!- exp{ -7 u! 2" u

(L.7) const » -tJ




15

-~

where Z is M x M , B, is GxG, and u,. is interpreted as

the function ¢l of (Lk.2). Straight-forward manipulations of
(4.7) will yield the likelihood function (2.3), with S interpreted
as an MxM matrix.

If there are linear restrictions on the unknown parameters
(these parameters may belong to different structural equations), one
has to modify the vector f£(a) and the matrix Ff&) in equations

(2.12) and (2.13).6 The modifications required can be seen by

considering the restriction

(4.8) o, = caj + dak .

The unknown @; will be eliminated, since it is a known linear
function of two of the remaining unknowns aj and O + The likeli-
hood function L will be replaced by a new function I* of a new
set of variables o (having one fewer element than @), by sub-
stituting the right-side of (4.8) for @; in L . By (L.8) and the
chain rule of differentiation, the new f¥(a*) = 0 will contain the

following equations

sL* _ 8L_ | 8L, -

()4_ 9) SOéj - SCtj + Soti ¢c =0,
ST 5L 5L
. = sy tis—+d =0,
SOIk aak chi

where it is understood that the argument o, of any derivative of

L 1is replaced by the right side of (4.8) -- likewise for equations
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(k.10) and (4.11) below. If £(a) has n elements, say, then

£x(a*) and f£(a) are related by the eguation
(k.10) f4(a*) = M £(a) ,

where M is an (n=1)xn matrix which is constructed from the
nxn identity matrix by (1) elminating its ith row, (2) replacing
the zero in the ith position of the jth row by ¢ , and (3)
replacing the zero in the ith position of the kth row by 4d .

By differentiating the elements of (a*) with respect to

o . . . ' S
the remaining n-1 variables, one can obtain the new matrix F (qg*)

of second partial derivatives:
(h.11) F¥(a¥) = M Fla) M .

Equations (4.10) and (4.11) can then be used to modify equation
(2.13) in order to perform iterations by Newton's method. If there
is a second linear restriction, then another matrix, say N , can
be used to multiply £¥ and F* in the same way M was used in
equations (4.10) and (Lk.11) to multiply £ and F . This process
can be repeated for any number cf linear restrictions. Setting a
coefficient equal to a constant c amounts to setting it equal to
¢ times the dummy variable 1 in the list of predetermined varia-
bles; similarly, non-homogeneous linear restrictions can be treated

by using this dummy variable.
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5+ Autoregressive Residuals

If the residuals are assumed to fellow an auto-regressive

scheme, e.q.,

(5.1) u = R,u

where e is normal with zero mean and E e,te:s = SLSAZ » and
[

1f the vector of M stochastic equations is written as

ENCO-

(5'2) ¢.t = . = uet
§ ¢M(Y.t1 BM) |

then

(5.3) Pop - Bpfepay = Ro¥pp = .t

will be a system with serially uncorrelated residuals. An obvious
method of obtaining maximum likelihood estimates of the parameters
Bl,...,BM ’ R1 and R2 is simply to redefine our structural equa-
tions according to (5.3) and apply the procedure previously set

forth.

By this method, the gth new stochastic equation will be

- Z ¢ - Z g =
(5')4') (pg(Y.t}Bg) k rl,gk ¢k(y‘t“l’ﬁk) j rg,gj \Pj(ynt-E”Bj) - egt

where ry gk are the elements of the gth row of Rl « Comparing
2
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(5.4) with (2.1), one finds two new sets of parameters introduced

. th . . .
in the equation. The first onsists of and r .
K q ¢ 1,9k 2,93

The second consists of the Py and Bj that are associated with
the first in equation (5.4). The computations will be perfermed
by the same ten steps as listed in section 2, with the understanding

that egt will replace u and that the parameters of equation

gt

(g) are now expanded. The derivatives involving the new parameters
are as follows,

Note first that the derivatives with respect to Ype as
required in steps 3, 5, and 8 will remain exactly the same as before,

Since only the leading term of (5.4) involves In other words,

Yht -
if we let ag denote a vector of the parameters in equation (g) R

which is composed of all the ¥ and Bk appearing in the func-
2

gk
tion egt 7 the derivatives in steps 3, 5, and 8 will be:

~ Jde du
3 Bon £ = —;;93 = =4t R same as before,
gn, O.Lht ygt
aEeit aeuv’#‘
5. AT = - ’ same as before,
Bi Wne B{ Wp

8. S = —me—i same as before,
Bj B;Wpe B Py Oy

third derivatives with respect to other elements of @, are zero.




In step

Lha,

s S o s T

Lb,
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L, the new derivatives are
- Qk(y-t-w’sk) = uk,t—T T=1,2
Y
Egiii - r o r EEELE:a
ik aak 1,ik 8Bk 2,ik Bﬁk *

1

If Rl and R2 are diagonal, as it may often occur in practice, o,
is composed only of rl,ii R r2,ii , and B; - In step 7, the new
derivatives are
82eit
7a(l). = 0 for all 1, s, k j
o ik g i
aze;t 0 for j £ k
Ta(2). - S - { du
O, ik Py i for § =k
Pk
ége.f 0 for ik
The ~HTET " { 3 3 3
{ 3
Pr Py e P, -1 Y, top

The derivatives

. - L] g - ——— bad " T - f i = o
ik B By rl,lk.aﬁﬁ By o ik B, By or 3=k

ba, kb, 7a and 7Tb are thus easily obtained from

calculations already required for the problem of section 2 when the
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residuals are assumed to be serially uncorrelated. However, one
should not forget that section 2 was based on the assumption of
disjoint parameter set in each equation. In-so-far as Bk serves
as parameters in several €;+ » linear restrictions would have to
be imposed on these parameters by the procedure of section 4. Of
course, these restrictions are not required if Rl and R2 are
diagonal.,

If many elements of Rl and R, are to be estimated, it may
be advantageous to employ a two-part iteration method similar to
the one suggested by Chow and Fair (1970) for linear systems. By
this method, each iteration would consist of two parts. The first
is to estimate the B's , taking the r's as given. This can be
accomplished by following the same ten steps as just described,
ignoring the derivatives in ba and 7a, and treating the =r's as
given. The second is to estimate the «r's , taking the B's as
given. This can be accomplished by taking steps 1 (with egt
replacing Uy of course), 2, La, 6, 7a(l), 9 and 10. The other
derivatives in steps k4, 5, 7, and 8 are obviously zero, Although
the derivatives Egh,t in step 3 are not Zero, they will be multi-
plied by zeros in equation (2.11) for step 6 and in equation (2,21)
for step 9., Note that if no restrictions are imposed on the elements
of Rl and R2, the above can be accomplished by performing ordinary
least squares on each equation of (5.3), with ¢gt as the dependent

variable and ¢’t—l and ¢ﬁt_ as explanatory variables, As it is

2
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well-known, these least squares estimates are maximum-likelihood

estimates for the multivariate regression (5.3) when ¢-t s ¢'t-l
and ®,, . are observable data.’

Although the two-part iteration method may provide
computational advantages when many elements of R, and R are

1 2
to be estimated, one would still need to find the inverse of

~F(a) , involving all elements of @ as evaluated at the last
iteration, to serve as an approximate covariance matrix of the
estimates. The same matrix can be used to test linear hypotheses

on the parameters, as usual,
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FOOTNOTES

This research was carried out while the author was consultant
to the NBER Computer Research Center; it was also partly
sSupported by the National Science Foundation through Grant

NSF GS 32003X. The author is indebted to Ray C. Fair, Edwin
Kuh, and Richard E. Quandt for helpful comments and discussions.

This method and the associated method of Chow and Fair (1970)
for linear systems with auioregressive residuals have been
Successfully applied to estimate 82 parameters (including L9
autoregressive coefficients) in a model of T stochastic
equations constructed by Ray Fair, and to estimate some L8
barameters in a model of 9 stochastic equations with serially
uncorrelated residuals constructed by Robert Pindyck of M.I.T..
The latter example involves inverting a 48 x 48 matrix in
each iteration. There is ho reason why the estimation of a
much larger model, say two or three times larger, could not be
attempted. Interested users of the method may consult Chapman
and Fair (1972). I am indebted to Ray Fair for supplying the
above information,

See equation (3=2) of Eisenpress and Greenstadt (1966), p.8s52,

See, for exampie, equation.(5w13) of Eisenpress and Greenstadt
(1966), P. 85h, and section 4 of the present paper,

" To obtain an initial estimate to start the iterations, one

may apply the method to each equation separately since each
equation is a special case of a system once we choose one
variable as the dependent variable. If the equation is linear
in the parameters, the method of least squares may be used.

If not, one can use a set of zeros as the starting value for
the iterations on the Separate equation. Experience with the
program described in Chapman and Fair (1972) has shown that

he method often converges for linear systems by using zeros

as the initial estimate,

See Eisner and Pindyck (1971) and Maling (1971).

This treatment of linear restrictions is adopted from Chow and
Fair (1970).

See, for example, Anderson (1958), p. 181.




