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1. Introduction

In this paper, I will provide a method for ascertaining the
optimal control policy and the associated welfare cost in a control
problem where the welfare cost is quadratic and the econometric
model used is linear and the values of its parameters are uncertain.
In previous papers (1970, 1972a,b, and c¢) I have treated the control
problem with guadratic welfare and linear model under the assumption
that the parameters in the model are given for certain. It would
be interesting to relax the assumption of certainty of the para-
meters, and to examine the effects on the optimal control egquations
and the associated welfare cost,

As it has been generally recognized, one important use of
econometric models is in the design of optimal quantitative economic
policies. However, because our knowledge of the economic system
is imperfect, one might be led to argue against the use of existing
econometric models for policy purposes -- although a Bayesian would
not take this position but would rather find an optimal way to
utilize his imperfect knowledge. One problem which I have tried to
study in the application of econometric knowledge to policy decisions
is the measurement of the possible advantage of an optimal policy
based on an econometric model over a policy of maintaining constant

rates of change for the instruments, under the assumption that the



parameters of the model are knocwn for certain. Calculations

using a simple macro-econometric model presented in Chow (1972b)
have indicated that the welfare costs for the latter policy can be
about 40 to 80 per cent higher than for the optimal policy based on
an econometric model when the model parameters are assumed to be
known constants. A natural second problem is to measure the gain
from optimal control when knowledge of the model parameters is
uncertain. This and other problems of economic policy can be
studied by methods of this paper.

When we assume that the parameters of a linear econometric
model are uncertain we can take one of two approaches in deriving
the optimal control policies. The first is to assume a given
joint density for these parameters which is available at the be-
ginning of the planning horizon and which is not to be modified
while the economic process is being controlled. The second is to
allow for continuous modification of the joint density of the
unknown parameters as more observations become available to the
policy maker. To derive optimal control policies from the second
approach is more difficult because policies applied to the early
periods affect not only the performance of the economy during these
and later periods but also the knowledge of the economy which can
be utilized to control the economy for later periods. We will
point out the mathematical difficulty of this problem in section?2.

It is a well-known problem in the literature of control theory, but



no: truly optimal solution has been obtained, although numerous
approximations are available. The present paper is confined to
the first, and easier, approach. However, it will provide an
upper limit to the measure of the effect of uncertainty since a
control policy that utilizes additicnal observations during the
control process will obviously increase the value of optimal
control in the face of uncertainty. Furthermore, in many applica-
tions, the amount of information on the economic structure
available at the beginning of the control process is large compared
with additional information to be obtained while the economy 1s
subject to the control rules. The solution given in this paper
will then be a reasonable first approximation.

In the literature on optimal control of stochastic systems,
e.g., Aoki (1967, pp. 46-L47), one can find parts of the solution
to the problem of this paper stated in general form, but not a
complete solution that will provide numerical answers to the
optimal control equations and associated welfare costs. Using the
method of this paper, one can obtain numerical answers from obser-
vations on the economy. The distribution of the unknown parameters
will be derived from historical data from either a Bayesian or a
classical point of view. The distribution will then be applied to
obtain the optimal feedback control equations and the associated
welfare cost,

In section 2, the optimal feedback control equations are

derived under the assumption that the expectations involving certain

functions of the unknown parameters are known, The basic result of



this section is not new, but it is expressed in a more convenient
form and the derivation is simpler than what appears to be available
in the literature. Section 3 is devoted to simplification of the
required expectations, a necessary step in the numerical implementa~-
tion of the theoretical results of section 2. In section L, the
evaluations of the expectations are explicitly stated, by both
Bayesian and classical statistical methods. Section 5 is an attempt
to compare the optimal control equations and the associated welfare
cost for a system having random parameters with those prevailing

when the parameters are reduced to constants.,

2. Optimal Control Eguations for Linear Systems with Random
Parameters

It is assumed that the system is linear,

(2'1) Yt = Alyt_l+-..+Amyt_m+C0Xt+...+CnX +Bwt + u

t-n t

and that Ryseee,h Cosee4,C B are unknown parameters which

m’ n’

are to be treated as random with a joint density function as yet

to be specified. is a vector of p dependent variables and x
Y t

is a vector of g control variables or instruments. W is a vec-

tor of r exogenous variables not subject to control -- as a special
case, it may consist of only the dummy variable equal to one. Bwt
will also be denoted by bt for convenience. U, is a p=-variate
random vector, normally distributed with mean zero and covariance
matrix V (also unknown), and uncorrelated in time and with the

parameters Al,...,C B.

n)

To simplify our derivation of optimal control equations, 1let

the system (2.1) be written as
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Or, in a more compact notation (with Yo bt and U, redefined),

(2.3)

The welfare

Yi Ayt-l + Cxt + bt + u, .

cost is assumed to be guadratic,

T
= Z - 1 -
(2.4) W E, § (yt a,) Kt(yt a,)
E
= 1 - t 17
E, t=1(yt Koy = 2 vi Ky at) + const.
where a, are prescribed targets, Kt are given symmetric, positive

semi~definite matrices -- K

elements corresponding only to the two subvectors

notation of (2.2) -~ and E

information available at the end of period 0

¢ are usually diagonal, with non=~zero

Yi and X in the

o is expectation conditional on all the



The problem of optimal control is to minimize the expected
welfare cost (2.4), given the linear system (2.3). The method of
dynamic programming of Bellman (1957) will be applied to this problem.
By this method, one first solves the problem for the last period,

given the information up to the end of period T-1 . Thus one

minimizes

]

! -
(2.5) W Bp1(Yp Kp ¥p - 2 vh Ky ag)
Ep.1(¥p Hp Yo - 2 ¥ hy + cp)

where, in anticipation of generalization to the multiperiod problem,

we have let

(2.6) H, = K,: h, = K_.a

Substituting the system (2,3) for yp in (2.5), and taking expec-

tations, we have

(2.7) Wp = ET_l(AyT_l-+cXt-+bT)'HT(AyT_l-+cXT-+bT)-+E ul H_u

T-1"T"7T T

2 ET_l(AyT_l-FCxT-+bT)'hT + B c

T-1 77T

il

ET_l(AyT_l-+bT)*HT(AyT_1-+bT) + X, ET_l(C‘HTC)XT

1 LR t
+ 2%, En , C HT(AyT_l-FbT) + E ug Hyu,

- 2 By 1(Ay, 4 +bg)'hy - 2 x&(ET_IC’)hT + Ep_yCp -



Minimization of (2.7) with respect to X, by differentiation

\T.
(2.8) EfE = 2 E (¢c'H.C)x,, + 2 E (C'HA)y
Sy r-1\ € HpC )%y -1\ C B )Yy
+ 2 ET_l(C'HTbT) -2(ET_lc')hT =0
yields
where
~]
(2.10) Gp = - (ET_lC'HTC) ”(ET_lC’HTA)
-1
— - ] 1 - b
(2.11) 9p = (Bp_1C'HC) [(Ep_1C'HbR) = (B, _jCt )R]

The optimal feedback control equation (2.9) may appear to be a linear
function of Ypey » but this in general is not the case because

GT and Ip > insofar as they depend on the conditicnal expectations
as of the end of period T-1 , are functions of yT—l’yT-e""’yl ,
and of XT-l’xT-E""’xl . Howaver, if one is willing to approxi-
mate the joint density of (A,C,B) as of T-1 by their density as
of the end of period O , thus ignoring possible revisions of the

density by observations on Vi and x from period 1 on, the

t
feedback control eqguation (2.9) can be treated as linear. This is
the approximation to be taken in this paper. Since the optimal

policy thus derived can be improved upon by better approximation, the



result of this papef will provide a lower bound to the value of
control, or an upper bound to the loss arising from uncertainty in
the parameters.

The minimum welfare cost for the last period is obtained by

substituting (2.9) for X, in (2.7),

(2.12) v’@

T ET_l[(A+CGT)yT_1 + by + Cgp] 'HT[(A+CGT)yT_l + b+ Cg,]

t 1
+ ET_luTHTuT -2 ET~1[(A+CGT)Y‘I‘-—1 + JoT + CgT] hT + ET_lcT

H
t % -
Y1 ET_l(A+CG,1.) 'HT (A+CGT)yT_l +2 y,i,_lET_l(A-i-CGT) (HTbT hT)

+

t . - 1
ET_l( bT+CgT) HT(bT+CgT) +Eq_quhBpug -2 ET_l(bT+Cg,I) h,

+ ET-l cT .

A
Again, WT can be treated as a quadratic function of Yopoq if the

conditional density of A, C and B as of T-1 is assumed to be
independent of Ypapseees¥y and Kpogseees¥y o
Now, consider including the period T-1 in our optimization

problem. By the principle of optimality of Bellman (1957),

(2.13) min W

K, X T-1 "
TPl m el

min

in

1.
Bpep(Wp + ¥y Koo1¥p.q = 2¥p Fpog 2p )

"~
min ET-B(WT

* Ypo1Kp1¥poy - 2Ypoq KpoyBpoq)s
pal



A
and, wusing (2.12) for W

p » We have

(2.1%)  min Weop = min E

t 4
p-2(¥Yp_q Hp.y Ypop = 2 Ypoy Bpog *+ oqoq)

Wps Xy el
where
'
(2.15) Hpop = Kgop + Eqq(B+cep) 'Hy(A +c6y)
— t ! t
= Kp_q +ET_1(A HTA) + GT(ET_lC HTA)
1
(2.16) hp 4 = Kpo18pag * ET_l(A+CGT) (hT-HTbT)

- t - ! ! t
= KT__laT_l +ET_1(A+CGT) hT ET__l(A HTbT) GT(ET_lC HTbT)

1
= ! - 7B
(2.17) Cpoy = Eq_qf by + CgT) Hy( by, + Cg) - 2 t.T_l(bT+ CgT) hy +

)
+ET-lu H_u + B o]

T TT T-1"T7"°

The minimization problem of (2.14) is seen to be identical with that

of (2.5), with T-1 replacing T . The solution will therefore take

fhe form of (2.9), with supplementary equations (2.10) and (2.11),

A
. ¥pa1
found, one can evaluate WT_l as ' in (2,12), and proceed to include

and with T~1 vreplacing T in these eguations. Once is

the additional period T-2 in the optimization problem by
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~

. . ! 1
(2:18)  min By j(Wp ) + yo Ko o¥pp = 2 YpoKgip 2pop)

Rpup

as in (2.13). The process can be continued in this fashion until
the optimal %, is found.

To recapitulate, the optimal feedback control equation for
each period is linear in Y., as given by (2.9) if the conditional
expectations required in evaluating the coefficients Gy and 9s
in (2.,10) and (2.11) can be computed independently of Vi1
Yiaprees, X ny? Kiwproes o Under this assumption, we compute GT,
HT-l’ GT-l"" backward in time using the pair of equations (2.10)
and (2,15), and the initial condition(2.6). Similarly, we compute
I hT-l’gT-l"" backward in time using the pair of equations
(2.11) and (2.16). In these computations, it is essential to

evaluate the conditional expectations. We turn to this subject in

the next two sections.

3. Simplification of Conditional Expectations

Inspection of equations (2.10), (2.11), (2.15) and (2.16)
reveals that the expectations required are E(c'uc), E(c'HA),
E(C'Hbt), E(AMA) and E(A'Hbt) . The time subscript for E is
dropped because, by the approximation of this paper, all expecta-
tions are conditional on information as of the end of period O .

The time subscript for H will hereafter be suppressed. Before
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evaluating these expectations, it will be convenient to express them -
in terms only of the random parameters in A, C, and B, matrices that

contain many known constants. To do so, let us introduce the symbols
(3.1) I = (nl I, HB)

for the coefficients of the system (2.1), where

(3'2) Hl = (Al...Am’ cl,ooncn)
(3.3) I, = ¢,

. =
(3.4) Ty B

Using these symbols, one can write the matrices A, B and bt of

(2.3) as,

(3.5) A = nl + O 0 0 O
O 0 0 © I O 0 O
O 0 0 O 0O 0 ©
O 0 0 © O 0 I O
il

(3.6) c = 2

Cc H O
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P
(3.7) b, o .

0

o

Following the partitions of (3.5), (3.6), and (3.7), we partition

the matrix H as

am— o

Hyp  Hyp Hys  Hyy
Hop  Hyp  Hyz  Hyy
(3.8) H =
H H
Hyp  Hip  Hyy  Hyy
Hyp  Hypy By Hy,
where Hyy, H,,, H55’ and H), have, respectively, p , (m-l)p, g,

and (n-1)g rows or columns.

Multiplications of the above partitioned matrices give

! t ?
= 1.+ H
(3.9) <CHC My Hyg Ty + M By, + B T, + B

(3.10) c'ma I

1 t
o 111+H2(1112 O Hy), 0) +H L, + (332 0 H,) 0)

31 3

1
' —
(3.,11) C'Hb,_ = HEHllHBWt +H31H3wt



13

1 ! 1 1
(3.12) A HA = oy Hyy T, + nl(H12 O Hy) o) + (H12 O Hy) 0) I,

Hyp O Hy O
. 0 o) o] 0
H, O H, 0
0 o) o) o)
H 1
(3.13) AHb, = I, H, . I. w .

Our task is to evaluate the expectations of (3.9) to (3.13) in
terms of the first two moments of the elements of I ,

Denote the mean of I by I, Letting the s=(pm+qn)+q+r
columns of I be Ty een Ty, We write the ps elements of I

as a column vector 7 . Denote the covariance matrix of 7T by Q,

so that
wlTi e leé Qll cee le
(5.]-)4‘) EW' '-=:E:7.';";I:'t +Q = o o o + o o @
adiund -
;llslli s e @ ?TS'S OSl s e QSS

We proceed to evaluate the expectations of the leading terms of
(3.9) to (3.13), and note that they are submatrices of E(H'HllH)
according to the partition of I by (3.1). The i-j element of

this matrix is



1k

]

t
(3.15) E(H'Hllﬂ)ij = EW] Hy, T E tr(Hll 7rj 1r.l)

t

1 -
= trHllE Wfﬁ_: WiHllﬂﬁ'Ftrﬂllgji .

Thus, the required expectations of (3.9) to (3,13) can be easily

computed once the mean and the covariance matrix of T are given.

L. Mean and Covariance Maktrix of the Unknown Parameters

In this section, we will provide two methods of evaluating
the mean and covariance matrix of 7 . The first is Bayesian. The
second is an approximate method utilizing an asymptotic distribu-
tion of the structural parameters from which the reduced-form
parameters T are derived.

We assume that, prior to the control process, N observations
on the system (2.1) have been avazilable. The data are arranged in
two matrices. Y is an NXp matrix consisting of columns of X
observations on the p dependent variables. 2 is an NXx s matrix
consisting of columns of observations on all the explanatory

variables. The system (2.1) is written ag

(4.1) Y = 2I' +U .

We will first take a Bayecian approach to derive the joint density

of I .l Assume that each row of U in (h.l1) has a p-variate normal
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density with mean zero and covariance matrix V = R”l » and that

the N rows of U are uncorrzlated. The pdf of Y will be2
1
(4.2)  pf¥|M,R) oc |R|ZY exp(-3tr R(¥'-1z')(¥-20')} .

Assume also that the prior density of the parameters (I,R) is

diffuse, and is represented by
-l
(4.3)  B(LR) o | 7HPH)
The posterior density of (I.R) will then be

R

(ko4) p(E,R|lY) oc IRI%(N"p'l) exp( ~1trR(Y' -nz')(Y-2I')) .

Using the ideatity

(ko5) (¥'-1mz')(y-20') = 5 + (R-mz'g(fi-1)
where

(L.6) 1 - (z'z)"1 7'y

and

(ko) S = (Y'-ﬁz')(yuzﬁ') ,

we rewrite (L4.4) as

S

[

(L.8) p(I,R|Y) o |R] exp{-%trR(H-ﬁ)ZtZ(H-ﬁ)')

1 Nepe]-
X IMEQJPI'” exp{ -1 trRrRS)
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which is a normal~Wishart density, being the product of a .normal
density and a Wishart density.3 (4.8) implies that p(@I|R,Y) is
normal; the mean of I is ﬁ and the covar. ance matrix of the s
columns T, ... T, of I is (z'z)"L ® R, 1t also implies
that p(R|Y) is a Wishart density with parameter set (S, N-s).
The mean and covariance matrix of the elements of I can
be obtained by using the density (4.8) and integrating first with
respect to I . The mean of I is simply ﬁ » Since integration
with respect to R wusing the Wishart density does not involve I ,

For the covariance matrix, we have
oy=1 -1 JINC RS
(4.9) Covw= [[(22)"® R ] p(RlY) dR = k(z2Z) @ s

since IER-l is known to be kS8, with k = (N-s—-p—-l)“l , if R
is a pXp matrix having a Wishart distribution with parameter set
(s, N-s).u

By the use of (L4,6) for f and (L4.9) for Q in (3.1k), we
can simplify the expression for E(I' HlllI). Let k(Z'Z)-l==(ci.).

J
(L.9) then implies tbhat Qij = C,.8, so that (3.15) becomes

ij]
[] A A
2 _ t
(k.10) E(I Hllﬂ)ij = 7 Hy, L (tr Hyq s)cji ,
or,
1 oy -~ 1 -1
(4.11) B(I HlllI) = II Hyy T+ k(txr Hyq s) (2 2)

which contains suhmatrices for the expectations of the leading terms

of (3.9) to (3.13).
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The Bayesian result (4.11) is exact, but it does not take
into account the non-linear restrictions on the elements of I
induced by the over-identifying restrictions, if any, on the

parameters (B I') of the structure

1

(k.12) YB = 2T +E
from which the system (2.1) might have been derived, with
(k.13) I =-m*p .,

The following approach is approximate, but it does incorporate the
over-identifying restrictions. Let (:é r ) be consistent and
asymptotically unbiased estimates of ( B I') , and let the (p+s)
columns of these estimates have an asymptotic covariance matrix .
Then, using Theorem 1 of Goldberger, Nagar and Odeh (1961), the

columns of the reduced-form estimates I = - I3 I' will have an

asymptotic covariance matrix which mayv be approximated by

(h1b) o - (-7 1J@ s Hw (-1 1)@ 5’

where Is is an identity matrix of order s . If one is willing

to interpret 5 in (4.,1k) as a covariance matrix of the random
parameter II around the constant E » Yrather than as a covariance
matrix of the random estimates I s then using I for i and é

for Q in (3.15) will provide an approximate solution to the evalua-

tion of expectations required in our optimal control problem.



18

5. Comparison with the Certzinty Case

In this section we will attempt to compare the optimal
control solution for the random parameter case with the solution
prevailing under the assumption of known parameters. What will
happen to the solution when the random parameters degenerate into
constants? Or, to put it in the opposite way, what will happen
when randomness is introduced into the otherwise constant para-
meters? Two parts of the optimal solution will be compared. They
are the optimal feedback equation and the optimal welfare cost.

If the random parameters in system (2.3) are reduced to
their means for the certainty case, we simply replace A,C, and
B in our solution of section 2 by the mean values. The optimal
feedback control coefficients Gt and g, » @s given by (2.10) and
(2.11) with t replacing T , can thus be compared with the
corresponding coefficients in the certainty case when A becomes
A » etc. Similarly, the optimal welfare cost T:I\l s as given by
(2.12) with 1 replacing T , can also be compared with the corres-
ponding cost in the certainty case. Clearly, the analytical
results of the previous sections can be used to compute the solu-
tions in both the certainty and the uncertainty situations for the
purpose. of comparison. In the remainder of this section, we ask

whether some gualitative results in such a comparison can be

agscertained.
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To facilitate comparison, we first rewrite the optimization
problem of section 2 and its solution in slightly simplified forms.
This involves introducing new variables in the quadratic welfare
function to eliminate its linear terms, and to make the optimal

control equation linear homogenous, eliminating the intercept Iy -

Letting N ] i N
Ve Ky K, O
(5.1) 2, = |3, Q. = [~K, K. O ,
wt+1: 0 O 0]
one can rewrite the welfare cost (2,4) as
:
- 3 t A .
(5.2) W o= E, t=thQt‘t
Writing, without loss, a, = Ptat-l and W, = tht~l’ and
letting
A 0 B | c ‘ug
o = I = VJ =
t t ?
O P O C O
t
0 0 D Q 0

we have, in place of (2.3),

(5.4) Zy = Oz 4 +T R+ W

t .
Following the dynamic programming approach of section 2, one easily
finds, analogous to (2.9), (2.10), (2.12), (2.15) and (2.17)

respectively,

(5.5) e = B¢ 2y
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-1
(5.6) G, = - (Et_1 I"HtI‘) (Et_ll"'Htat)
-~
— 1 1
(5.7) we =zl 4 Et_l(at-+PGt) Htﬁxt+-FGt)zt_l-+ct_l
(5.8) Hoq = Qt_l+Et_l(oz.t+I‘Gt)'Ht (at+I’Gt)
(5.9) Cea1 = Beay VieHe Ve * Beog o

with initial conditions HT = QT and Cp = 0.

Having rewritten our solution, we will try to compare the

optimal feedback coefficients Gt and the optimal expected welfare

lal
cost Wo with the corresponding results for the certainty case.

In the certainty case, the random coefficients o and I 1in

(5.3) are assumed to reduce to their mean values &t and [ , Let
a% and F* denote. the deviations of « and I' from their means.
Some elements of a and P* are obviously zero, Consider the
problem for the last period T . From (5.6), we have, for the
uncertainty case,

- - * ¥ wl = - * *
= e 1 ; 1 t ' /
(5.10) G, (F'HT +ED H, )~ (T'HG, + ET Hoa )

whereas, in the certainty case, the above reduces to
(5.11) @, = - (T'm f')"l (fu.a..)
° T T TT

What can be said about the relative magnitudes of éT and GT ?

We can begin by making two elementary observations. First,

as it is well-known, if the coefficients Oy and I' are subject to

uncertainty, the principle of "certainty equivalence" does not apply.
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According to this principle, one would set the instruments by the

rule obtained from replacing «, and T by &

& & and ' . Clearly,
the contrast of (5.10) and (5.11) shows that this is not the case.
Secondly, if the number of instruments q is greater than the

number of target variables (which equals the rank of HT = QT ),

one can select a subset of instruments to achieve an optimal policy
in the certainty case. This can be observed from equation (5.11)
when the rank of f’HTf , a g by q matrix, is less than q ;
we would use a generalized inverse of this matrix, but the optimal
éT would not be uniqgue and would have rank smaller than g . As
Brainard (1967) has suggested, more and possibly all instruments
will be required in the uncertainty case even if there are more
instruments than targets., This point can be easily seen by noting
that the rank of E’HTF + EP*'HTP* in (5.10) will in general be
greater than the rank of f'HTf (5.11) when the latter is smaller
than q .

After making these two elementary observations, one may ask
whether uncertainty will call forth smaller policy responses to
recent econcmic data as manifested by the smaller magnitudes of the
elements of G than G, . For example, can one say that the

T T

squared length of each column of G in the certainty case is

T
necessarily larager than that of the corresponding column of N
This assertion would mean more policy response to each observed

variable in the certainty case. To answer this questicn, one

notices that the model for (5.11) is mathematically identical with
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the multivariate regression model

(5.12) a_ = TI(-G

where the columns of &T are the dependent variables, the columns
of T are explanatory variables, and the columns of "éT are the

regression coefficients obtained by generalized least squares.

* *
a and T can be regarded as measurement errors, yielding L and

I'' as observed variables, and -GT as regression coefficients

given by (5.10). Consider the very special case of only one
dependent variable and one piece of datum for the instrument to

respond to (so that «,, becomes a scalar). Let H_ =1. The

T

optimal feedback coefficient ET under certainty will be larger

. * *
than GT if the errors I and « are uncorrelated. However, the

T

deduction of a smaller policy response to economic data under un-

. 0 . " * *-
certainty may not even be valid for this very special case if T

* - -
and o are correlated. I£ ¢p > 0, I' >0, and thus

- - - x *
Gy = -(a,,/T) < 0, a positive covariance between I and & can

make GT bigger than éT .

If the svstem (5.4) has p dependent variables, the p
elements of each column of &T will be exprlained by the g columns
of T s, With g regression coefficients given by the corresponding
column of —éT . In this multiple regression situation, if the
explanatory variables T are measured with errors P* s and the
dependent variable is also measured with errors (the corresponding

* -
column of o ) , it is not true in general that each column of -G
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will have greater (or equal) length than the corresponding column
of -GT « Even if we assume that the columns of F* are uncor-
related with those of o ’ i;e., E P*'HTa* = 0 , we still cannot
deduce a greater or equal length for the columns of éT . If

* ' * .
El '"Ho =0, (5.10) and (5.11) imply

(5.13) G,'G

| - - ey . g - - —l *
G,:'D-[I-&-(I"HTI‘) l(Er*'HTr*)]'[IMP'HTr) (Er ’HTI‘*)]G,I;

f

- =\=1 * * * ¥y o, = -v=1
1 t LT 1 t 1
GTGT+GT[(I’ hTI") (Er Hyl ) + (ED Hyl y(r I—ITI‘)

.X_
r e, .

* ¥, = =1, = w]l *
3 1 1 1 ™ot
+ (Er Hpl Wr HTI‘) (r HTI‘) @r ‘g -

T

The matrix in curly brackets is not in general positive semidefinite,

so that the diagonal elements of @% éT is not necessarily greater

than or equal to the diagonal elements of Gé(ﬁr,

may often turn out to be the case for specific applications. The

although this

deduction would be valid if, in addition to EP*'HTa* = 0 , both
f'HTE and EP*'HTP* were diagonal, but this is a very special
case indeed. Intuitively, one reason for a possibly larger policy
response in the uncertainty situaticn is that, while the variances
in T* per se may lead to reduction in the magnitudes of GT ’
the covariances between P* and a* can be exploited in the design
of active control policies.
Next to be studied is the optimal welfare cost ﬁT . By

(5.7) and (5.9), it is a quadratic form in the variables Zenq (the

given data of the feedback control eguation), plus a constant. If
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uncertainty is to imply no reduction in expected welfare cost for

the last period, given any initial conditions =z , the matrix

T-1

(5.14) E(aT+FGT)'HT(aT+PGT) —(OtT+I‘TGT)'HT(ocT+I’ G.)

* 1 * ty ot - * 1 * -
= EQ" H.o +GT(I' Hpl' + EI” HT )GT

has to be positive semi-definite. (5.14) can be identified as the
difference between the covariance matrix of the (weighted) multie
variate regression residuals when measurement errors exist and the
covariance matrix when the errors are absent. Errors in the
dependent variables a; alone will make the former matrix bigger
by IEa;'HTa;J The remaining two matrices on the right-hand side

of (5.14) are the covariance matrices of the explained parts of the
regressions for the error and no-error cases. There is no guarantee

that the difference betwean these two matrices are positive semi~-
definite. As the related study of Cochran (1970) suggests, without
very special assumptiocns, it is difficult to ascertain a net in-
crease in the variance of the residuals of a multiple regression

as a result of measurement errcrs, although errors in the dependent
variable alone will tend to cause such an increase, However, if
uncertainty does increace expacted welfare cost in period T through
the positive semi-definiteness of (5.14), the effect will tend *o
accumulate backwards to the total expected weclfare cost computed in

period 1, the process of accumulation being given by equations

(5.7) and (5.8).
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In summary, this paper has provided an analytical solution
of the optimal feedback control equat ion and the associated expected
(quadratic) welfare cost when the parameters of the linear econo-
metric model employed are uncertain. The solution can be used to
study the effects of uncertainty by comparison with the result
when all parameters are reduced to constants. However, it seems
difficult to ascertain a_priori qualitative results concerning such
a comparison, although the partial effects of certain factors have
been pointed out. By ignoring the possibility of reducing uncer-
tainty through observations during the control process, this. study
eXagerates, .and thus sets an upper limit.to, the effect of
uncertainty on the optimal control policy and the associated

welfare cost.
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1. The density of I from a Rayesian point of view is well=-known
and can be found in Zellner (1971), for example, although the
second moment of I is not so well~known. For the latter, see
Chow (1971).

2. Here, and in what follows, the initial conditions of the system
and all values of the exogenous variables are assumed to be given
in specifying the density of Y .

3. See Anderson (1958), p. 182 and p. 15k respectively, for
definitions of these two densities.

L, See Raufman (1967), p. 1k,



