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ON THE SCLUTION OF OPTIMAL CONTROL PROBLEMS
AS MAXIMIZATION PROBLEMS

Ray C. Fair#¥

1. Introduction

There appears to be among many economists the view that the computation of
optimal controls for moderate- to iarge-scale nonlinear econometric models is not
feasible. Pindyck [19], for example, has questioned whether "non-linear optimiza-
tion [is] worth all of the computational difficulty that it entails."l Shupp
[24] has stated that "the size and complexity of these models preclude formal
optimization.”2 Holbrook [13] has been led to consider only quadratic objective
functions and to propose a method of obfaining approximate solutions to optimal
control problems for nonlinear models.3 The results presented in this paper
indicate that this view is not correct, even for models of up to 100 or 200
equations. The results suggest that it is feasible to compute optimal contfols
for most econometric models encountered in practice.

Historically, optimal control problems have been formulated in c§ntinuous
time and have been looked upon as protlems in choosing functions of time to
maximize an objective function. Fairly advanced maethematical techniques are
required to solve these problems. For discrete-<time models, however, which
include virtually all large-scale econometric models, optimal control problems
can also be looked upon as problems in choosing parameters to maximize an obJective

function. The number of parameters to be determined is equal to the number of

¥I would like to thank Gregory C. Chow, Kenneth D. Garbade, Stephen M. Goldfeld,
and Richard E. Quandt for many helpful comments.

lPindyck {191, p. 388.
2Shupp [2k], p. L.

3Holbrook's method is based on obtaining numerically a linear approximation
to the relationship between the value of each control variable for each period
and the value of each target variable for each period. It is unclear as to how
rlnse s solution obtained using Holbrook's method is likely to be to the true
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control variables times the number of time periods chosen for the problem.

From this perspective, optimai control problems are straightforward maximization
problems, and in attempting to solve problems in this way, one can take advantage
of the recent advances that have been made in computational algorithms for
maximizing nonlinear functions of parameters. This approach, of treating optimal
control problems as problems of maximizing a nonlinear function of parameters,

is the approach taken in this paper.

2. The General Method of Solution

Assume that the model uhder consideration is deterministich and has g
equations. Write each equation for each period of time as

1,....8;

(1) £ (s 2, Xy %y) = 03
1,...,T;

i
t
vwhere Yy is a vector of observations for period t on the g endogenous

variables in the model, z_ 1is a vector of observations for period t on the

t

noncontrol, predetermined variables in the model, x, is a vector of observations

t
for period t on the control variasbles in the model, and o4 is a vector of
non-zero parameters that are included in equation i for period t . The t
subscripts in LT and fit allow for the possibility that some parameters and

some functional forms are changing over time.5 Lagged endogenous variables are
included in the z, vector. T 1is the total number of periods to be considered
in the control problem.

The model in (1) is assumed to be such that, for each t , given values for

hStochastic models are discussed in Section 7.

5It is assumed throughout this paper that the values of a. and the wvalues

it
of the exogenous variables in the Zy vector are known with certainty.



Zys Xy and ST (i =1,...,8) one can solve numerically for Ve - In practice,
most large-scale econometric models are solved each period by some version of
the Seidel method.6 Further, one can frequently isclate each component of the
Ve vector on one side of one eguation, which greatiy aids in the solution of
the model. If thé model ié solved for more than one period and if the solution
is meant to be a dynamic one, then the solution values of the endogenous variables
for previous periods are used, when appropriate, as values for the lagged
endogenous variables in the z, vector. For linear models, of course, values
of yt are nmerely obtained from reduced form equations.

For a time horizon of T periods, the objective function, h, is taken to be

and x, {(t=1,...,T):

a function of Vs Zgo £

(2) W=h(yls---syT; le'-'szT; xls"-axT) s

vhere W, a scalar, is the value of the objective function corresponding to

values of y., 2z, and x (t=1,...,T).

t

The optimal control problem for this discrete-time, deterministic model is

to choose values of Xy5---5%Xp SO as to maximize W subjeet to the equation;

3

t b

the values for each period of the purely exogenous variables, and initial values

constraints in (1). The givéns of the problem are the value of each e

for the lagged endogenous variables. Assume that X, is of dimension k , so
that there are kT control values to determine. Let x be a kT-component vector
denoting these values: x = (x ,...,xT). Now, for each value of x, one can

compute a value of W by first solving the model in (1) for Yqse++s¥p 2and then

6See, for example, Fromm and Klein [10], pp. 373-382.
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using these values along with the values for Zl""’ZT and x to compute W
in (2). The optimal control problem cau thus be looked upon as a problem in
choosing parameters (the elements of x) to maximize a nonlinear function. The
function in the optimal control case is h is combination with the fit .
In general it will not be possible to express Y explicitly in terms of Zy»
Xy and @iy 5 SO that in general it will not be possible to write W in (2)

(t =1,...,T). Nevertheless, given

explicitly as a function of , and o,

Zyo X it

values for z_ and &y (¢t =1,...,T), values of W can be obtained
numerically for different values of x .

There are many algorithms available for maximizing (or minimizing) nonlinear
functions of parameters. Since W cannot in general be written as an explicit
funetion of x , it will in general be difficult to obtain analytically the
partial derivatives of h with respect to the elements of x . Therefore, in
attempting to solve optimal control problems by treating them as problems in‘
maximizing a nonlinear function of parameters, one Will usually be required either
to use algorithms that do not require derivatives or else to compute derivatives
numerically. Both approaches ha;§7¥;llowed for the results in Sections 4 and 5.

Algorithms that do not require derivatives and algorithms for which
derivatives are obtained numerically spend most of their time doing function
evaluations. For the results in Sections 4 and 5, over T5 percent of the time
was spent doing function evaluations for all algorithms tried except in two
cases, where the figures were 52 and 53 percent. One function evaluation in the
present context corresponds to the solution of a g-equation model for T
periods (plus the rather frivial computation, once yl,...,yT are determined, of

W in (2)). It is therefore quite important to solve & model in the most

efficient way possible, since for one solution of the optimal control problem g



model will usually be solved hundreds cor thousands of times. Some suggestions
are presented in Section 6 for efficient ways of solving models.

Much of the engineering litersture on optimal control is concerned with
continuous-time models and so is not of direct concern here. Polak [20],
however, does present & good discussion of the discrete optimal control problem

7

in engineering. The discrete-time model considered by Polak differs from the
standard econometric model considered in this paper in that his model is already
in reduced form. In the notation of this paper, each component of Y would
be written as an explieit function of Zys Xpos and oy for Polek's model. The

fact that the derivatives of Y with respect to zZ, and X, cen be directly
obtained for Polak's model allows Polak to obtain fairly easily the derivatives
of the objective function with respect to the values of the contral variables.
Polek also reports that the time horizon for the problems he is considering may
be as large as 1000 periods,8 which is much larger than the time horizon for
most problems in economics, where the horizon is likely to be much less than
even 100 periods. The discrete optimal control problem in economies is thus

on phe one hand easier than the corresponding problem in engineering in that the
time horizon appea¥s to be much smaller and on the other hand more difficult in
that analytic derivatives of the objective function with respect to the values of
the control variables are not easy to obtain because of the non-reduced-form

nature of most econometric models.

"Tsee especially pp. 66-T1. See also Athans [1] for a discussion of the
linear-quadratic-gaussian stochastic control problem for discrete-time models.

8Polak [20], p. 67. Polak does nof, however, report on any actual solutions
of problems of this sort in his book.
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3. The Computational Algorithms Used

Three basic algorithms were used for the results in Sections L and 5. The
first is the 1964 algorithm of Powell [21], which does not require any derivatives.
The second is & gradient algorithm, which requires first derivatives. The third
is the quadratic hill-climbing algorithm of Goldfeld, Quandt, and Trotter [12],
which reguires both first and second derivatives. The gradient algorithm that
was used in this study is a member of the class of algorithms considered by
Huang [15].9 The zlgorithms within this class basically differ from each other
in how the approximation to the inverse of the matrix of second partial derivatives
is updated after each iteration. One member of this class is the well-known DFP
variable metric algorithm.lo Some results using the DFP algorithm are reported
below, but the main gradient algorithm that was used in this study is the one

11

that updates by means of the “rank one correction formula.” This algorithm

appeared to give the best results. Some results using one other member of the
class of algorithms considered by Huang are also reported below.12 All three of
the gradient algorithms considered in this study use linear searches on each
iteration.

All of the computer programs were compiled in FORTRAN-H and were run on an

13

IBM 360-91 computer at Princeton University. All derivatives for the gradient

and quadratic hill-climbing algorithms were computed numerically. For the gradient

9See Powell [23] for an excellent surmary of Huang's theory.

loSee Davidon [T7] and Fletcher and Powell [9].

Hsee Powell [23], p. L1.

125ce Powell [23], equations (31) and (32), p. 41, for a presentation of
this algorithm.

l3The Powell and quadratic-hill-climbing algorithms were programmed by
Stephen M. Goldfeld and Richard E. Quandt. The three gradient algorithms were
programmed by Thomas Russell.



7.

algorithms the derivatives were computed in two ways. For one set of';;ﬁg
derivatives were obtained for each iteration by computing two function evaluations
per parameter, each parameter being perturbed by equal amounts around the value
available from the previous iteration. For the other set of runs derivatives

were obtaired for each iteration by cormputing only one function evaluation per

parameter. The percentage amount by which parameters were perturbed (.01 percent)

'

was not ¥aried from iteration to iteration.lh Stewart [25] has proposed a more
sophisticated way of computing numefic derivatives when using gradient algorithms,
but his method was not tried in this study. For the quadratic hill-climbing
algorithm first derivatives were always obtained by computing two function
evaluations per paremeter, as these computations had to be made anyway to obtain
the own second derivatives, but the cross partial derivatives were computed

in two ways. TFor one set of runs the cross partial derivatives were obtained by
computing four extra function evaluations per set of two parameters, and for the
other set of runs the derivatives were obtained by computing only one extra

15

function evaluation per set of two parameters. The reason two methods were
used to obtain derivatives for the gradient and quadratic hill-climbing algorithms
-~One more expensive but likely to be more accurate and one less expensive but

likely to be less accurate—-was to see how sensitive the results were to the

/

thet f(a,b) be a function of two parameters. Then the formulas that were
used to obtain the partial derivative of f with respect to a for the two runs
are (f(ate,b) - f(a-e,b))/2¢ and (f(a+te,b) - £(a,b))/e , where e = 0.000la or
0.000001, whichever is larger. For all of the runs the problems were set up so
that the solution values of the parameters would be between about 0.1 and 10.0.

‘Using the notstion in footnote 14, the formula used for the own second
derivatives is (f(a+e,b) - 2f(a,b) + f(a~e,b))/e2. The two formulas used for the
cross partial derivatives are (f(a+e,b+n) - f(a-e,b+n) - f(ate,b-n) + f(a-e,b-n)/ben
and (f(ate,b+n) - f(a,b+n) - £(a+te,b) + f(a,b))/en, where n = 0.0001b or
0.000001, whichever is larger. In the second formula, values for f(a,b+n)
and f(a+e,b) are available from the own~-second -derivative calculations.



way in which the derivatives were obtained. Box, Davies, and Swann {51, for
example, report that their experience is that "gradient methods employing
numericel differentiation are, (with the exception of Stewart, 1967) usually
inferior to the best direct search methods, and therefore not recommended.nl6
The results in this study do not confirm this view.

In the programs, the algorithms were taken to have converged when the
absolute value of the difference between the value of each parameter on successive
lterations was within a presecribed tolerance level. The Powell algorithm was
generally more sensitive to the particular tolerance level used than were the
gradient and quadratic hill-climbing algorithms, and for the results in Section L
two sets of runs were obtained using the Powell algorithm, corresponding to two
different tolerance levelé. |

Studies that have been done comparing different computational algorithms have
tended to limit the size of the problems considered to 20 parameters or less.

This is true, for example, of the comparisons in Bard {31, Box [4], Goldfeld and
Quandt [11], Kowalik and Osborne [16], Murtagh aﬁd Sargent [17], Pearson [18], ena
Stewart [25]. Powell [22] reports that the DFP algorithm using analytic derivatives
has been successful for problems of size 100 and that his 1964 algorithm and the

DFP algorithm using numeric derivatives in the manner propoesed by Stewart have
solved problems of size 20.%7 Wolfe [26] states that the upper limit to the size

of problems that can be solved in which derivatives can be calculated analytically

is around 100. For problems in which derivatives cannot be calculated, Wolfe's

diagram indicates that the upper limit is about 10.18 The results reported below

16Box, Davies, and Swann [5], p. 32.

17Powell [22], p. o95.

18 sl
Wolfe [36], pp. xi-xii. It should be noted, however, that it is not clear
from Wolfe's notes whether for these particular figures Wolfe is also ineluding
problems in which there are inequality constraints.



indicate that the upper limit to the size of problems that can be solved when
derivatives are not calculated analytically is much larger than 10 or 20. The
largest problem solved below was of size 239, and = mumber of problems between
size 59 and 100 were solved. In fact, one of the main reasons why the method
proposed in this paper appears feasible for most econometric models is the ease
in which algorithms appear to be able to solve lérge problems even when analytic

derivatives are not calculated.

L. An Example Using a Linear Model with a Quadratic Objective Function.

The method proposed in Section 2 was first used to solve one of the optimal
control problems solved by Chow [6] for his nine-eguation, linear econometric
model. The model has two control varishbles. Chbw solved various 1l0-period
optimal control problems corresponding to different quadratic objective functions
(to be minimized). The problem chosen to solve in this study is the second
problem in Table 3 of Chow [6]. Two control variables and ten periods means
that there are 20 parameters to be determined. The initial values for the 20
parameters were chosen to be zero, although in practice one could obviously
choose better initial values than these. The results of solving this problem
are presented in the first row of Table 1. Two runs for the Powell algorithm
are reported, one which used a tolerance level of .0005 and one which used a
tolerance level of .00001. Two runs each for the gradient and quadratic hill-
climbing algorithm are also reported, corresponding to the two ways of computing
derivatives. The latter two algorithms used a tolerance level of .00001.

Powell's no-derivative algorithm required 1687 function evaluations to attain
the oﬁtimum using a folerance level of .0005 and 2633 function evaluations using
a tolerance level of .00001. The value of the objective function at the stopping

point was smaller for the smaller tolerance level, but only by a very small amount.
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The corresponding parameter values for the two runs agreed to three significant
digits, with the largest difference being .00015 (.T0272 versus .70287). The
gradient algorithm required 61 function evaluations to attain the optimum using
one function evaluation per derivative per parameter and 1033 function evaluations
using two.  The value of the objective function at the stopping point was smaller
for the second run, but again by only a very small amount. The corresponding
parameter values for theée two runs also agreed to three significant digits.
The quadratic hill-climbing algorithm required 929 function evaluations to attain
the optimum using one function evaluation per cross derivative and 3209 function
evaluations using four. For these two runs the values of the objective function
at the stopping point were the same. The time per function evaluation for the
Chow-model, 10-period problem was .0018 of a second. The optimum obtained for
this problem was the same as Chow had obtained.

The optimal control problem for the Chow Model was next made progressively
larger by increasing the time horizon. The largest problem considered was =a
time horizon of 50 periods, which meant that there were 100 parameters to estimate.
The results for 40, 60, 80, and 100 parameters are presented in rows 2'through 5
in‘Table 1 respectively. For the various problems the gradient algorithm clearly
dominated Powell's in terms of speed of convergence. The use of the smaller
tblerance level for the Powell algorithm increased the number of function
evaluations considerably, and the values of the objective functions at the stopping
points were only slightly larger for the larger tolerance level. Likewise, for
the gfadient algorithm the values of the objective functions at the stopping
points were only slightly larger for the runs using one function evaluation per

derivative. For the quadratic hill-climbing algorithm no accuracy at all was lost

using one function evaluation per cross derivative. The quadratic hill-climbing
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algorithm was not tried after L0 parameters. although the use of the algorithm
for problems of, say, size 100 is not completely out of the question. Using
the less expensive way of obtaining cross derivatives, it requires Q.5N2 + 1.5N
function evaluations to compute the vector of first derivatives and the matrix
of second partial derivatives per iteration (where N 1is the number of
paremeters). If L iterations are required to attain convergence, then roughly
20600 function evaluations would be required to solve the 100-parameter problem.
Adding extra periods for the Chow model in general had little effect on the
optimal parameter values of previous periods, so that, for example, the answer to
the 60-parameter problem was close to the answer to the 80- or 100-parameter
problem for the first 60 parameters. In view of this, the answer to smaller
problems should be a good starting point for larger problems, and so to test
this, the answer to the 60-parameter problem was used as a starting point for the
Tirst 60 parameters of the 80-parameter problem. Starting points for the other
20 parameters were obtained by letting the values of the two control variables
grow by 6 and 5 percent respectiveiy, these figures being obtained by observing
how the control variables were groving in the answer to the 60-parameter problem.
The results of this test are presented in row 6 of Table 1. For the gradient
algorithm the number of function evaluations was cut by about a factor of 3
(from 4432 to 1396 and from 8517 to 28k2), a substantial savings. For the Powell
algorithm the number of function eveluations was cut from 10960 to 6253 using
the larger tolerance level and from 16219 to 6253 usiné the smaller tolerance |
level. In both cases for the Powell algorithm, a slightly smaller value of the
objective function was obtained by starting the parameter values from zero.
As a final test using the Chow model, two other gradient algorithms were
tried for the 60-parameter problem. The results are reported in rows T and 8

of Table 1. HNeither algorithm worked as well as the rank one algorithm. The
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DFP algorithm required about 1554 more function evaluations than did the rank-one
algorithm for the run using one funcition evaluation per derivative. For the run

using twe function evaluations per derivative, the DFP algorithm did not quite

attain the optimum.

5. An Example Using a Nonlinear Model with a Non-Quadratic Objective Function.

The method of Section 2 was next used to solve a more complicated optimal
control problem. The model used was the Fair model [8], less the monthly housing
starts sector. The model used consists of 19 equations, is nonlinear, has lags
of up to eighth order, and was estimated under the assumption of first-order
serial correlation of most of the error terms.l9 The initial period was taken to
be 1962III, and the horizon for the various runs was either 10, 20, 25, or 60
gquarters. The number of control varisbles was varied between one and four.
Government spending was always teken to be a control variable. The other three -
variasbles that vere sometimes used as control variables were the level of consumer
sentiment, plant and equipment investment expectations, and nonfarm quarterly
housing starts. These latter three variables are clearly not variables under
thé direct control of the government, but for purposes of illustrating the method
of solution, there is ﬁo harm in treating them as if they were. The objective
function was deliberately chosen to be non-quadratic in the variables of the model.

The objective function (to be minimized) was:

1 2 2, B 2
W= 2 {1o(gPD )<+ 1o/m=<,c - .030/° + (éﬁ,—- .09L)
t=1 t e
CH cs
t 2 t 2
(aﬁ§~'— .275)° + (GNP - .257)
t t
IP IH
£ 2 g 2
+ (GNPt - .101)° + (aﬁﬁz'- .038)°%1 ,

19the coefficients were taken from Table 11-4 in[ 8],



1k,

where gPDt is the rate of growth (at an annuel rate) of the private output
deflator, URt is the unemployment rate, and the five ratios are the ratios of
durable consumption, non-durable consumption, service consumption,'plant and
equipment investment, and housing investment to gross national product
respectively. The slashes around URt - .030. denote the fact that /URt - .030/
was taken to be equal to UR, - .030 if UR, > .030 and zero otherwise. In
other words, welfare was not improved for an unemployment rate below .030, but

it was not decreased either, as a straight quadratic function would imply. The
objective function is non-quadratie in this respect, as well as in targeting
ratios of the various components of GNP to GHP itself. The rate of inflation

and the unemployment rate were weighted ten times more heavily in the objective
function than were the ratios. It should be noted that the welfare function is
not differentiable at UR, = .030. In the present case, however, the optimum
values of 'URt were always greater than .030, and the lack of differentisbility
at URt = .030 did not appear to be a problem for the algorithms for which
numeric derivativesShad to be computed. In general, if the lack of differentiability
of either the model or the welfare function appears to be important (as it might
Be,‘fof example, for models in which capacity ceilings play an important role),
then algorithms that do not require the computation of derivatives may be better
choices than those that do.

The results f§r the various runs using the Fair mpdel are presented in
Table 2. The second control variable, the level of consumer sentiment, does not
enter the model currently, but only with lags of one or more periods, so when
this variable was used as a control variable, the number of values of this
variable to be determined was one less than the number of periods. Except for
lines 7 and 8, historic values were used as starting points for the values of
the control variables. Again, two runs each for the gradient and quadratic hill-

climbing algorithms are reported, corresponding to the two ways of computihg
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derivatives. The tolerance level used for these two algorithms was .00005.
The tolerance level used for the Powell algorithms was .000005.

From the results in Table 2, it can be seen that the gradient algorithm
worked better than Powell's. The number of function evaluations was usually
less for the gradient algorithm, and for the problems of greater than 20 parameters,
the Powell algorithm did not quite attain the optims that the gradient algorithm
did. For the 39- through 99-parameter problems, the largest differences between
the parameter values computed by the Powell elgorithm and the corresponding
parameter values computed by the gradient algorithm were 26, 8, 34, and 88 percent
respectively. An even smaller tolerance level was tried for some of the runs
using the Powell algorithm (.0000001 versus .000005) to see if this resulted in
& smaller value of the objective function, but the results were not improved
using the smaller tolerance levels. For the gradient algorithm the use of the
less expensive way of obtaining derivatives resulted in virtually no loss in
accuracy for any of the runs. For the quadratic hili-climbing algorithm the use
of the less expensive way of computing cross partial derivatives resulted in no
loss in accuracy at all and, of course, substantial savings on cost. For the
prbblem of I control variables and 25 periods (99 parameters), the gradient »
algorithm using the less expensive way of camputing derivatives required 10181
function evaluations and took about 3.4 minutes to attain the optimum,

When the T9-parameter problem was started from the answer to the 59-parameter
problem plus historicel values otherwise (line 8), the speed of convergence was
only slightly increased for the gradient algérithm. The number of funection
evaluations fell from 731k to 7047 for the one run and from 12807 to 12793 for
the other. The number of function evaluations fell substantially for the Powell

algorithm, but the optimum was still not attained.
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When the other two gradient algorithms wére tried for the 59-parameter
problem (lines 9 and 10), the results were virtually the same as for the rank
one algorithm. For this problem there is nothing to chose among the three
algorithms.

The largest problem tried for the Fair model was L4 control variables and 60
periods (1962III - 1977II) for a total of 239 parameters. The answer to the
99-parameter problem was used &s a starting point plus historical or extrapolated
values otherwise. Only the gradient algorithm using the less expensive way of
obtaining derivatives was tried for this problem. The program was allowed to
run for spproximately 20 minutes. At the end of 20 minutes and 104 iterations,
the value of the objective function was changing only in the eighth decimal place
between iterations and the largest difference between any corresponding psrameter

iterations
values on the last two / was .000T7. The value of the objective function at
the starting point was .80730797 and the value after 104 iterations was .58885958.
The starting point turned out t; be fairly far away from the stbpping point,
with unemployment rates of sbout 7 percent near the end of the horizon compared
with the stopping-point values of around 5 peréent. The stopping~point values
fof the 239-parameter problem appeared to be in line with what would be expectea
from observing the answers to the smaller problems. The Powell algorithm was
started from the values attained by the gradient algorithm on the 53rd iteration
(an objective~function value of .58890611) to see if it would go anywhere. A
tolerance level of .000005 was used. The algorithm went one iteration, lowered
the objective function to .588905T71, and stopped (the convergence criterion
having been met for all parameters), a clear failure in view of the value obtained
by the gradient algorithm. One other result is also of interest to note here.
The gradient algorithm was also started from the values attained on the 53rd

iteration. A tolerance level of .00005 was used. The algorithm went one
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iteration, lowered the objective function to .58890575, and stopped (the convergence
criterion having been met), also a clear failure. By starting the gradient

algorithm over on the 53rd iteration, one lost the approximation to the inverse of

the matrix of second partial derivatives that had been developed over 53 iterations,

which in the present case was obviously quite important. A similar result dccurreq
when experimenting with the 99-parameter problem. These results suggest that if
one contemplates having to restart the gradient algorithm for one reason or
another (like running out of time on the computer), one ought to save the latest
approximation to the inverse of the matrix if second partial derivatives to be
used when the algorithm is restarted. The results also suggest, oddly enough,
that when using the gradient algorithm one ought not to start the algorithm too
close to the (presumed) optimum for fear that the algorithm will get stuck before
it has a chance to build up a good approximation to the inverse’of the matrix
of second partial derivatives.

The answers to the problems for the Fair model were characterized by a
large value of government spending in the first period (compared with the
historical value) and large values near the end of the time horizon. In the
model employment responds faster to government spending than does the price
level, and so the relatively large values of government spending for the last few
periods of the horizon are taking advantage of this fact and lowering the
unemployment rate without having too much effect on the price level, 20 The

large value of spending in the first period is apparently designed to lower the

QQTO avoid undesirable end-point effects in practice, one can always extend
the horizon a few periods beyond the actual horizon of interest. For the Fair
model it appeared that the horizon should be lengthened by about 5 quarters.
Because of the end-point effects, the last few answers to the 99-parameter
problem for each control varisble were not used as starting points for the
239-parameter problem.
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unemployment rate quickly from its relatively high historic level. Excluding
beginning and ending effects, the particular objective function used resulted in
an unemployment rate of about 5.0 percent and an annual rate of inflation of
about 2.2 percent. The IPt/GNPt and IHt/GI‘IPt ratios were met almost exactly
when plant and equipment investment expectations and housing starts were used

as control variables, as would be expected. The three consumption-ratiqs were
not met as exactly when consumer sentiment was used as & control variable since
in this case there was, in effect, only one main control variable influencing
three ratios,

In Table 3 are presented estimates for each run in Tables 1 and 2 of the
percentage of time that was spent doing function evaluations. The estimates were
obtained by multiplying the time per function evaluation by the number of
function evaluations and dividing +his figure by the total time for the job. For
the Fair model shnormal exits sometimes occurred from the function-evaluation
program (vefore all of the computations were performed), which causes some of the
percentages for the Fair model in Table 3 to be too high. Abnormal exits occur
when parameter values imply that the logarithm of a negative number should be
taﬁen. The estimates in Table 3 are slso subject to error for reasons that have
to do with the way that computation time in the computer is estimated. In

general, the percentages are quite high in Table 3, indicating the importance of

writing efficient programs for evaluating functions.

6. An Evaluation of the Practical Usefulness of the Method.

The results in Sections 4 and 5 are very encouraging as to the feasibility
of using the method proposed in Section 2 even for large-scale models. For s
20-period problem the 19-equation Fair model takes .0148 of a second rer function
evaluation on the IBM 360-91 computer. The Fair model can be solved without the

use of the Seidel method since the nonlinear part of the model is recursive.
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ESTIMATES OF PERCENTAGE OF TIME SPENT DOING FUNCTION EVALUATIONS

From Table 1:

Hill-Climbing

Gradient
(€] (2)
83 95
83 93
83 91
87 90
86 91
78 o4
86 93
87 92

From Table 2.

powell
Row (1) (2)
1. 93 97
2, 93 95
3. oL 90
L. 90 92
5. 97 95
6. 98 98
7. - -
8. - -
Powell
Row
lo ’ 96
2. 97
3. 97
4, 98
5 100
6. 100
7 -
8. 99
9. -
10.

Gradient

L. (@
87 90
95 97
g7 101
97 96
95 96
20 92
95 -
oL 96
97 96
97 97

(1) (2)
52 82
79

53

Bill-climbing

(1) (2)
83 91
89 91
77 91
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If a 100-equation model could be solved in the same way, it should take only about
5 times longer to solve this model than it takes to solve the Fair model since
the number of computations per equation is not likely to vary much from model

to model. Econometric models tend to be larger because of more equations and not
because of more variables per equation. If the Seidel method must be used to
solve a model and if for each iteration for each period the entire model must

be passed through, then the cost per solution of the model is increased in
proportion to the number of iterations that are required to solve the model each
period. If, for example, it takes 5 iterations to solve a 100-equation model
each period, it should take about 25 times longer to solve this model than it
takes to solve the Fair model. Since algorithms that do not require derivatives
of for which derivatives are computed numerically spend most of their time doing
function evaluations, the total time that it takes to solve a control problem

for a 100-equation model that requires 5 iterations per solution of the model
should be about 25 times greater for the same problem than the corresponding

time in Table 2 for the Fair model. A 20-period problem with one control variable
should thus take about 20 minutes using the gradient algorithm and the less
expensive way of obtaining derivatives (25 x 4.78 seconds). A 20-period
problem with two control variables should take about 8.7 minutes (25 x 20.83
seconds). The problem ofvh control variables and 25 periods should take about
85.2 minutes (25 x 204.47 seconds).

Although the times just mentioned are not completely out of the range of
practicality, it is possible that in practice the times can be substantially cut
down. First, good starting points can be quite important, and significant time
may be saved by first solving a small problem (say one control variable), using
the answer to this problem as a starting point for a somewhat larger problem (say
two control variébles), and so on, building up to the largest problem that one

wants to consider. Also, once one has solved a particular optimal control problem
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once, the answer to this problem may be a good starting point for a slightly
‘different problem (say a slight change in the objective function). In other
words, it may not be too costly to experiment with different objective functions
or a slightly different specification of the mdel once one solution to a
particular problem has been obtained. It may also be the case that from a welfare
point of view or from the point of view of feasibility one wants to keep the
control varisbles within certain bounds. This can be done by including control
variables in the objective function and penalizing deviations of the values of
the control varisbles from target values. If this is done, one has a natural
starting point for the control variables-- the target values--and this may
significantly increase the speed of convergence of the algorithm being used,

in addition perhaps to decreasing the likelihood that the algorifhm goes to a
local but not the global optimum.

A second way in which much time might be saved by models that need to be
solved by the Seidel method is by choosing good initiel values of the endogenous
variables to begin the solution of the model each period. Since most algorithms
perturb the parameters (in the present case, the values of the control

- va;iables) only a slight amount between function evaluations, particularly

when derivatives are being computed, a good choice for the initial values of
the endogenous variables is likely to be the solution values obtained in the
Process of computing the previous function evaluation. It is possible that this
choice can cut the number of iterations needed per solution of the model per
period to two or three, waich would greatly save on cost.

A third way in which time can be saved is to write the program that does
function evaluations in such a wa& that no computations are performed other
than those that are absolutely needed in going from values of the control variables
to the value of the objective funetion. For example, any sets of calculstions

using exogenous variables that are not changed as & result of changes in the
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values of the control variables should not be done in the function-evaluation
program, but only once before the solution of the optimal control problem
begins. This kind of efficient programming was not done for the results in
Tables 1 and 2.

If for a 100-squation model one could, by following the above suggestions,
cut the number of iterations using the Seidel method to an average of 2.5 and
could further cut the time per function evaluation by 25 percent, then tﬁe
times quoted above (2.0, 8,7, and 85.2 minutes) would be cut to 0.75, 3.3,
and 32.0.minutes respectively. These times may be further cut by a factor

of 2 or more by better choices of initial parameter values than those used

for the results in Table 2.21

In terms of the size of the problemsthat the method proposed in this paper
can handle, there is an obvious tradeoff between the size of the model, the
number of control variables, and the length of the decision horizon. It is
hard to establish any precise rules as to what problems are practical to solve
and what are not because no two models and problems are the same. Furthermore,

for some problems one algorithm may work best and for others another may work

Albert Ando has communicated to the author a "conservative" estimate

that for the solution of the 200-equation FMP model it takes about .00500
of a second per iteration per period on an IBM 370-165 computer. This figure
compares with .00072 for the solution of the 19-equation Fair model (divide
.0072 in Table 2 by 10). Since the FMP model has 10.5 times more equations
than the Fair model, one would expect the time per iteration per period to be
about 10.5 times greater for the FMP model. The figure supplied by ando
indicates that the time is only 6.9 times greater. Ando's results thus suggest
that the times cited in the text above may be too conservative. Tt should
also be noted that Ando's results are for a program that was not written with
optimal control problems in mind.

The FMP model usually takes between 10 and 15 iterations to solve per
period using the Seidel method. However, the values used as initial values
for the endogenous variables are the solution values of the previous guarter,

and, as suggested above, in an optimal-control context one should be able to
do much better than this.



24,

best. Each person must to some extent determine for oneself through
experimentation the préctical limits to the size of problems that one can
solve. Nevertheless, the results in this study can give some indication of
the likely cost of various problems, One important question in this regard
is how rapidly the number of function evaluations increases as the number of
parameters to be estimated increases. From the results in Tables 1 and 2 one
can compute the extra number of function evaluations required per additional
parameter (AFE/AN, where FE is the rumber of function evaluations and N is
the number of parameters) and observe how this quantity varies as the total
number of parameters varies. These computations are presented in Table 4.
For the quadratic hill-climbing algorithm, AFE/AN clearly increases as N
increases since the number of function evaluations required to compute first
and second derivatives per iteration increases as the square of N. From the
results for the Chow model there is only a slight tendency for AFE/AN to
increase as N increases for the Powell and gradient algorithms. Frpm the
results for the Fair model there is somewhat more of a tendency in this
direction for the two algorithms, but this tendency is far from being uniform.
In general, the results in Table 4 indicate that there is only a slight tendency
for AFE/AN to increase as N increases for the Powell and gradient algorithms.
The time required per function evaluation should be roughly proportional -
to the number of periods times the number of equations in the model times the
number of Seidel iterations required to solve the model. The time required
to solve a control problem is roughly equal to the time required per function
evaluation times the number of function evaluations. If the rmumber of function
evaluations varies only in proportion to the number of parameters (AFE/AN
not inecreasing as N increases), then the time required to solve a control
problem should be roughly proportional to the square of the number of periods

times the number of control variables times the number of equations times the
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TABLE 4

VALUES OF AFE/AN

From Table 1.

Powell Gradient Hill-climbing
N AN D (2 NG (1) (2)
20 20 8.4 41,6 30.7 51,7 46,5 160.5
40 20 153.3 216.8 48,1 91.1 126.1 480.1
60 20 153.4 214,5 68.5 130.6 - -
80 20 157.0 238,1 YON 152,.6 - -

100 20 196.2 236.1 71.1 132.0

From Table 2.

Powell Gradient Hill-Cclimbing

NN O @ (1) (2)
10 10 ©132.3 16.3 22.5 26.9 80.9
20 10 102.9 4.4 34,8 66.0 240.0
39 19 52,1 56.0 114.9 123,9 471.9
59 20 121.9 48.7 101.6 - -
79 20 46,7 248,5 401.0 - -
99 20 115.5 43,4 341.2 - -
239 140 110.6% - - -

N = number of parameters

FE = number of function evaluations

aThe 239-parameter run was started from a more accurate point than the others

and was terminated at a tolerance level of only .0007 versus .00005 for the
others.
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number of geidel iterations. Tn this case, if the number of Seidel iterations
required to solve a model does not increzse as the number of equations of the
model increases, then the time required to solve a control problem should
increase only in proportion to the increase in the number of équations.
Otherwise, the time will increase more than in proportion to the increase

in the number of eq_uations.22 The time required to solve a control problem
is proportional to the square of the number of periods because an increase in
the number of periods increases both the mumber of parameters and the time
required per function evaluation. If the number of function evaluations
increases more than in proportion to the number of parameters, then the time
required to solve a control problem will increase more than in proportion to
the increase in the square of the number of periods times the number of control
variables,

Baring further results, somé tentative conclusions can be drawn from the
results in this study as to the size of problems that it appears feasible fo
solve using the method discussed in Section 2. por models of about 20
equations, it appears quite practical to solve problems in which the product
of the number of control variables and the‘number of periods is greater than
ldb. For models of about 100 equations, a product of 100 is probably within
the range of practicality. For models of about 200 equations, a product of

2
60 may be close to the limit of practicality. 3 The use of good starting points

22
If the objective function to be maximized becomes less well behaved as

the number of equations increases, this should also cause the time required

to solve a control problem to increase more than in proportion to the increase
in the number of equations. ithout further experimentation using other models
it is not clear how sensitive the shape of the objective function is likely to
be to the number of equations in the model.

2

_ :BHolbrook, using his method, obtained an approximate solution to a control

problem involving 4 control variables and 8 periods for a model of 261 equations.
Since in the present context this involves determining only 32 parameters, it
seems quite likely that this problem could be solved by the method proposed in
this paper, even though the model is quite large.
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and efficient programming may, of course, greatly extend éven.these limits.
Since most econometric models do not exceed 200 equations and since the number
of contrel variables in any one model can usually be kept under, say, 5
without seriously restricting the problem, the method considered in this paper
should be able to handle most problems of interest to policy makers who use
econometric models in their decision-making process. Tt should also be noted
that the method considered in this paper requires relatively little human
effort. All one has to do is write a program to solve the model and compute
the objective function. No derivatives are required, no analytic approximations
have to be made, and the model does not have to be set up in any special form.
The results in Tables 1 and 2 indicate that the gradient algorithm using
the less expensive way of obtaining derivatives is the most efficient. Slightly
more accuracy may be obtained by using the more expensive way of obtaining
derivafives or by using the quadratic hill-climbing algorithm, but in general
this increased accuracy is not likely to be worth the cost. For the quadratic
hill-climbing algorithm no accuracy was gained using the more expensive way
of computing eross partial derivatives, and so this way is not recommended.
The powell algorithm was generally more expensive than the gradient algorithm,
and for the Fair model it had a tendency to get close to but not quite to the
optimum. The results in the two tables do, of course, indicate that quite
large problems can be_solved even when cerivatives are obtained numerically,
In practice, it may be desirable, after having attained an answer from one
algorithm, to start another algorithm from this answer to be more certain
that the true optimum has been attained. fhe quadratic -hill-elimbing
algorithm, while being the most expensive for large problems, is likely to be

the most robust to attaining the true optimum.
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7. Stochastic Models

In the case of a linear model with additive error terms and a quadraticv
objective function it is weil known that solving the deterministic control
problem derived by setting the error terms to their expected values will provide
the optimal first-period control values for the stochastic, closed-loop,
feedback control problem. Therefore, if one solves the deterministic control
problem each period, after observations On the state of the system for thg
previous period become available, one will over time make the same decisions
regarding the current values of the control variables (i.e., the values of the
control variables that the decision maker actually sets) as would be made by
one who had solved the stochastic, closed-loop, feedback control problem
explicitly in terms of feedback equatidns. To this extent, feedback equations
need not be obtained, and one c¢an concentrate on solving deterministic control
problems as considered in the previous sections of this paper.  For most
economic applications sufficient time is usually available to recompute-the
entire sequence of optimal controls each period.

For nonlinear models the first-period certainty-equivalence property
dges not hold. One procedure that might be followed in this situation is
merely to treat the nonlinear-model case in the same way as one would treat
the linear-model case, i.e., setting error terms to their expected values,
and solve the deterministic control problem each period. This procedure is

probably the one most often used in practice for solving nonlinear models,

24
Knowledge of feedback equations for a particular model may aid one in
understanding the dynamic properties and other characteristics of the model,
and for this reason it may be useful to compute feedback equations even though
they are not actually needed for the solution of the optimal control problem.
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although Howrey and Kelejian[:14] have shown that solving a nonlinear model
by setting the error terms equal to their expected values is not equivalent
to solving the reduced-form equations of the model.

For a nonlinear model the mean values of the endogenous variables can be
obtained by means of stochastié simation. A‘number of drawings from the
Jjoint probability distribution of the error terms can be taken, and for each
drawing one can obtain by solving the model a set of values for the endogenous
variables. The mean value for each endogenous variable can then be computed
as the average>of the values obtained from solving the model for the various
drawings. Using the procedure of stochastic simulation, it may be possible
for relatively small problems to obtain optimal open-loop controls for non-
linear, stochastic models in a manner similar to that done above for nonlinear,
deterministic models. gay the aimwere to maximize the expected value of the
objective function. Tor each choice of control values, one could compute by
means of stochastic simulation the mean value of W. The computed mean value
of W would be the value returned to the maximization algorithm, and the
algorithm would be used in the usual way in an attempt to find that set of )
control values for which the mean value of ¥ were at a maximum. FEach function
evaluation in the stochastic case would correspond to an entire stochastic
simulation. If, for example, 50 drawings from the joint probability distribution
of the error terms were needed to obtain an adequafe approximation to the
expected value of W, then approximately 50 times more time would be needed per
function evaluation for the stochastic problem than for the deterministic
problem. Even though the cost is high for the stochastic problem, it may be
feasible for small problems to carry out the above suggestion. Tf one did
carry out the above suggestion and found the optimum and if one recomputed

the entire sequence of optimal controls each period, one Would over time
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make the same decisions regarding the current values of the control variables
as would be made by one who had solved the stochastic, open-loop, feedback
control problem explicitly in terms of feedback equationms,

For the control problem for nonlineér, stochastic models, pAthans [1],
[2] has suggested first solving the deterministic control problem (the
detefministic problem being obtained by setting the error terms equal to their
expected values) and then linearizing around the deterministic-control paths
to obtain linear feedback equations around the paths. The aim is over time to
keep the actual paths close to the deterministic-control paths. While Athans'
suggestion may be useful for engineering applications, where reoptimization
each pefiod may not be feasible, the suggestion is likely to be of less use
for economic applications. If sufficient time is available to reoptimize
each period, then it is much more straightforward just to solve the deterministic
control problem each period.25 The results in this paper certainly indicate
that it is feasible to reoptimize each period when, say, the period is a month
or a quarter. The procedure of reoptimizing each period is also somewhat more
appealing on intuitive grounds than athans' procedure. If stochastic simulation
is ruled out, then both procedures are based on the incorrect practice of setting
error terms equal to their expected values. TIf one follows Athans' procedure,
however, further approximations have to be made that do not have to be made

if one reoptimizes each period,

25These remarks should not be interpreted as meaning that Athans would
necessarily disagree with them. For example, Athansi:lj, p. 449, has stated;

"It should be stressed that trends in stochastic control research by

engineers has been greatly influenced by two factors

(a) a need to minimize on-line computations, and

(b) the requirements in many aerospace applications that the control

system be realized by analog hardware,

In economic applications these requirements are not present, since the
time period between decisions does allow for extensive digital computer
calculations. Thus, one does have the luxury of examining more sophisticated
decision and control algorithms, which however have increased computational
requirements."
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