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A NOTE ON THE EXTRACTION OF COMPONENTS FROM TIME SERIES*

Adrian Pagan

1. Introduction

In recent years some attention has been directed to the
concept of a time series as the summation of a number of distinct
compenents to which economic agents may react in differing ways.
Applications of such a schema have included the modelling of lags
in economic behaviour [12] [13], the determination of a structural
model to give adaptive forecasting "optimal" properties [14] [17],
the decomposition of income into its permanent and transitory
parts [5] and, of course, the older objective of distinguishing
between trend, seasonal and irregular.characteristics [7]. Much
of the work has been theoretical in nature -- although a notable
exception is [11] -~ and this may have been a consequence of the
method employed for extracting componénts, i.e., the Wiener-
Kolmogorov filtering theory, as set out in Whittle [18] and em-
ployed by Grether and Nerlove [4] [6] [71].

To briefly summarize this approach, consider a series

y(t) with an imbedded component z(t) which is to be estimated;

wI would like to thank Gregory C. Chow and Alan J. Preston for
helpful comments on an earlier draft.
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then the theory provides a backward filter of the form

z(t) = Z ¥(j) y(t=-3) to yield the minimum mean square estimate
3=0
Z(t) of =z(t) . The parameters ¥(j) are, in the most general

case, derived from the spectrum of y(t) but, under suitable
assumptions, they may also be regarded as functions of the roots
of certain high-order polynomials (see [7] for details) and, as
the exact relationship is complex, must be solved by numerical
techniques.

Three difficulties stand out in attempts to apply the

Wiener-Kolmogorov theory:

(i) Numerical procedures for locating the zeroes of poly-
nomials are notoriously unstable and therefore should be
avoided., In this instance one should be doubly careful
as the polynomials are freguently ill~-conditioned.

(ii) Although the infinite backward filter summarized in the
parameters {7(j), j=0,...} can be approximated by a
rational function, thereby converting the filter to a

recursive one, there is no set procedure for doing this.,

(iii) The theory is unis~dimensional, i.e., confined to
single series, '

It is the purpose of this note to indicate how these
difficulties may be surmounted, thereby integrating the Grether-

Nerlove approach to components into a framework that is both



el

w

easily comprehended and amenable to solution by standard matrix
operations upon a computer. To‘achieve the latﬁer objective

we will employ Kalman-Bucy filtering theory [10], so that section
2 is devoted to a statement of its major propositions while
section 3 formulates the component extraction problem in the
Kalman-Bucy framework. Section 4 describes an estimation tech-
nigue for the parameters of the model while the fifth section
gives an application to an economic time series. Throughout, a
trend /seasonal/ irregular model is assumed for expository

purposes.

2. Kalman Filtering Theorvy

With only slight modifications the sources of the following
statements on Kalman-Bucy filtering theory are [16] -- this being
chosen as a convenient reference for economists. Given a (g x 1)
unobservable vector z(t) , later referred to as the state
vector, and a (p X 1) observable vector d(t) connected by the
system

act)

]

H z(t) + v(t) (2.1)

z(t) Mz(t-1) + w(t) (2.2)

where v(t) and w(t) are uncorrelated Gaussian processes

with covariance matrices R and Q respectively, the minimum mean
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square error forecast of z(t) given d(t) is =z(t|t) where

;(tlt) = M ;:(t-l|t-l') + P(t) H'R'l[d(t) -HM;(t-llt-l)]v (2.3
p(t) = [B"Y(t) + R gL (2.4)
P(t) = M P(t-1) M' + Q , (2.5)

and it is assumed that an a_priori normal estimate with mean
;(O) and covariance matrix P(0) of the initial state vector
z(0|0) is available to start the recurrence. Although ;(O)
and P(0) are seldom available the difficulty may be overcome

by use of the following theorem ([16, p. 99]).l

THEOREM: If the equations (2.1) and (2.2) are

observable and controllable then (i) the matrix
equations (2.4) and (2.5) tend uniformly to a

constant positive definite matrix P* if P(0)

is non-negative definite (ii) the equation (2.3)

written in the form ;(tlt) = [M - p* H'R"lHM] ;(t—llt-l) +
px H'R-ld(t) is uniférmly asymptotically stable,

1

i.e., all eigenvalues of the matrix [M-P*H'R "HM]

lie within the unit circle.e

lOne case in which 2Z(0) and P(O) are available is when
parameter estimation has been by Bayesian techniques,

Observability and controllability are defined in any text
on control theory, e.g. Astrom [1].
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Frém the above theorem it is apparent that the
establishment of observability and controllability is sufficient
to guarantee that the initial conditions cease to be important
as the sample size grows, allowing their choice to be somewhat
arbitrary. Of course this statement must be tempered by the
knowledge that the rapidity of convergence to the equilibrium
value ¥ , and the influence of the initial condition z(0),
will be a function of the values chosen so that one should
select wisely. As will be seen in section L, the Grether-Nerlove
type of component model reduces to a mixed autoregressive moving-
average (ARMA) equation and, in effect, the above theorem is
satisfied only if the conditions for the identification of the
parameters of such equations are fulfilled; the seminal analysis

o0f these is Hannan [8].

5. A_Components Model

For illustrative purposes it is useful to select one of
the models in [7] as, with one exception to be dealt with at
the close of this section, generalization of the approach to
other models is trivial. Specifically:the series to be de-
composed (y(t)) is regarded as the sum of mutually uncorrelated
trend (T(t)), seasonal (S(t)) and irregular (x(t)) terms.

In the spirit of [4] the parametric form is



y(t) = T(&) + s(t) + 1(t) (3.1a)
(1-p1L - B,L%) (t) = e(t) (3.1b)
(1-8,1%) s(t) = ey(t) (3.1¢)
I(t) = eB(t) (3.1a)

where L 1is the lag operator with the property ¥ x(t) » x(t-k)
and (3.1) will be referred to as the structural form of the
model while, after all substitutions have been made, the
remaining single equation will be designated the reduced form.,3

(3.1b) - (3.1d) may be written as

T(t) By B, O O 0 © T(t-1) e,(t)
T(t-1) 1 0 0 0 0 0 T(t-2) e, (t)
s(t) O O 0 0 O By S(t-1) o
= + (5.2) 5
s(t-1) 0 0 1 0 o o 5(t~-2) 0
S(t-2) O O 0 1 0 o s(t-3) o)
S(t-5)J O 0O 0 o 1 o s(t-k) 0

3The justification for the chosen forms is given in detail
in [7]); suffice it tc say that the spectral properties of the
modelled components accord with a_priori notions. Note that,
whereas [7] was concerned with monthly series, it is convenient
for us to deal with models for quarterly series here: because
of this the model for the seasonal factor undergoes an

obvious modification.
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while (3.1la) is

T(t)

y(t) = [101000]5 1)| + e5(t) (3.3).

s(t)
s(t~1)
s(t-2)

s(t~-3)

Now (3.2) and (3.3) have the respective forms

z(t)

M z(t=1) + w(t)

1]

a(te) Hz(t) + v(t) ,

which is the system format required to extract optimal estimates

of 2z(t) by the Kalman filter. Given the assumption that

ij j=k, s=0
E<ej(t) ek(t-s)) = {O s 74 o

} the covariance matrix
of w(t) and v(t) is easily derived, so that, for any
61,62,65, Q and R, it is possible to obtain estimates of
T(t) and S(t) . To illustrate this take By =-1.7,

B, = 0.7125, Bs = 0.9, =1 (j=1,2.3) (the By are

733
taken from [7] and 0j4 are arbitrary). Then application of
(2.3) - (2.5) yields the recursive equations (where the steady-

state version of the matrix equations (2.4) and (2.5) is used):
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@(t[t) = 1,7 E(t-l!t-l) - 0.7125 E(t-elt-z) + 0.596 o(t)
E(t-lla = @(t—llt-l) + 0.299 a(t)

§(t]t) = 0.9 g(t-hlt-h) + 0.253 o(t)

§€t-1|t).= §(t-1|t-1) - 0.177 o(t)

§(t~2lt) = §(t-2|t-2) - 0.055 o(t)
§(t—5|t) = §(t-3|t-3) - 0.012 o(t)

and
o(t) = y(t) - 1.7 %(t-1|t-1> + 0.7125 S(t-elt-z)

- 0.9 S(t-h|t-}) .

Some confusion may be caused by the presence of equations
for %(t-llt), §(t-1lt); §(t-2|t) and §(t~3lt) , but this
is resolved by noting that the Kalman filter yields the optimal
extraction based on information up to time t , while, in the
above model, because of the dependence in the series, an improved
estimate of S(t-1) etc. may be made as later observations
become available; to incorporate this feature it is necessary

that there be extra updating equa'c:ions.lL Once egtimates of the

The Kalman filter quoted in section 2 is concerned with the
best estimate of z(t) given y(0),...,y(t) . A more general
formulation might be to ask for the best estimate of 2z(t) given
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trend and seasonal, g(t) and %(t) , are obtained, it is a
simple matter to f£ind E(t) = y(t) = g(t) - %(t) and to
decompose any new observation into its constituent parts. liore-
over the recursive nature of the computations represents a great
simplification over the complex computations required to
factorize the high order polynomials associated with the optimal
filtering formulae given by the Kolmogorov~Wiener theory.5

There is one extension needed to the above presentation
viz. when one of the components (say S(t)) is not represented
by a pure autoregression (AR) as above but by an ARMA form.
In fact, such a model was propounded in [7] on the basis that a
moving average (MA) term was needed to generate spectral peaks
in the seasonal that decline over the range O - m . To handle
ARMA processes it is only hecessary to augment the state vector

€.9., if the seasonal is taken to be

y(0),...,y(t+7) i.e., a combined backward and forward filter.
Essentially the equations for 5(t-1|t), §(t-2[t), 8(t-3}t)
correspond to the optimal filter with 7=1,2,3. A complete
generalization of the Kalman filter is possible but it would
increase the length of this note.

As Taylor says (p. 98), "Kalman's results are an ingenious
formulation of classical Wiener filtering theory in a

computationally practical form."
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(1-8,0%) s5(t) = (1+ayn) eyle)

the state dynamics are now

4

—'i'ét) -.;31 B, © 0 0 0 0 i -:.t‘(t—l) i :al(t;
T(t-1) 1 0 0 0 0 0 © T(t-2) e, (t)
S(t) C 0O 0 0 o By Oy S(t~-1) 0
s(t-1)] =jo o 1 0o 0o O O S(t-2) + o] ,
s(t-2) ¢ 0O 0 1 0 0 © S(t-3) 0
s(t-3) 0O 0O 0 01 o o S{t=k) 0

ee(t) 10 0o 0 0 0 0 © e2(t-l) e2(t)

and the analysis continues as before.

4y, Estimation

Although the estimation technique will not be described
in detail (this has been done in [15] and an alternative method
may be found in [11])it is of interest to consider the simple
example of (4,1) -- utilized in the following section -- for an

exposition of the approach.
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y(t) T(t) + s(t) + 1(t)
(L-m)7(t) e, (t)
4 (%.1)
(1-L")s(t) ee(t)
I(t) e5(t)
In (4.1) it is assumed that E(ei(t) ej(t-s)) = 955

when s=0,

(k.,1) is

(1-1)(1-pL*) y(t)

i=j

and zero otherwise, The reduced form of

u(t) = (1-pL%) e () + (1-1) e (t) +

+ (1-1)(1-p1") e (t)

Setting Al = ci/og and AE = cg/cg the autocovariances

of u(t)

7,(0)
7,(1)
7,(2)
Vu(3)
V(¥

7,(5)

are

il

4

(when divided by the constant o?)

2 - S, 2
(1+p°) Al-+2A2 + 2(1+p°)

- /\.2 - 1
0
0]
- FLlB - B
B
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and Yu(j) (j=6,...) = O . BAs this is the covariance function
of a fifth order moving average (MA) process an alternatée
representation for wu(t) is

u(t) = (l+alL-+a2L2-+a5L5-+ahLu-+a5L5) e(t) . (k.2)

Denoting the covariances from the MA approximation to
u(t) by ;u(j) , l.e., ;u(j) are formed from al,...,as
and 9 = (ci/cg) , the task is to find estimates of
al,...,a5 and ¢ that minimize the deviation Yu(j) - ;u(j) ﬁ
Wilson [19] has provided an algorithm for this and generally

. . . -1k
the resulting discrepancies are of the order of 10 1

(if
double precision arithmetic is used). Therefore, given esti-
mates for ¢ = (Al,he,s) , it is possible to obtain estimates
for al,...,a5 and ¢ . Furthermore, by using the ;iiimates
of ®15+..,%; 8O obtained, the sum of squares § = jEO Ezij)
may be computed.7 By this procedure it has been possible to

evaluate the sum of squares corresponding to any given values

of Al’ A, and p and this information is sufficient for the

As Yu(j) were normalized with 0% so must ;u(j) and
this results in the factor Ui/cg .

TNote that e(-1),...,e(~g) are required to compute the &(t)
if this is done from (4.2), but, for convenience, these may be
set to zero. Box and Jenkins [2] have derived an estimator of
these "nuisance" parameters which could be applied.



application of non-linear estimators designed to find the 6
minimizing S . The particular algorithm chosen was a modifi-
cation of the- Gauss-Newton algorithm [9]. Finally, when the
minimum value § has been achieved, an estimate of Ug may

be formed from &/N and 02 = 5 o° 8

3 €

5. Decomposing a Consumption Series

As an illustration of the foregoing methodology the
series, Quarterly Personal Consumption Expenditure on Food
(§m) =-- one of the thirteen constituents of consumption expen-
diture in the Australian National Accounts -- was modelled by
(k.1) but with p = 0,95.9 Observations were available for the
period September 1950 to June 1970 inclusive, yielding eighty
data points. Proceeding as in section 4 (under the assumption
that e(-1),...,é(~5) equaled zero) yielded the following

parameter estimates:

8'I'he steps needed to apply the approach to models other than
(b.1) are (i) Solve for the reduced form (ii) Determine the
covariance matrix of wu(t), (iii) apply Wilson's algorithm to
find the MA process that matches this covariance matrix.

9An attempt was made to estimate B but it was close to
unity. When pB=1 the identification conditions are broken
but, even for B close to unity, it was found that rounding
error lead to a lack of convergence in the Kalman filter.
Given the length of the series, a fine discrimination between
a non-stationary (B=1) and stationary (B <1 ) signal seems
impossible. It is of some interest to note that the residuals
€(t) passed the tests given by Box and Pierce [3] for whiteness.
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- 2
Ay = 1.18 “y o= b1l oc = 10,11
with the implied MA parameters
@) = -0.11, a, = -0.02, Gy = ~0.03, @ = -0.19, a; = 0.03

and U? = 3.47. Using the equilibrium value of (2.4) and (2.5 the

filtering equations were (where g(t) = T(t-1|t-1) + 0.95
S(t-k|t=b))

E(tlt) = E(t-llt-l) + 0.36(y(t) - o(t))
§(t|t) = 0.95 g(t-hlt-h} + 0.53 (y(t) - o(t))
S(t-1t) = S(-1]t-1) - 0.20 (y(£) - o(t))
s(t-2|t) - §(t-2|t-2) - 0.12 (y(t)) - a(t))
§<t-3It> = S(t-3]t-3) - 0.06 (y(t) - o(%)) .

Utilizing these equations with starting values of
E(O) = 200 and §(O) = 50 yields the estimates of trend and
seasonal contained in Table 1.

As the model is almost certainly not the best one for
the series the results should not be taken very seriously,
but of interest is the strong seasonal component in the December
quarter and the large trend in the series. Each of these

features was visible in a graph of the series.
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TABLE 1

Estimates of Trend and Seasonal in the Food Series
Sept. 1966 to June 1970

Year Seasonal Trend
1966/3% 49.83 675.5
1966/4 95.16 688.3
1967/1 35.90 702.5
1967/2 39.58 711.5
1967/3 51.63 722.0
196" /4 95.35 732.3
1968/1 L1.54 Th3.3
1968/2 45,43 753 .1
1968/3 45.56 7576
1968/4 96.97 768.0
1969/1 38.08 . T775.0
1969/2 41.15 783.6
1969/3 43,56 795.5
1969/4 103.27 812.6
1970/1 L 46 825.6
1970/2 68.36 8L45,.6

6. Conclusion

Of the three objectives of the paper outlined at the
beginning two have been accomplished and illustrated with
numerical examples, vis. standard matrisx Operations were employed

to construct the filters and recursive forms were given. The
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final objective of simultaneously extracting the components
from a number of time series was not explicitly dealt with but,
as the filtering theory is multi-dimensional and the estimation
technique clearly extends to joint estimation for a number of

series, generalization is straightforward.
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