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On the Convergence of the Age Structure
by

Martin Golubitsky and Michael Rothschild

I. Introduction and Summary.

Let {P(t)}, t = 1,2,..., be a sequence of non-singular,

population matrices. A typical element is

bl(t) b2(t) cen bn(t)
sz(t) 0 ce 0
(1) B(t) = 0 Sple) e 0
0 0 v sn_l(t) 0

where bi(t) > 0 and si(t) > 0 are birth and
. .th .
survival rates for the i age group. If the non-negative
o
vector a represents the initial age structure of the
population (the number of individuals in each age group) then
the age structure at time t is given by the normalized vector

a(t) where



O
a

12°]

(2.1) a(0) =

P(tla(t-1)
lP(t)a(t-1)]

(2.4ii) a(t) =

and || | is a norm on R"'. The strong ergodic theorem of

1

stable population theory states that if the projection matrix

is constant (P(t) = P for all +t) then the age structure of the
population converges to a limit which is independent of ao-

Obviously weaker conditions will ensure the convergence of
the age structure. For example, if P(t) = c(t)P, where c(t)
is any divergent sequence of numbers in the interval <%-,%>,
a(t) converges. However conditions which are both necessary
and sufficient for the convergence of {a(t)} do not seem to
be known. This paper is part of an attempt to find some. At
this point we report only partial success. We have found
necessary and sufficient conditions for convergence but they
are not the same. Our sufficient conditions (although weaker
than the conditions of the strong ergodic theorem) are clearly
not necessary while we have been unable to prove that our nec-
essary conditions are sufficient.

Section II discusses sufficient conditions for the con-

vergence of the age structure. Theorem 1 shows that if the
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sequence of projection matrices converges so does the age
structure. A by-product of the proof of Theorem 1 is Proposi-
tion 2, which states roughly that if the population projection
matrices are approximately constant then age structure will also
be approximately constant. Although not surprising, this result
is important. If something like it were not true, the strong
ergodic theorem of stable population would be of little relevance
for empirical work in demography. Section II also contains
Theorem 3 - a mathematically more pleasing version of Theorem 1.
Section III is concerned with necessary conditions for the
convergence of the age structure. The example above shows that
the conditions of Theorem 1 (that P(t) —> P) are not necessary.
We give another example which will be useful in understanding
the necessary conditions given in Theorem 4. Suppose {P(t)}
is a sequence of projection matrices and that g(P(t)) is a
positive eigenvector of P(t) of unit length. If g(P(t)) = a
for all t, then, as Proposition 5 shows, the variation in the
survival and fertility rates which make up the entries of P(t)
is restricted but not eliminated. However if the age structure
vector, a(t), is once again defined by (2) with a® = a, then
a(t) = a for all +t. The weak ergodic theorem of Coale and
Lopez2 implies that a(t) converges to a for any initial age
structure. Necessary conditions for convergence are somewhat

weaker than those of this example. Theorem 4 shows that if



a(t) — a then the sequence {g(P(t))} must converge. This
result is related to the work by demographers which shows that
the age structure can converge even though certain kinds of
changes in mortality and fertility persist.3 Our theorem shows
exactly what continuing changes are permitted if the age struc-
ture is to converge. The demographic implications of this
theorem are stated in more detail in Proposition 5.

The example of the previous paragraph suggests that the
fact that the age structure converges has no implications beyond
those stated in Theorem 4. Although we strongly suspect that
the convergence of {g(P(t))} is sufficient as well as necessary
for the convergence of ({a(t)}, we have not been able to prove

this conjecture.

Notational Conventions

We use capital roman letters for matrices, small roman
letters for vectors and identify components by subscripts. By
x > 0 we denote Xi.Z 0 all i, x>0 means x > 0 but
x #0 while x > 0 signifies X, > 0, all 1i.

The letter P is reserved for population matrices of the
form (1) while {a(t)} is always a sequence of non-negative
age structure vectors, as in (2). We shall always assume that

P is non-singular and primitive (there is an integer k such



that Pk > 0). It follows that P has a unique, positive
eigenvector of unit length; we refer to this vector as g(P).
Much of formal demography (and the theory of non~negative
matrices) is concerned with what is required for these conditions
to hold and with the consequences of P's - failure to be so well
behaved. These matters are both well studied and ancillary to
our main concern; the modifications which weaker assumptions
would require are both tedious and obvious.

The proof of Theorem 1 depends on careful choice of a
norm. We use | || to refer both to this norm, which is con-
structed in the next section, and to norms in general.
Other norms on ZRn and its subspaces are distinguished by
subscripts. Recall that if || || is a norm on R"”, there is a
natural norm also, denoted || ||, on linear operators from R
to :Rn (and the matrices which represent them) defined by
L]l = sup |lLx|. It follows that

l=ll=1

[zx]] < [lLlill=]l for all x emw

The notation ({x(t)] indicates a sequence whose tth

term is x(t). Script letters refer to subsets of R>. In
particular S is the unit sphere in the || | norm, that is
S = (x| ||x|| = 1}. By int ¢ we denote the interior of the

set C.



IT. Sufficient Conditions for the Convergence

of the Age Structure.

Theorem 1. If P(t) —> P, then Q(t) —> g(Pp).

Theorem 1 is a consequence of the following result.

Lemma. Let {B(t)} Dbe a sequence of non-singular matrices
converging to a non-singular matrix B with a real eigenvalue
A greater in modulus than any other eigenvalue of B. Let
EK be the l-dimensional eigenspace associated with )\ and V be

the sum of the generalized eigenspaces associated with the

other eigenvalues of B. Assume

_ _B(H)x(t-1)
x(t) = BloO=(e-1)] ’
where H H is some norm on IRn. Then if (5 is a closed cone

such that Ek - {0} € int C and C NV = (0}, there is a T
such that if x(t) € int C for t>T, x(t) converges to a

vector in E ns.

A

Proof of Theorem l: Since P has a largest eigenvalue Mo
{P(t)} and P satisfy the hypotheses of the Lemma. Consider
the closed cone C = (x| x>0 or x < 0}. Since g(P) > 0,

~

g(P) € int C¢. Since P(t) = P and P is primitive, there



t
is a T, such that 1 P(t) > 0 for all t > T
T=1

t2> T, a(t) > 0 and a(t) € C.

1t Thus if
To complete the proof we only must show that ¢ N v = {0}

where V is the sum of the generalizéd eigenspaces corre-

sponding to the other eigenvalues. Suppose

x € CN V. Since if x <0, -x > 0 ¢ C, we may assume x > O.

Suppose for simplicity that P is diagonalizable. Then if

x € V there are k (< n-1) eigenvectors, v& ,...,va , such
K _ 1 k
that x= ¥ v. . Let P = W P_. Then
i=1 J3 ©
k
lim Btx = 1im (. /uo)tv. =0
o t=e i=1 Ji I

However, it is well known4 that lim ﬁt = Q where Q is a
-0

strictly positive matrix. Thus lim ﬁtX = 0x so that Qx = 0.
=00

Since x > 0, it must be that x = 0. This argument goes through

with the obvious modifications if P is not diagonalizable.

Proof of the Lemma: It will suffice to prove the Lemma for a

particular norm; suppose || Hl and || H2 are two norms and

x7(0) = x2(0) = x° while

B(t)x%(t— 1)

xH( &) -
IB(t)x"(t - 1) Hi




then it is easy to show by induction that

B(£)x2(t - 1)
IB(£) =" (t - 1) 1

X (€) =

so that Xl(t) — X1 if and only if xz(t) — x2 where
1 2

X = X for some number «. The key to the proof lies in
choosing a convenient norm. First note that if g(t) = yB(t)
for some vy > 0 and if %(to) = X(to) for some tO and
§(t) B(t)x(t~-1)
IB(t)x(t - 1)
then x(t) = x(t) for all ¢t > to. Thus we may as well assume

that A > 1 while the other eigenvalues of B, those associated

with V, are in modulus less than 1. Consider B the restric-

V)

tion of B to

<

B! maps V into V. Since all the eigen-

v

~

values of B]V are less than 1 in modulus, it is straight-

~

forward to show that there is an inner product ( , ) an

l)

associated norm || Hl’ and a number o6 (0 < o < 1) such that

HB'YVHl S_GHVHI for all v € V. Let e, Dbe any non-zero

. . n
vector in Ex. Extend ( , ) to an inner product on IR by

1
requiring that (v,ex) = 0 for all v € V and (ex,ex) = 1.
Let || || be the norm determined by ( , ). That is,

/2

Il = (30 2



Let B be an orthonormal (relative to this norm) basis
for W' whose first n- 1 vectors are in V. We write vectors
in terms of this basis for the remainder of the proof. Define

the function

0 if x=0
p(x) = 1|7 )x x|l if x £ 0
n 1777 n-1l1 n
® if x #0, x =0

Consider closed cones of the form
c, = x| p(x) < a)

It is easy to see that if C 4is a closed cone such that Ek < C

and C NV

il

{0}, then C is contained in a cone of this form.
Since C N 8 is compact and p( ) continuous on C N S, p()

attains a finite maximum, ¢, on C N S. For this a, C cCcC.
: ~ ~ ~ ~a

To prove the proposition it will suffice to show that for
every a > 0 there is a Ta such thét X(Ta) € int ga implies
x(t) converges to a vector in EX'

Define the matrix D(t) by B(t) =B + D(t). Then
D(t) = 0 and ||D(t)| —=> 0. Let 6 be any number in the

open interval (x_l,l). Choose ¢ > 0 such that if ¢ > ¢ > 0

then



10

a + (a+1)¢
A~ (a+1)e

(3) < sa < «

For some ¢ < ¢, let T, be such that Ip(£) || < ¢ for all t > T,
Suppose x € int Ca' We now show that if t > Ta’

B(t)x

p(B(t)x) < a or that ﬂE(ETEW

€ int Ca' Since

p(B(t)(Bx)) = p(B(t)x) for all B # 0, we may assume

X = (xl,...,xn_l,l). Let z = B(t)x =w +y where w = Bx
. |
, f A1 0
and y = D(t)x. In the basis we are using B = |- -  — - SO
0O 1 A
that (wl,. "Wh—l) = A(xl,...,xn_l) while W= e We chose
| I, so that
le) ’wh—l”l = ”A(Xl""’xn—l)Hl

10 o Faally
<oa < a
Furthermore, it is easy to show that
1Cyysvnyy My < lipte) (=g, e e,z ) |
< Iote) flilseq s+ o= |l

< ela + 1)

and similarly lynl < ela + 1). Thus
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< H(Wl""’wn—l)”l + Hyl,..., n—l“

177 %p-1'
<a + (a + 1e
while [zn[ >\ = (e + 1). Thus
B -1 a + (a+1l)e
plz) = |z_| H(Zl,...,zn_l)[]l S T (e xD)e < @

Consider the sequence B(t) = p(x(t)). We have shown that
for t > T, B(t) € [0,a] so that {B(t)} has limit points. We

now show that the only limit point that B(t) can have is 0. Suppose

B>0 is a limit point. Choose B such that ﬁ > B > 6§
where, as in (3), X—l <o < 1. Then, since B is a limit point

of {B(t)}] there is a T such that B(t) < B for all t > t

1 1’

But then we may use the argument given above to show that

B(t) < 68 < B for all t > T, + 1. B cannot be a limit point
of {B(t)}.

This completes the proof of Theorem 1. Notice that our

argument has established the following "continuity" result.

Proposition 2. For every ¢ > 0 there are integers Tl and

T, and a & > 0 such that if [p(t;) - P[[ <8 for all t, > T

then [la(t,) - g(P)|| < ¢ for all t, > T,

The Lemma can be used to prove a cleaner and mathe-

matically more interesting result.
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Theorem 3. Let {B(t)}, B and Ex be as in the Lemma.

Suppose
x(0) = x

B(t)x(t-1)
IIB(t)x(t - 1) ||_l

x(t)

Then there is a subspace U of dimension less than n such

that if x° £ U then ({x(t)} converges to a vector in EX'

This theorem states that the sequence {x(t)} converges to a
vector in EX for all <° EZRn except perhaps a hyperplane. Since
hyperplanes are "small" sets relative to:Rn, this means that x(t)
converges for almost all initial conditions. This result is of some-
what less demographic interést than Theorem 1 as there seems no
direct way of showing that U ﬂ:Rﬁ = {0}. (Of course, the weak
ergodic theorem could be used to deduce Theorem 1 from Theorem 3 -
or from the Lemma.)

Only a sketch of the proof is given here. Since § is
compact, the sequence {x(t)} has a limit point w. If w £ N

then w is in the interior of some cone C such that EX < C

~

and, C NV = {0}. The Lemma implies that {x(t)} con-

verges to some e, € E_.
A ~\ &
, o
Consider the unnormalized sequence z(t) = 1 P(t)x . It

T=1

is possible to show (considering again the case where )\ > 1
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and the moduli of all other eigenvalues of B are less than 1)
that if w € V then 2z(t) —> 0. Clearly the set of all x°

such that 2z(t) —> 0 is a subspace of Rr". It is of dimension

t
I P(r) is non-singular and
T=1

less than n since the fact that

the Lemma together imply that x(t) — e, for some x°
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ITI. Necessary Conditions for the Convergence

of the Age Structure.

Theorem 4. If a(t) — 5, then g(P(t)) — a.

Proof: Consider the normalized sequence of matrices

Q(t) = ﬂ%%%%ﬂ . Since g(Q(t)) = g(P(t)) it will suffice to

show that g(Q(t)) —> a. Let Q be a limit point of {Q(t) 3},

and suppose {tj} is a subsequence such that lim Q(tj) = Q.
g o0

Note that

Q(tj)a(tj - 1)
I[Q(tj)a(tj -1) |

(4) a(tj)

Taking limits on both sides of (4), we obtain a = v0a where
y = Héan_l. Thus a > 0 is an eigenvector of 0. Since O
has only one positive eigenvector of unit length, g(é) =a if

Q 1is any limit point of {Q(t)}. Since the OQ(t) are bounded

this implies g(Q(t)) = é(P(t)) — a.

Proposition 5. If a(t) —> a and P and P are limit points

of {P(t)} then there are positive numbers Yy and v such that

and
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where bi, sj and ﬁj, gj are the age specific birth and

survival rates associated with P and P respectively.

Proof: Let vy

HPEH—l and vy = Hﬁgﬂ—l. Then, we have shown

in the course of proving Theorem 4 that

AN\ -

a = yPa = vyPa

Writing out this equation component by component yields,

i

1 =Y by biai = v Z biai

Il
<
0]
o
i
<
n

which completes the proof.

The demographic meaning of these results are clear. An
age structure will approach a constant only if the crude birth
rates (I biai) and each age specific survival rate approach
constants or if in the limit these rates vary proportionately
and simultaneously. The fact that the age structure converges
imposes no other restrictions on the asymptotic behavior of
the entries of P(t).

We strongly suspect that the conditions of Theorem 4 are
necessary as well as sufficient. We have not however been able

to prove this.



Footnotes

See Parlett [3] and the references cited there.
See Parlett [3, pp. 200-202].
See, for example, the work of Coale [1].

See, for example, Nikaido [2, p. 110].
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