ESTIMATION OF AN EVOLVING SEASONAL PATTERN
AS AN APPLICATION OF STOCHASTICALLY VARYING
PARAMETER REGRESSION

Adrian Pagan

ECONOMETRIC RESEARCH PROGRAM
Research Memorandum No. 153
October 1973

The research described in this paper
was supported by NSF Grant GS 32003X.

Econometric Research Program
PRINCETON UNIVERSITY
207 Dickinson Hall
Princeton, New Jersey



ESTIMATION OF AN EVOLVING SEASONAL PATTERN
AS AN APPLICATION OF STOCHASTICALLY VARYING
PARAMETER REGRESSION

Adrian Pagan

The seasonal adjustment of economic time series has
exercised the mines of statisticians and economists for a
goodly number of years and has resulted in numerous proposals
for its accomplishment. In a recent article, Hannan, Terrell
and Tuckwell [10] address themselves to the vexed question of
estimating an evolving seasonal pattern and present a model
that enables the construction of an "optimal" filter for this
purpose. More specifically, a series y(t) is assumed com-
posed (additively) of trend, T(t), seasonal, S(t), and
irregular, 1I(t), factors, where each of these evolves

according tol

y(t) = m(t) + s(t) + 1(t) (la)

™t) = T(t-1) + e(t) (1b)
2

s(t) = = s.(t) (1c)
j=1

lthis model differs from [10] in two respects. Firstly,
it is relevant to quarterly rather than monthly data and,
secondly, the trend is in first rather than second difference
form. It will become obvious later that this does not affect
generality but facilitates exposition.



Sj(t) = aj cos thj + Bj sin txj (14d)
aj(t) = aj(t-l) + ej(t) (le)

where e(t) ~ N(O,Ug) (t) ~ N(o,oi
N(0,95), E(ej(t) ny(£)) = 0, E(e(t) e(£)) = 0, B(e(t)n () -0

), ej(t) and nj(t) are

and Aj = jx/2

O the seasonal in (1d) is

When ej(t) = nj(t)
constituted from constant amplitude sine and cosine waves soO
that, if the trend was removed separately, extraction of the
seasonal follows from an harmonic regression i.e., it is the
spectral analogue of {13]. BAn application of this approach may
be found in [3] while investigations into the distributional
properties and robustness of the OLS estimator of the parameters
oy and B, are contained in [27] and [28]. Examination of this

polar case makes it clear that the consequence of a non-zero

ej(t) and nj(t) is an harmonic regression with time-varying

parameters and, as such, may be studied under the genus

"estimation of regression equations with stochastically-varying
coefficients,"e.g. see [2], [2k] and the survey [23].
To comprehend the objectives of this paper it is

sufficient to note three limitations of the study in [1l0].



(i) "The second simplification which we adopt is a
technique which treats each Sj(t) separately ... .
In principle it is not necessary to adopt this
procedure of taking each Aj separately ... 1In
practice the problem of computing the optimal
coefficients becomes very great unless these things
are done, as high order polynomials have to be

factored,” [l0, p. 29].

(ii) For the same motives as expressed in (i) generalization
to (say) second order differencing schemes for the
evolution of aj(t) and sj(t) is not easily

realized.

(iii) As the estimation of the parameters G? is done in
3 heuristic fashion the statistical properties of

the estimates of T(t) and S(t) are unknown.2

Central to the paper is the relaxation of (i) - (iii).

By expressing the model set out in (1) in linear system £form

2The parameter 0@ is not estimated cf. "there is little

point in considering the estimation of 02 gince the model
is not sufficiently realistic for that. However, in the case
of S(t), the model is sufficiently close to the truth to
justify considering the estimation of 0% ." [l0, p. 361.
Generally, 02 is set to obtain a respohse for the trend
filter that does not have much influence at the seasonal
frequencies - see [10] and [26] for more details -- but

if desired, estimation of o2 isg easily done in the frame-
work described later.



[17, p. 39] it is possible to apply the large corpus of
filtering and estimation theory that exists for such a re-
presentation. At the same time the paper aims to shed some
light on the choice of algorithm for the estimation of

regression models with stochastically varying parameters.

1. Linear System Formulation

The linear system form relates a(pxl) wvector of
observed variables vy(t) to a (gx1l) unobserved vector

z(t) which evolves in a Markov fashion, i.e.,

y(t) H(t) z(t) + B v(t)

]

(2)
z(t)

]

M z(t-1) + I u(t)

where B and I' are (pxm) and (gx4) matrices
respectively, wu(t) and wv(t) are mutually uncorrelated,
and normally and independently distributed error terms with
covariance matrices Q and R respectively. Equation (3)

shows the conversion of (1) into the format of (2).3

SNotice that, as A, = n and sin (tx) = O, the term

Bs SLn(thg) is omitted.



y(t) = [1 cos thq sin thg costhg] T(t) |+ I(t)
oy ()
B, (t)
i o, (t)
- - - - i -
T(t) T(t-1) e(t)
al(t}ﬂ al(t—l) el(t)
B, (£) 5, (£-1) ny(t) (5)
ag(t) ag(t—l) eg(t)
L N _ n n i

A comparison of (2) and (3) reveals equivalence when

M=I, TI'=I, B=1, H(t)=[1 cos th,, sin thn;, cos 1:7\2].LL

2. Filtering and Estimation Theory for Linear Systems

Consider (2). Assuming prior knowledge of H(t) the
unknown parameters are R, Q, M and z(0),...,z(T), albeit,
in some instances, elements of these matrices may be pre-
scribed, e.g., setting M equal to the identity matrix in the
above example. To retain generality it is best to treat all
elements as unknown and then employ the following partitioning

of the task.

As any high order difference equation can be reduced to
a first order one by re-definition of variables, there are
no conceptual difficulties in expressing (say) second dif-
ferences in the trend in the form of (2) i.e. H(t), M and
z(t) must merely be re-defined and given increased dimensions.



(a) Expression of z(l),...,z(T) in a functional form
conditional on R, Q, M and z(0).

(b) Unconditional estimation of R, Q, M and z(0).

The solution to (2) is well known ([14] and [15])
yielding the optimal (minimum mean square error) filtered
estimate of z(t), given the realization vy(1),...,v(t),

as the solution to the recursive equations [17, p. 176]

2(e]€) = Ma2(t-1]t-1) + K(t) o(t) (ha)
o(t) = y(t) - H(E) M 2(t-1]t-1) (4b)
K(t) = pP(tlt-1) H'(t) v'l(t) (he)
v(t) = H(t) p(t|t-1) H'(t) + BRB' (4ka)
Plt|t-1) = MP(t-1|t-1) M' + ror' (he)
p(tlt) = [T-®(t) BH(t)] P(t|t-1) , (L£)

while the optimal estimate of z(t), given the complete

realization y(l),...,y(T), is [18, p. 6]

2(t|T) < 2(t]e) + p(t|t) M’ A(t) (52)
Mt-1) = [T-R(t)HE)] M AR + H'() v () o(t) (5b)
AT) = 0O . (5c)



To solve (4) it is necessary that there be a normal
estimate, with mean =z(0) and covariance matrix P(0), of
the initial state vector to begin the recursion. Classical
approaches to the problems raised by unknown pre-period values
e.g. [20], begin with the presumption that these unknowns are
fixed constants (i.e., P(0) = O) and hence a point estimate
of z(0) is required. Acceptance of this methodology leaves
the unknown parameter set at 6 = {Q,R,M, z(0)} ; given
values for the elements of 6 enables the calculation of
;(tit), ¢(t), v(t) and K(t), which quantities are then
inputs into the backward recursion of (5) to eventually yield
;(tIT). |

The log likelihood associated with (2) is as derived
by Schweppe [25]

Y

T
log L(ely(1l),...,9(T)) = const + = (logdetV
t=1

£)
- ¢1(t) vIE) #(t)) . (6)

Maximization of (6) subject to the constraints in (L) is
conceptually feasible but, in practice, may involve a large
number of parameters if the state vector z(t) is large (as
it will be if a high order system has to be reduced to a first
order one). To overcome this obstacle Rosenberg [22] has
derived the maximum likelihood estimate of z(0), conditional

on Q, Rand M, as



A T -1 T
z(0) = ( = F(t)) % £(t) (7)

t=1 t=1

where

F(t) = T'(t) v (&) T(t) (8a)
£(t) = Tr(t) V() o(t) (8b)
T(t) = H(t) E(T|t-1) (8c)
E(t|t-1) = M BE(t-1]t-1) (84)
E(t|t) = E(t-1]t-1)-xr(t)T(t) (8e)

and E(0O|0) = T .

Summing up, the estimation strategy has four stages:

(a) For any values of Q, R, and M (say Q% , R* and M¥)
z*(0) 1is found from (7).

(b) Combining =z(0) with Q%, R*¥ and M* allows ¢(t),
V(t) and =z(t|t) to be computed from (%), thereby
yielding the likelihood corresponding to Q¥%, R¥*
and M¥* (see (6)).

(c¢) Determine, in some systematic way, the values of Q, R
and M that maximize the likelihood by repeating (a)

and (b). Methods for doing this are discussed below.

(d) If Q, Rand M are the values that maximize the
likelihood, z(1|T),...,z(t|T) are evaluated from (5).°

5One further simplification is possible in that R and Q
may be divided by a constant. When vy(t) is a scalar this
constant may be regarded as R so that Q will be variance
ratios. Rosenberg [22] shows that_ the maximum likelihood
estimate of R in this case is T 1 z» ¢r(t) v-i(r) (v .



Now the only remaining difficulty is to perform (c).
A number of iterative techniques suggest themselves e.g. the
algorithms of Powell [21], Davidon, Fletcher and Powell
(DFP) [4] and Goldfeld and Quandt's Quadratic Hill Climbing
(QHC) [5]. 1Initial experiments revealed that the choice of

algorithm was important owing to:

(a) The slowness of function evaluations -- about four a
second for T = 80 and q =5 on an IBM 360|911 --
causing selection to be conditioned by the need to mini-
mize the number of function evaluations taken to reach

a maximum if computational cost was not to be prohibitive.

(b) The need for a wide domain of convergence i.e., conver-

gence to a maximum from a variety of starting values.

Generally, use of Powell and DFP satisfied (a)
but there could be bad failures with respect to (b), while
the converse held for QHC. 1In particular, it was found that,
when incorrect specification led to the maximum being located
on one of the boundaries,6 both Powell and DF B would terminate

in the internal parameter space, thereby suggesting that the

2

Rather than estimate the variances Gj , the transformation
Bj = U?I(l—Ui) was adopted and the constraints were then
0 < Bj < 1 . This aids in the computation of derivatives

as well as restricting theéfarameter space. TLater tables
present 5j rather than 0} .



10

maximum occurred at reasonable parameter values. QHC
always located the boundary maximum.

As the disadvantages of QHC are intimately
connected with the numerical evaluation of the second deri-
vative matrix that serves to provide a set of weights for the
gradients, it seemed that further developments should attempt
to approximate this matrix without performing the arduous

7

calculations. If the function to be minimized has the form

S = e'e , the modified Gauss-Newton (GN) method [11] provides
a sequence of iterations 6(0),9(19,.... governed by
o(n) _ g(n-1) | (del veyher (9)
- 06 06 06
to minimize S with respect to 6 . (9) would be QHC
2
if the weighting matrix were %5557 and it can be shown
3°s de' de

that plim 5557 = S5~ 35 » i-©» asymptotically the GN and
QHC algorithms yield an identical step length for any
iteration. 1In as much as the time required to effectuate a
function evaluation varies directly with T and q2 , sub-
stantial savings could be made in large samples if (9) were
adopted. To convert (6) to the form required for the appli-
cation of GN consider the negative of the log likelihood

(with constant term omitted), i.e.

The QHC method is essentially a Newton-Raphson technique
(see [5, p. 4k-9]) with some modifications that make it more
robust. 1In later discussion it will be regarded as a Newton-
Raphson algorithm.
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MH

dr(t) v'l(t) $(t) - log detv’l(t) . (10)

1 t=1

n
!
N ™MH

t

et b and a be Tx1l vectors with b(j) = ¢(3) V_l/g(j)
and a(j) = abs[ log det V-l(j)]l/g respectively, then
Appendix 1 shows that, for vy(t) a scalar, (10) may be
written as

S = Db'b + a'a

or

where e = [b:al]

The GN algorithm has a number of advantages:

(i) The number of function evaluations necessary to compute the
1
weighting matrix (%%— %g) varies directly with the
number of parameters in 6 (rather than the square as

with QHC).

(ii) With modifications e.g. Marquardt [1l6] it has been

successfully applied to a variety of non-linear equations

describing economic behavior e.g. [1], [8].

(iii) As the equations to be solved at each iteration have
the same form as those for OLS, efficient numerical
methods such as the Q-R algorithm [7] or singular value
decomposition may be employed (see [12] for more on

this).
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3. An Example

To illustrate the foregoing methodology the model of
(1a) - (1f) was fitted to a quarterly series with (lb) re-

placed by

(t) = 2T(t-1) - T(t-2) + e(t) (1b)"

i.e. a second difference for the trend. The variance of e(t)
was set at 10 and the chosen series was Quarterly Personal
Consumption Expenditure on Food ($m) -- one of the thirteen
constituents of consumption expenditure in the Australian
National Accounts. Table 1 contains estimates of the wvariance

1S and the initial state vector.

ratios (see f.n. 6) Ao Mg

Table 1

Parameter Estimates

M Mo al(o) 51(0) o (0) T(0) (-1) L

0.72 0.70 -8.78 L.00 -0.59 215.6 199.5 -436.9

For the current example all algorithms converged to the
above answers but, as Table 2 illustrates, there was wide
variation in the requisite number of function evaluations.8

Table 3 contains the estimates of al(tlt), ag(tlt),
Bl(tlt): Sl(tlt) and S2(tlt) while Table 4 has T(t|t) and

s(t]t).

38 . .
Starting values were zero in every case.
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Number of Function Evaluations to Reach a Maximum for Different

Algorithms
Algorithm Number
GN 28
Powell 55
DFP 97
QHC 147

Although there is evidence of a strong upward movement
in al(t) and ae(t) (and hence S(t)) it may be felt that
there is too much variation =-- particularly for Bl(t) . A
warning that this pattern may be expected if the first dif-
ference is selected is to be found in [2L4] and it is argued
there that a second difference may be more appropriate for
economic data. Nevertheless, the model illustrates the approach
and it is of some interest to note that the correlogram of the
estimated irregular factor did not reveal any noticeable
autocorrelation.

Table 5 contains the same variables as Table L4, now -

) Pe
estimated from the complete sample, i.e., T(t|T) and S(t|T).



Table 3

Estimates of Various Parameters for the Food Data

al(t/t) Bl(t/t) ae(t/t) Sl(t/t) 82(t/t)
-8.78 4,03 -0.62 4.03 0.62
-8.79 L.03 -0.62 8.79 ~0.62
-8.69 3.85 -0.81 -3 .84 0.81
-7.60 b bk 0.17 -7.60 0.17
-7.28 3.95 0.59 3.95 -0.59
-9.77 2.30 2.66 9.77 2.66
-10.95 L.03 h.lo -4.03 -k .10
-13.48 2.31 2.01 -13.48 2.01
-9.81 -3.07 6.45 -3.07 -6.545
-9.22 -2.67 5.96 9.22 5.96
-10.37 -0.98 7.35 0.98 -7.35
-8.86 0.0k 8.59 -8.86 8.59
-11.15 3.41 5.82 3.41 -5.82
-10.66 3.7h 5.42 10.66 5.h2
-12.05 5.79 7.10 -5.78 ~7.10
-12.66 5.37 6.60 -12.66 6.60
-11.05 3.01 8.55 3.01 -8.55
-12.81 1.82 9.99 12.81 9.99
-11.47 -0.1k 8.38 0.1k -8.38
-11.13 0.09 8.67 -11.13 8.67
-11.71 0.95 1.95 0.95 -7.95
-10.13 2.03 6.65 10.13 6.65
-8.80 0.08 5.0k -0.08 -5.0L
-10.83 -1.31 3.36 -10.83 3.36
-1l2.k2 1.01 1.45 1.01 -1.k45
-11.50 1.6k 0.69 11.50 0.69
-1k .28 5.72 4.06 -5.71 -l .06
-13.23 6.43 .92 -13.23 h.92
-11.12 3.34h 7.48 3,34 -7.48
-12.23 2.57 8.40 12.23 8.ho
-10.15 -0.ko 5.88 0.k9 -5.88
-10.85 -0.96 5.3%0 -10.85 5.30
-10.76 -1.10 5.42 -1.10 -5.42
-12.39 -2.22 6.76 12.39 6.76
-12.40 -2.20 6.78 2.20 -6.78
-13.77 -3.13 5.65 -13.77 5.65
-1k.59 -1.92 L.66 -1.92 -k .66
-15.92 -2.82 5.75 15.92 5.75

1k



Table 3 (cont) 15

o (t/t) py(t/t) o, (t/t) Sl(t/t) s,(t/t)
1960/1 -16.4%9 -1.99 6.4 1.99 -6. 4k
2 -15.67 -1.43 7.12 -15.67 7.12
3 -17.06 0.61 5.43 0.61 -5.k43
L -16.36 1.09 .85 16.36 4.86
1961/1 -18.41 L.09 7.32 -4 .09 -7.33
2 -19.71 3.19 6.25 -19.71 6.25
3 -19.54 2.93 6.46 2.93 -6.46
L -18.15 3.88 5.32 18.15 5.%2
1962/1 -18.62 k.56 5.89 -k ,56 -5.89
2 -16.95 5.71 7.27 -16.95 7.27
3 -16.71 5.36 T.55 536 -7.55
L -19.99 3.13% 10.26 19.99 10.26
1963/1 -18.75 1.30 8.75 -1.%0 -8.75
2 -19.09 1.06 8.47 -19.09 8.h7
3 -18.75 0.58 8.87 0.57 -8.87
L ~17.30 1.57 7.66 17.30 7.66
196k4/1 -18.08 2.73 8.61 -2.73 -8.61
2 -17.26 3.29 9.30 -17.26 9.30
3 -19.27 6.24 6.86 6.24 -6.86
L -22.89 3.78 9.85 22.89. 9.85
1965/1 -26.01 8.36 13.62 -8.36 -13.62
2 -25.3%2 8.83 14.19 -25.32 14,19
3 -25.92 9.71 13.46 9.71 -13.46
L -25.83 9.77 13.39 25.83 13.39
1966/1 -27.17 11.7k4 15.01 -11.7% -15.01
2 -26.89 11.93 15.25 -26.89 15.25
3 -27.48 12.80 1k .53 12.80 -1k .53
i -28.17 12.32 15.11 28.17 15.11
1967/1 -26.57 9.97 15.17 =9.97 -13.17
2 -29.29 8.12 10.93 -29.29 10.93
3 -28.753 7.30 11.60 7.30 -11.60
b -28.40 7.53 11.33 28.40 11.33
1968/1 -27.70 6.50 10.48 -6.50 -10.L48
2 -27.h7 6.66 10.67 -27. 47 10.67
3 -24.83 2.79 13.85 2.79 -13.85
L -26.hk 1.70 15.18 26.4Y 15.18
1969/1 -26.32 1l.52 15.0k4 -1.52 -15.0k
2 -25.98 1.76 15.32 -25.98 15.32
3 -27.66 L.oo 15.29 h.22 -1%3.29
L -30.1% 2.54 15.33 30.13 15.33
1970/1 -30.61 3.24 15.90 -3.24 -15.90
2 -27.66 5.25 18.34 -27.66 18.34



Estimates of Trend T(t|t)

Table L

and Seasonal s(t|t)

16

_Obs._ s(tlt) T(tle)
1950/3 237 L.66 232.3
,;/u 057 8.17 2&8.8
1951/1 263 -3.03 266.0
2 279 -7.43 286.4
3 307 3.36 303.7
L 342 12.43 329.h
1952/1 338 -8.13 3k6.2
2 346 -11.h7 357.6
3 346 -9.52 355 .8
L 375 15.18 359.9
1953/1 353 -6.37 359.5
2 366 ~0.27 366.2
3 379 -2.h2 381.2
L ho6 16.08 389.9
1954 /1 380 ~-12.89 393.0
2 391 -6.05 397.1
3 389 -5 .5k 39L .7
b Lok 22.80 hoi.1
1955/1 Loz -8.24 h11.1
2 L17 -2.46 419.4
3 Lo3 -7.00 430.0
L k51 16.78 Lzl 3
1956/1 hho -5.12 hh7.¢
2 hhz -7 47 h50.6
3 Lok -0,.43 Lok .3
L 4L8Y 12.20 h71i.9
1957/1 458 -9%77 468.0
2 L 65 -8.30 L73.2
5 463 -h1h L67.3
b k90 20.6k4 469.3
1958/1 Lk -5.40 h79.2
2 L -5.55 L82.6
3 L80 ~6.52 L86.5
L 515 19.15 495 .8
1959/1 498 -L.59 502.6
2 Lov -8.11 505 .2
3 507 -6.58 515.5
L 546 21.68 52k.2
1
Table 4 (cont) T
Obs. s(tlt) T(tlt)
1960/1 526 -h ks 530.5
2 532 -8.55 540.5
3 551 -k.82 555 7
L 587 21.22 565 .8
1961/1 556 -11.42 567.6
2 356 -13.46 569.5
3 569 -3.53 572.5
L 595 23 .47 571.6
1962/1 560 -10.45 570.5
2 566 -9.68 575.6
3 575 -2.19 577 .2
L 620 30.25 589.6
1963/1 593 -10.05 602.9
2 602 -10.62 612.6
) 613 -8.29 621.3%
L 651 2L .96 626:1
1964 /1 618 -11.3k 629.54
2 629 -7.96 636.9
p) 652 -0.62 652.4
L 708 32.73 675.1
1965/1 656 -21.98 678.2
2 679 -11.13 690.1
3 700 -3.76 T03.7
L 755 39.22 715 .8
1966/1 695 -26.75 721.9
2 720 -11.64 731.6
) Tho -1.73 TH3 .7
b 800 L3 .28 756.7
1967/1 753 -23.1h 776.0
2 765 -18.36 783.5
3 788 -4 .30 792.3%
L 841 39.72 801.3
1968/1 797 -16.98 813.9
2 809 -16.81 825.8
3 81k -11.06 825.%
L 877 k1.62 835.3
1969/1 827 -16.56 8Lh3.5
2 8o -10.66 852.6
3 860 -9.06 868.9
b 935 W5 .46 889.4
1970/1 885 -19.1L gok.2
2 920 -9.32 929.2



Estimates of Trend T(t|T) and Seasonal S(t|T)

s(tlT) T(tlT)
1950/3 k.59 232.2
b 8.69 2L8.5
1951/1 ~%.86 267.0
2 -8.23 287 .4
3 -1.50 308.5
L 1h.11 327.7
1952/1 -h.31 341.9
2 -3.85 3Lh9.6
3 -6.65 353.0
L 17.80 357.2
1953/1 -9.8k 363.1
2 -5 .4k 371.6
3 -2.35 380.9
I 19.03 386.9
1954 /1 -10.46 390.5
2 -2.73 393.7
3 -8.17 397.5
L 19.71 hol.2
1955/1 -8.88 L11.9
2 -3 .4k L2o.2
3 -h.6h Lo7.8
L 1L.98 436.3
1956/1 -L.16 Lh5.9
2 -10.93 hsh L
3 0.80 Lé2.6
i 17.29 L66.5
1957/1 -9.13 LeT.5
2 k.22 468.9
p) -6.69 L69.9
L 17.30 b12.9
1958/1 -k .23 L78.0
2 -6.38 4183.3
3 -8.ko 488.6
L 20.09 Lok.9
1959/1 -3.k43 501.2
2 -10.00 507.1
3 -6.97 51k .1
L 22.9h 523.1



Table 5 (cont)

s(tlT) T(tlT)
1960/1 ~7.20 533.3
2 -11.98 544 .0
p) =3.25 554.1
L 25.16 561.7
1961/1 -10.05 566.1
2 -12.66 568.8
3 -1.56 570.3
L 2k .86 570.3
1962/1 -11.k%0 5714
2 ~9.63% 575.6
5 -7.09 582.5
N 27.21 592.8
1963/1 -10.68 603 .4
2 -9.87 611.6
3 -L.4o 617.4
4 28.13 623.3
1964 /1 -1k .34 632.2
2 -13.67 64h2.9
3 -3.61 655 .6
L 39.06 668 .6
1965/1 ~23.91 680.2
2 -12.86 691.8
3 -3.02 702.8
L ho . ko 71i2.h
1966/1 -26.21 721.6
2 -13.48 733.4
3 -4 .36 74654
Iy ~ho.60 159.3
1967/1 -18.54 T71.4
2 ~-16.89 782.2
3 -5.36 793.2
4 38.01 803.2
1968/1 -16.15 813.0
2 -12.06 820.7
3 -12.48 826.8
L 42.28 83k .7
1969/1 ~-17.59 gk L
2 -13.88 856.2
5 -11-69 871-6
L L5.58 889.3
1970/1 -23.18 908 .4
2 -9.32 929.2
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Conclusion

There are a number of advantages to treating
seasonal adjustment in the above framework. Firstly, it
is possible to test alternative hypothesis concerning
the nature of the seasonal by standard statistical methods.
Secondly, an evolving seasonal pattern in the variables
of a regression equation may be handled. Thirdly, as the
filtering and estimation theory holds for vy(t) a vector
i.e., p>1, there is the potential for the simultaneous
deseasonalization of closely related series. Finally, in
the light of the demonstration elsewhere [19] that the
Grether-Nerlove unobserved components model of trend, sea-
sonal and irregular [9] can be given the linear system
formulation (2), it is possible to compare the relative

effectiveness of the two approaches in a common framework.
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APPENDIX 1
To _Prove: If vy(t) is a scalar
T -1 T -1
S = = ¢'(t) v (t) ¥t) - = log det V (t)
t=1 t=1
can be written as
S = Db'b + a'a

where b(j) = ¢ (5) V_%(j) and a(j) = abs[log det V—lﬁj]%

Method of Proof: A sufficient condition for the above

result to hold is that log det V_l(j) <0 .

PROOF: From the text V(j) = H(j) P(3|3-1) H'(3) + R and,
as noted in f.n. 5, for scalar y(t) there is no loss of
generality in setting R=1. Therefore, V(j) =

H(3) P(3]3-1) H'(3) + 1. consider »(j|3j-1). It is a
covariance matrix [17, p. 172] and thus positive definite
i.e., for any vector oa, o$0, o'P(j|j-1) a >0 [6,

p. 34]. Choosing o = H'(3F) gives H(j) P(j]5-1) H'(§) > 0

so that Vv(3) >1, v %3§) <1 and log v'1(3) < o .
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