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1. INTRODUCTION

The éufpcée of this paper is to set forth, in a systematic
fashion, a family of estimators for systems of simultaneous
stochastic equations based on modifications and simplications of
the method of maximum likelihood. It is hoped that this family
will satisfy the need in most practical applications involving
linear as well as non-linear structural equations. Most of these
estimators are well known, but a few are newly suggested. They
are developed by introducing the complicating statistical assump-
tions of simultaneous equations one at a time and by simplifying
the computations involved in maximizing the likelihood function
of the model parameters. Their development may clarify the rela-
tionships between estimation methods and the underlying statistical
assumptions. They are arranged from the simple to the complicated
SO that the user may choose to apply them sequentially in practical
applications. The development based on the method of maximum
likelihood can also serve as a convenient framework for introducing
robust estimation techniques for simultaneous -equation systems.

In contrast with the model of multiple linear regression,
a8 system of simultaneous econometric equations involves several
complications. First, there may be several dependent variables

in one equation. Since these variables are correlated with the



residual, consistent estimates of the parameters of the equation
cannot be obtained by ordinary least squares. Second, the resi-
duals in-different equations may be mutually correlated. This
assumption suggests the desirability of pooling different equa-
tions together in estimation in order to improve efficiency, but
pooling will increase the size of the computation problem. This
complication should be distinguished from the first, for it can
exist even when, as in a multivariate regression system, there
is only one dependent variable in each equation.l Third, the
equations may be non-linear. Fourth, the residuals may be
serially correlated.

It is the approach of this paper to deal with these
complications one by one, not only for the purpose of understand-
ing what each complication entails as far as estimation is
concerned, but for the purposes of providing useful intermediate
estimates and of solving the difficult problem of computing the
final estimates step by step. Specifically, one may consider
using ordinary least squares to estimate each equation separately,
ignoring for the moment the above-mentioned complications. He
then introduces only the first complication. This would involve
revising the ordinary least squares estimates..Next, he would
introduce the second complication, further revising his estimates,

etc., until the final set of estimates are obtained.



This approach has been motivated by three related
considerations. First, the practice of econometric’model
building does f?éqﬁently proceed along the lines here suggested.
Econometricians often apply ordinary least~squares to see how
well an equation fits before introducing more sophisticated
methods. Two stage least squares is often performed before
three-stage least squares, if the latter is the method adopted.
This paper will provide a systematic approach to step-by-step
estimation. The progression from the simple to the complicated
enables the research worker to learn something in the process.
Second, for an understanding of the nature of simultzneous
econometric systems, it is desirable to pinpoint the modification
to the estimation procedure which is necessitated by each com-
plication in statistical modeling. When the estimation of
systems of linear econometric equations is studied in most of
the existing literature, the first two complications have been
introduced together. This has given rise to complicated esti-
mation metheds, but the modifications to the procedures are
often not attributed to their respective sources. This paper
will attempt to assign each complication in the procedure to a
specific assumption made about the structure. Third, in a recent
paper, Chow (1972), I have provided a method to obtain full-

information maximum likelihood estimates for non-linear equation



systems with autoregressive residusls. The present study can
be considered as a step-by-step implimentation of that method.
Although full-information maximum likelihood estimation of non-
linear systems is feasible, few would attempt it as the first
step in constructing an econometric model. One would prefer to
build up to it gradually, and the approach here suggested is
designed precisely for doing so. Furthermore, one might not
wish to go all the way if, in the process, he discovers that
certain complications are not worth introducing, or, if, partly
because of the high cost of computations, he is prepared to
accept a linearized version of the estimates after one or two
iterations of the non-linear estimating equations. The family
of estimates here set forth are available for him to pick and
choose in order to satisfy his needs.

The methods suggested in this paper are based primarily
on variations of the method of maximum likelihood, rather than
the methods of two-stage and three-stage least squares. For
non-linear systems, generalizations of two-stage and three-~
stage least squares remain to be further investigated. For
linear systems, as it will be pointed out in this paper, the
method of maximum likelihood is computationally not more diffi-
cult and in some cases easier than the method of two~stage or

three-stage least squares to be applied under a comparable set



of assumptions. Thus, based on the method of maximum likelihood,
this paper provides, systematically and fairly comprehensively,
a set of estimators that can be used for both linear and non-
linear systems of econometric equations under various simplifying
assumptions,

Section 2 deals with linear systems with serially
uncorrelated residuals by providing a set of estimators, from
the simple to the complicated, which are based on various simpli-
fications of the statistical model or the computational procedure.
The same set of estimators will be set forth for non-linear
systems in section 3. The subject of residuals satisfying an
autoregressive scheme will be the concern of section 4. Section
5 provides a set of robust estimators for simultaneous equations,
as generalizations of the techniques of robust estimation using

the framework of this paper.

2. LINEAR SYSTEMS

Let T observations on G linear simultaneous

stochastic equations be written as

]
o

(2.1) Y3 + Z7T

where Y is @ TXxG matrix of dependent variables, 2 is a

TXK matrix of predetermined variables, each row of U is



G-variate normal with covariance matrix £ and is uncorrelated

with any other row, and the ith columns of B and T are

coefficients of the i‘h structural equations. Adopting the
normalization g.. = -1 (i=l,...,6) , and letting B; be the

ith column of B omitting B;; @and the zero elements, yy be

the 1P column of I omitting zero elements, Y, be » matrix
consisting of the columns of Y which correspond to the elements
of Bi , and Zi be a8 matrix consisting of the columns of 2
which correspond to the elements of y; » ©ne can write the T
observations on the ith equation as

i7i = ui (i=l’o'o,G)

. -V, .B. A
(2.2) Yy + Y8, ¢+
The symbol u, will denote, according to context, .either a
vector of random residuals or a vector of functions of the
variables g, and 7y @s defined by (2.2). Let S be a axG
symmetric matrix whose g-h element is (Qéuh)/T.

The concentrated log-likelihood function, after the

unknown matrix I is set equal to S , is

(2.3) L = const - % T log|s| + T log|Bj
. . . 2

and its gradient is

G . ..
L _  _ v hi i(i)
(2.ka) aﬁi = ¥! hil s u +TB



. G hi
(2.4b) 3-*— = - 2! % s uy

73 * h=1
where s™ is the h-i element of § % s Bl(k) denotes a
column vector consisting of those elements of the ith row of

IB—l which correspond to the unknown elements of By > and

where use is made of the differentiation rule O 1og|1B|/3Bki==BlE

The matrix of second partisls of L consists cf submatrices;:-

2 . . G G .. .
(2.52) %ELGS’ = = sJJ‘Y;_Y. +,§:~ Yi Zu 2 (shjsm’ +shnsjl)ixr'1Y“.
1i%°5 J h=1 " n J
-2 g 4iG)
2 s G G . . ..
oTL ji 1 hj ni |, hn ji
(2.5b) Sz¥=—— = - gllyiz 4z yr 3 T (873 + s™MgIY iz,
. 081873 13 T7i h=luh n=1 nj

If one wished to estimate the system by the method of full-
information meximum likelihood without further simplifying assump-
tions he could use the gradient g(a) = g(ﬁl°"BG’71"’7G) as
given by (2.4) and the matrix of the Hessian H(a) as given by

(2.5) and iterate by Newton's method:

-1
(2.6) oft a¥ - h, H(aF)  g(a¥)

where ar denotes thevvalue of the vector of unknowns at the



rth iteration and hr is a8 scalar chosen to promote convergence
of the iterative process.u

In this paper, a family of estimators are suggested. They
are obtained by modifying the statistical assumptions concerning
the model (2.1) and/or simplifying the computations based on the
solution of the likelihood equations g(a) = O by Newton's
method. The simplifying statistical assumptions are that X may
be diagonal or bloc~diagonal, and that 1B may be triangular or
bloc~-triangular. The simplifying computations consist of per-
forming only one iteration or solving the iterative equations
for one subset of variables at a time, holding the other variables
constant.

To begin with, assume that £ is diagonal, so that
log|s| in the log-likelihood (2.3) becomes Z logs;, . The

i
gradient and the matrix of the Hessian will then become,

respectively,
X _ -1 | i(i)
.@.L.... = -1 ,,

(2 07b) ay = sii Ziui

and, with 6ij denoting the Kronecker delta,

2 \ fs </
o°L -1 2 =2 !
(2.82) 3 = - 5yylsii vy + £ 61F viwiurv 1 -7p30 (10

i
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- §—L—-—— - - ..l 1 g. -2
(2.8b) %, © 130855 ¥i%; * § sy Y wyul z,]
(2.8¢) §EL~-— = = B [s-l Z1Z, + 2'5-2 Ziu.ul 2 ]
‘ 575_873“ 1374 Yi%1 T T Cii fitiY%i % :

Except for the last term of (2.8a), the Hessian matrix would be
bloc-diagonal, and the solution to equation (2.6) could be
obtained for each bloc separately.

th

If B were upper-triangular, the j row of Bt

would
have zeros in its first 3j-1 places. Since 6jﬁ) is a vector
obtained from selecting those élements in the jth row of B T
which correspond to the unknown coefficients in equation i , and
these coefficients are confined to the first i-1 for an upper-
triangular B , we have Bjﬁ) =0 for i< 3j . From (2.8a),
the Hessian matrix would then be truly bloc-diagonal, each bloc
for the coefficients of only one equation. In fact, the last
term of the gradient (2.7a) would also vanish, and one would
simply be solving the linear normal equations Yiu. = O and

i
Z]!_ui = O for each equation i separately as specified by the
method of least squares.
If B is bloc-triangular, similar arguments will show
that Bjﬁ) = 0 for equation i belonging to a lower-numbered
bloc than equation j. Hence, the last term of (2.8a) vanishes

for i and j belonging to different blocs, and the Hessian

matrix will also be bloc-diagonal, each bloc consisting of
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possibly several equations. It is therefore recommended that
the structural equations be so arranged as to make IB bloc-
triangular.’ The solution of (2.6) will then be obtained for
each bloc separately.

After taking full advantage of the bloc-triangularity of
B , one might still find some very large blocs in the Hessian
matrix. As an option, or as an intermediate step toward using
the Hessian matrix of (2.8), one may choose to ignore the last
term of (2.8a) for i#j , and perform the iterations for the
coefficients of each equation separately. In other words,
letting ai denote the unknowns (Bi yi), g; denote the
gradient (2.7), and Hij denote the Hessian matrix (2.8), one

may apply the formula

r+l r ry"t r
(2.9) oy = a; - h. Hii(a ) gi(a ) .
This amounts to applying Newton's method after setting the off-
diagonal blocs Hij (i#3) equal to zero. BAs it is well-known,
if the gradient is linear as given by g(a) = Hx - ¢ , Newton's
method gives the correct solution in one iteration:

(2.10) oft _ ot - H"l(Hocr- c) = H'-lc .

Rather than solving the system of (linearized) equations HX =c
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simultaneously as in (2.10), the method of (2.9) solves each
subset of equations ; Hijaj = Cy separately for each oy
holding the values of aj (j#i) constant in the process, as
the following demonstrates:

r+l r -1

-1 r
(2.11) a; T = Ay - Hii(z H. .0 = ¢c;) = Hii(ci-z H,.0L) .

jp )

TO recapitulate, we have outlined four methods of
estimating simultaneous equations. The first is ordinary least
squares and is equivalent to maximum likelihood for diagonal I
and triangular B (assuming serially uncorrelated residuals).
The second uses a diagonalized Hessian as indicated by (2.9),
and is an iterative method of solving the likelihood equations
for diagonal £ and general B . The third uses the full
Hession of (2.8) and is equivalent to applying Newton's method
of solving the likelihood eguations for diagonal £ . Note that,
for the third method, the Hessian will still be bloc-diagonal
provided that the bloc-triangularity of B is fully exploited.
Finally, the fourth is full-information maximum likelihood (FIML)
for general I , wusing the gradient (2.4) and the Hessian (2.5).
Except for ordinary least squares, all other methods are itera-
tive., However, one might choose to iterate only once, using as
initial values the estimates from a computationally simpler

method.
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Several comments are now in order for comparing this
family of estimators with the two-stage and three-stage least
squares family. If the covariance matrix £ 1is far from being
diagonal, FIML for general I and three-stage least squares
are to be recommended on the ground of asymptotic efficiency.
Three-stage least squares is analogous to performing only one
iteration of FIML because it replaces the true £ (and its
inverse) in the estimation equations by their estimates based
on consistent estimates of the structural coefficients. If
the same substitution is applied to the FIML estimation equa-
tions, only one set of linear equations with the same number of
unkncwns will have to be solved. Computationally, the two
methods are of the same order of difficulty.

If Z is diagonal or nearly so, the asymptotic efficiency
argument in favor of FIML or 3SLS loses its force. Two-stage
least squares is available for this situation, and should be
compared with methods two and three suggested in this paper.
Method three is truly FIML under the assumption of diagonal X.
If the bloc-triangularity of the 1B matrix is fully exploited,
this method may not require solving any larger set of linear
equations than ESLS. as the first stage of 2SLS may involve
solving a large regression problem (granted that approximation

by principle components is possible). Note also that further
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iterations on 2SLS are possible, using for the first stage
revised estimates of the reduced form coefficients I = -I‘]B"l
based on improved estimates of the structural coefficients.
Non-iterating 2SLS should perhaps be compared with our methods
two and three terminated after only one iteration.

Our method two, if and when it converges, is also truly
FIML for diagonal £ for it solves the same set of likelihood
equations (2.7) as method three. In contrast with method three,
it solves a set of smaller problems (one for each structural
equation) in each iteration. Each of these small problems has
the same size as that of the second stage of 2SLS , but the
probably larger problem of the first stage of 2SLS is avoided.6

Although methods two and three are based on the assumption
of a diagonal % , they will have wider applicability than it
may first appear. If the correlation between Uy, and Us, is
zero ( small), it will be (or may be) more efficient not to
combine the estimstion of By and Bo since efficiency will in-
crease by the imposition of a correct restriction on the para-
meter O9,, . A Monte Carlo study as reported in Mikhail (1972)
for some illustrative two-equation models has concluded that
012 has to be fairly large in order for the estimators that
pool together the estimation of two equations to be more effi-

cient in small samples., It may be better to impose a zero

restriction on 012’ that is nearly correct than not to impose
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any restriction at all. One can easily exploit the possibility
of making < bloc diagonazl, thus combining the coefficients of
the equations in only the same bloc for estimationlpurposes.
This would involve fairly straight~forward modifications of
methods two and three and need not be detailed here.

For linear systems, the methods of two-stage and three-
stage least squares are alternatives to the methods of this paper.
For non-linear systems, however, generalizations of the former
methods remain to be further investigated., We will turn to

the subject of non-linear systems presently.

5. NON-LINEAR SYSTEMS

The same four estimators can be suggested for a system
of non-linear structural equations as for a linear system. Let

the tth observation on the ith equation be

(3.1) fi(ylt’"”YGt’zlt”“’thgai)= b P

P ¥per e s ¥y po Vi g By =0y
where U (i=1,...,6) are multivariate normal with mean zero
and covariance matrix £ , and are serially uncorrelated, and
where B, is a vector of n, unknown parameters in equation i.

i
Define the matrix of the Jacobian as



15

Bfi
(3-2) J = (Jlj) = (-5? .
J
. . th
I = (Jij t) will denote the value of the function for the t
b .

observation. For most econometric models, J will be very
sparce, consisting of probably two to three unknown elements in
each row, on the average.

The concentrated log-likelihood function is

T
(3.3) L = const - %T log |s| + £ log|o,|
t=1

where sgh s as before, denotes (ué‘ﬁ1yT » Its gradient is’

G ,. T G oF,
1
(5.)4-) "g'é];""' = - Y(; b Shl uh + I by Jl.gl ..a....];-.l'._l.,z...t_
i h=1 £=1 h=1 Pi
o afi t .
where Yi denotes the T><ni matrix with SE—*— as its t=-j
ij
element If the ith eguation is linear J =B, 3
' ? ih,t ih ’

aJih,t/BBi will be a column vector of zeros if Bjp, = O, and
it will be a column vector of zeros except for a unity in the

same position as is located in the contracted (unknown)

Pin
vector B; + In this case, = Jﬁl . aJih t/aai would be a
h F

column vector formed by selecting those elements of the ith

column of J"l which correspond to the unknown elements of B; .8

This vector was denoted by Bl@) in equation (2.4a). The Hessian
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matrix of the likelihood function (3.3) consists of submatrices

L . .. s
—— o gtdy0'0 L hj _ni hnsjl‘ v y9 .
(3.5) Baiéaﬁ = - 87V Yo+ }z;a u ir;(s gt teg Jul 3
2"\
OTE,
i.t hi
13 + aBlaB;. h ht
i agJ'h t ath j Jn1 aJ1n t
th 13t BBy Bi  n

(3.4) and (3.5) can be used to obtain FIML estimates by Newton's

method.
If I 1is diagonal, the gradient and the Hessian will be
respectively
T G T,
- t
(3.6) %‘“=-SiiYioui+ z ZJl;l"éEf*b“"i:'
i t=1h=1 i
and
2
2 S
oL _ -l 0',0 2 -2 _o! ¢ O it s 1u
(5.7) %% " Bigl=83i ¥y Yy +g sif ¥y wulyy ¥ el Siitiel
+ 55 b, ot ST - Zint Z(JhJJ ) £ty
£t h ij "t afs as' aai ag
If, in addition, J is (lawer) traingular,9 aJih £ BBi =0
>

for h >1i and J?l =0 for i >h, implying that the second
term on the right-hand side of (3.6) vanishes. The normal equa -

1
tions for 6i will then be Yg ui = O and are simply the
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estimation equations of the method of least squares applied to

t
each equation separately. The gradientcfi T Siy is Yg u,

2 1
and the Hessian islo
2
o £,
d 1 _ 4O'L0 i,t
(5.8) 3B, B (3 Ts;3) =¥ ¥y + _‘2 ¥ 0 Uit °

Rather than using the entire Hessian matrix of (3.7),
we propose as the second method following least squares, to use

only the diagonal blocs and iterate by

(3.9) By =B, - h

where the gradient is defined by (3.6) and the Hessian by (3.7).

If J is bloc-trisngular, the expressions aJih/aBi s

J s ann/aﬁé s and Jt will be respectively non-zero only

.

if h<i, 3%h, n <4 and i<n s, where h é i means
that equation h is in a lower or equal numbered bloc as com-
pared with equation i . Hence the last term of (3.7) will be
non-zero only if equation i and equation j belong to the
same bloc. Thus, as in the linear case, bloc-triangularity of
J implies bloc-diagonality of the Hessian (3.7), given a
diagonal 2 . As before, the third method is to use (3.6) and

(3.7) respectively as the gradient and the Hessian for the pur-

pose of iteration, taking full advantage of the bloc-triangularity
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of J . The fourth method is FIML for general X , using

equations (3.4) and (3.5).

4. AUTOREGRESSIVE RESIDUALS

Since the subject of autoregressive residuals is already
treated in Chow (1972), only a few important points will be
made here in connection with the family of estimators outlined
in this paper. One essential point to note is that a system
with autoregressive residuals can be converted into a system with
serially uncorrelated residuals so that the methods of section 3
can be applied. For example, let the residuals of (3.1) satisfy

@ second-order autoregression

(k,1) u, - R.u - R u = e

where u,, 1s a3 column vector consisting of UgpseeesUny (or

alternatively flt""’fGt) and e,, are serially uncorrelated,
Each row of (4.1) can be regarded as a new non-linear function.
In the new set-up, the ith row will contain not only By as

parameters but also Bj if tle jth element of the it} row

of either Rl or R2

in equation j , there will be linear restrictions on the para-

is non-zero. Since Bj are also parameters

meters across equations in the new set-up. A procedure to deal

with these linear restrictions is described in Chow (1972) and
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Chow and Fair (1973). It amounts to collapsing the gradient and
the Hessian matrix by combining the first and second derivatives
with respect to those parametsrs which are subject to linear
restrictions. Since it does not disturb the bloc-diagonality of
the Hessian matrix, method three remains applicable. Of course,
method two can always be applied as it selects only the diagonal
submatrices of the Hessian matrix for each iteration. However,
each newly formed equation of (4.l) will contain more parameters
and thus become more difficult to estimate from the computational
point of view.

The simplest model, and the one to be recommended until
it is invalidated by sufficient evidence, is the one assuming
R, and R, to be diagonal. 1In this case, the new set-up due
to autoregressive residuals will not introduce any common para-
meters in different equations. Each new equation i will simply
. The Jacobian will

have two extra parameters and r

X, ..
1,ii

be the same as before. One can apply the same four methods of

2,ii

section 3 to the new situation. Even if some off-diagonal ele-
ments of Ry and R, are non-zero, this simple model can advan-
tageously be used as an intermediate step in the estimation

process.
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5, ROBUST ESTIMATORS Y

Recently there has been some interest in applying robust
estimation techniqgues to the study of economic relationships.
The basic idea is that the method of least squares, which is to
a large extent based on a normal distribution of the residuals,
may give too much weight to the large residuals if the distri-
bution does have longer tails than the normal. A robust esti-
mator, by giving less weight to the large residuals than least
squares, will have reasonably good properties for a variety of
possible distributions of the residusls, although it may not be
quite as good as least squares for a truly normel situation.

One way to reduce the weight given to large residuals is
to formulate the problem as one of weighted regression. For
example, to minimize the sum of the absolute values of the resi-
duals u, is to minimize the sum ui/lutl . The weight w_ to

be applied to u in the weighted regression problem is simply

t

-1
tl ¢ . Although the weight depends on the value of u, itself,

one may choose to iterate by using a previous value of u, in

the weight for the weighted regression in the current iteration.

|u

12

Other functions to truncate large residuals have been proposed
in the literature on robust techniques, but there is no need to
restate them here.13

Since a robust estimation method can be formulated as

weighted least squares and since the method of maximum likelihood
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as applied to = simultaneous~equation system can be viewed as

8 natural generalization of least squares,lLL the two ideas can

be combined to form a robust estimator for simultaneous equations.
Specifically, for a column vector u of residuals, a weighted

sum of squares takes the form u'W'Wu where W is a diagonal
weighting matrix consisting of WisweosWa in the diagonal.

When there are columns of residuals ug and U, ( for equations

g and h), the sum of squares or cross products should accordingly
be changed to uéwgwhuh s With Wg and W

h
diagonal weighting matrices. The method of maximum likelihood

again denoting

amounts to minimizing a generalized variance |S| of the resi-
duals as in (3.3) subject to some normalization rules introduced
by the Jacobian lJtI . A natural combination of these two ideas
is to maximize the function (3.3) with the elements of S changed

to the weighted sum of squares or cross-products, i.e., to

maximize
1 T
(5.1) L* = const - 5T log|{s*| + = logIJt[
t=1
where
1
* * &
(5.2) s* = (Sgh) (5 uéWthuh .

Following the development of section 3, the gradient and
the Hessian matrix of (5.1) can be simply stated. Since the

derivatives of = loglJtI are already given in section 3, only
t
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the derivatives of -~ % T log|S*| will be recorded below:

G .
9 1 * o' *hi |
(5.3) BB-[ 5 T log|s™|] = Yo W, s Wy
i h=1
(5.4) -éi——w-[-;-'rlo ls*l]—-s*jiy°'wwsz°'+
. e, Bl "2 Kl = i "iv3%5
+ 2 ¥y gw B(s*PIg*nd L grhng*iiy Ly w0
Tritigg b n ° nnjj
o
- 9. g shi b Up e SME%ET Vit Ve ¢
J =1 ¢ BE BB 1

Under appropriate assumptions, methods 2,3, and 4 of section 3
can be applied, using the modified gradient and Hessian of (5.3)

and (5.4),.
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FOOTNOTES

Research conducted while the author was consultant to the
National Bureau of Economic Research Computer Research Center.
It was also supported by National Science Foundation Grant

No. 32003X1. Helpful comments from David Belsley, Marc Eisner,
Ray Fair, Edwin Kuh, and Richard Quandt are much appreciated.

The improvement in efficiency by pooling together several
regressions that contain different sets of explanatory
variables was suggested by Zellner (1962).

Details of differentiation can be found in Rothenberg and
Leenders (196L4) and in Chow (1968). The latter reference uses
a8 slightly modified form of the log-likelihood function.

See footnote 2 above.

See Chow (1968) and Chow and Fair (1973) for discussion of
the choice of hr .

The Stuart algorithm installed in the TROLL system at the
N3ER Computer Research Center can be used for this purpose.
A theoretical treatment of bloc-triangular I in the con-
text of estimation of simultaneous econometric eguotions can
be found in Fisher (1965).

There is a2 modified version of method two which will provide
an interpretation and justification of the method. It is
obtained by replacing H,, of (2.9) by only the leading term
on the right-hand side of™(2.8)., Thus the estimation equation
for Bi is

r+l  _ x _ =1 o =1, =] i(i)
(2.12) By = B ( S: 3 YiYi) (-sii Yiu, + T )

]

-1 r -1 i3
By = (V¥ ¥ (y 4 8142, 97) + sy (1Y) v gr

i

lBﬂﬂ)

-1 r
1 1 - t
(YiYi) (Yiyi Y!Z, 7i + T Si'

11

Equation (2.12) can be interprsted as a correction to the
method of ordinary least squares as applied to the model (2.2)
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to adjust for the correlation between Y. and u; . Without
the correction, the least squares estimate is

-1 -1
(2.13) b (vivy) = ¥ily; -257;) = (¥]¥,) " vi(Yyp; - u )

1

-1
By - (Y]!_Yi) Yiu, .

Hence, a consistent estimate of B; can be obtained by adding
to b, the stochastic limit of (Y:!LYi)"1 Yiu, . The latter

can ke obtained by postmultiplying the transpose of the
reduced form of (2.1) by Ly, s

T i
0 ‘Bﬂ“
i = 1m.-1 11 - =1 0': =0 :
(2.1k) p ¥'8 = - B T2y, + 7B TUw, > B i) = %
o piG
where the assumption of diagonal Z is utilized. (2.14)
implies that the limit of (¥]¥;)7'¥lu, equals the limit of
(YiYi)-l T O, Bl(l) . Equation (2.12) results when this term

is added to the least squares estimates of (2.135). The method
of (2.12), when it converges, is also truly FIML for

diagonal £ since its solution will make the gradient (2.7) of
the likelihood function vanish.

See Chow (1972) for the derivation of (3.4) and {3.5) below.

It should be noted that, if the system is linear, the 1B
matrix of section 2 is the transpose of the matrix of the
Jacobian and not the matrix of the Jacobian itself. The
transposition is due to the adoption in section 2 of the
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convention that the coefficients of each ‘equation are
contained in a column (not row) of the matrix B .

A lower triangular J corresponds to an upper triangular B .
See footnote 8 on this point. ‘

In using the method of least squares for a non-linear equation,
one has the option of applying Newton's method to minimize

1 1 . ;
5 T S;j; °r 3 T log Siq o The gradient and the Hessian for

minimzing the latter expression are given respectiyely by (3.6)
and (3.7). Whiecn option will converge better remains an
open question,

Ideas of this section have been developed by the author after
attending a working conference on robust regression techniques
sponsored by the NBER Computer Research Center in June, 1973.
That conference has stimulzted my interest in robust technigues

and their possible application to the simultaneous-equation
situation.

This method breaks down if a previous value of u is zero.
In this case one may choose to replace it by a small number.

See, for example, Andrews et al. (1972).

See Chow (1964) for a development of this idea.



