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1. Introduction

Recently a spate of articles have appeared
concentrating upon the application of control theory to
econometric models and economic theory, e.g., [ 71, [13].
Perhaps the best known discrete formulation for a stochastic
system is that proposed in a series of articles by Chow [ 4],
(51, [ 6], [ 7], which concentrates upon the linear econo-

metric model with reduced form

Yt = éXt_l +g}_<_t +§.t (]—-l)

where vy, is a (pX1l) vector, x, a (rx1l) wvector of

control variables, A and C are non-stochastic matrices of

*I wish to thank both Gregory C. Chow for his perspicacious
comments on earlier drafts which greatly improved the final
version and the members of the Econometric Research Program
Seminar at Princeton. Research was supported by a National
Science Foundation Grant N.S.F. Grant No. GS 32003X and an
Australian National University Post-Doctoral Travelling
Fellowship. The Econometric Research Program provided a
pleasant and stimulating working environment as well as access
to the excellent typing of Betty Keminski.
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parameters and E(gt) =0, E(etet') =V, E(gtgé) o,
B s+t . Given a quadratic welfare function whose expectation
is to be maximized over T periods
T
W = E tfozé Ke Y (1.2)

with K

£ @ symmetric, positive semi-definite matrix of

weights reflecting the relative priorities of variables in

the decision maker's welfare function, Chow shows that the

optimal control rule obtained by maximizing (1.2) with respect

to (1.1) is X, = G Et—l(zt-l) where G can be

r

as the solution to the following set of equations:

— - 1 1
G, = (C'H . c) = C'H.A
— 1
:.E.i_t_l - I..St_l + (é + .c_:. gt) I_-I_t(‘é',-c_:. (_;t)
Hy = &

derived

(1.3a)
(1.3b)

(1.3¢)

which come from a dynamic programming solution that involves

3 03 . by — 1 . »
the maximization of Wt = Et—l(z tEtZt) with respect to x

. for a1l t = 1,...,T, where Et—l

denotes that the

=t
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expectation is conditional on information prevailing in
period t-l.l’2
A difficulty with Chow's approach is the lack of
an explicit treatment of autocorrelation in the disturbance
term. He suggests that the structural equations may be
adjusted with the Cochrane-Orcutt transformation if the dis-
turbances follow an autoregressive (A.R.) format but this
will increase p, i.e., the dimension of Ye o with the
increase being particularly Iarge if the fourth order pro-
cesses found by Wallis [ 16] to be present in a number of
quarterly models are encountered. Furthermore, no such
simple solution is available if there are moving average
(M.A.) errors entering the model; cases of this may be
found in [15] and [17]. Given the potential for discovery
of either form it seems apposite to extend Chow's framework
to encompass both disturbance formats with the stricture
that the dimension of the state variable Yy should be no

larger than p

lEquations (1.33) - (1.3c) may be derived from any of Chow's
articles by noting that there is no constant term in the
reduced form (1.1) and that there are no target levels
entering the welfare function, e.g., (l.3a) and (1.3b) cor-

respond to (9) and (1k) of [ 7] with by =a,_ =0
Section 5 extends the algorithm of this paper to the case
when b, , a_, $ 0 .

2

~ . , .
Although Et-lpzt-l) = Yi_.1 in Chow's papers this is not
SO in section 3.
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Rather than present separate derivations for each
type of disturbance it is useful to work with a representa-
tive that incorporates both, and this is defined in section
2. The general theory is then outlined in section 3 and
given specific content in section 4. Section 5 modifies the
resulting formulae to permit both a time-varying constant
term to appear in the equations and targets for each of the
variables, while section 6 discusses some complications
arising in the implementation of the algorithm. Finally,
section T provides an example based upon Klein's Model I

of the U.S. economy.

2. The Autocorrelation Representation

Attention will be focused upon the qth order AR.

u, = @l'ut_l+...+®q Ueg * St (2.1)
and MA
U o= e + 0 et_l+.,..+cI>q Ct-q (2.2)
processes, where Oiseoe,® are non-stochastic matrices of
d
parameters and e, has the properties E(et) =0,

E(e,el) =0 , E(eteé) =0 for t 4 s . Both (2.1) and (2.2)



may be written in the form

u = & v + ey (2.3)

v = B v + g (2-)"‘)

by use of the following definitions

& = [®1§'°"5@q] (AR and MA) (2.5)
vy = [ué;.o..sué_q+l] (AR) (2.6)
vy = [eés....seé_q+l] (mn) (2.7)

2, . . qq
B = 1o0...0 (AR) (2.8)
01 e}

B = [10...0 (MA) (2.9)
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€' - [ef 0...0] (AR and MA) .  (2.10)

The structure of B assumes the crucial role, in
section 4, of differentiating the control equations for each
disturbance type. As it can also be shown that, if the errors
were to follow an autoregressive-moving average structure
[2 1, (2.3) and (2.4) would be appropriate, there is scope
for a wider class of disturbances than considered explicitly

in this paper.

3. General Theorvy

The reduced form is assumed to be
Ye =B Yeq *CX +uy (5.1)

where u, is given in (2.3) and (2.4). 1If zé = [yé vi
the relations in (2.3), (2.4) and (3.1) may be summarized in

the system

= + X, + (3.2)

ot
o
1
[
ot

or

yt = ézt_l +g_}_{.t +§t . (3'5)
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As (3.3) and (1.1) are identical, the optimal
controls may be found from (1.3a) - (l.3c). Simplification
of these equations begins by partitioning Ky and H

conformably with Yy viz.

T %
. K, O , i HA H
_t - _t - b4
X 1 ¥ %
'o 0 _Pt HY

using the knowledge that H, 1is symmetric (this following

t
from (1.3b) and (1.%c)). Then the equivélent of (1.3a) is

_ -1~
[ * /.' " 1
(c'o) ¢ Hp ,c) (c' 0) H, Hf A ¢
. - - o
—t * * % * ¥
T E N |
Hy ' Hp HY' H{ O B
-l . 1%
= - (c'm, C) [c'H Az C! He ¢ + C'Hf B] (3.4)
. K
=[G ] . (3.5)

As evidenced by (3.4) it is unnecessary to evaluate

all elements of H in order to compute the control rule

t

contained in Gy >

these both appear in the first "row" of the partitioned matrix

i.e. only H_ and Hz are required. As

Et’ they are obtained by multiplying the first "row" of



(A +¢C gt)'gt by the matrix (A +CG,) . As (A +C G,)

is

s (3.6)

the first "row" of the product (A + C gt)'gt becomes

[D'HtZD'Hi] where D =A+CG_ . Performing the multipli-

cation with the matrix (A + C gt) yields
t . 1 * t 7%
[D Ht(A+CGt): DHt(<I>+CGt) + D'H{ B]

or, in the recursive format of (1.3b),

H _, = K3 +(Ad+cG ) H(B+CG) (3.7)
HY ; = (a+ce.) [H(o+CcGt) +HE B] (3.8)

The expressions for Gy from (3.4) and Hy in (3.7)

reveal that the optimal controller X, = Gy, 1+ Gf Et—l(vt—ﬁ

is composed of two terms; one accounting for the reduced form

dynamics (tht_l)and ore (GiE ) for the disturbance

t-1Ve-1
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dynamics. Given such a division it is not surprising to
find that the former is identical to the control rule found

in Chow's articles.

L. Special Theory

To illustrate the methodology only the qth order

AR is treated in detail. Using (2.5), (2.6) and (2.8) with
" g . 0] . ) * »

@ partitioning of Hf as [Hl,tl""ZHq,t] allows G in

(3.4) to be written as

-1 . . . . @ n@
— 1 1 t .
(c HtC) CHt[cbl:....:@q]+[C’Hl,t:....:c Hq,t] 1 q
10...0
01...0
0 0..10
(L.1)
2 Ay * L] L] B a . 1]
which, if G = [Gl,tl"’:Gq,t]’ simplifies to
-1 1 . ! s _ -
Gj,t = - (C'HtC) (C'Htfbj+c HLt®J+C Hj+l,t) | j=1,...,g-1
(4.2)
-1
= - t t '
Gy, t (c'H O™ (c H, 0 +CHl,t<I>q) . (L.3)

The recursive equation (3.8) may be decomposed by

substituting the following relations
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(o +cC G§)=(@1:...,@)+(c Gl’t ...... C Gq’t)
= +CG e + C
(0 +CGy 4! °q * € Sq,¢)
H, B [H : ] F <I>_
£ T M ereee e Hy gd 19 0
l O'. O
01l...0
0 0..10
_ |
- (Hl,t®1+He,t:H1,t®2+H5,t:"":H1,t‘I’q)
to yield
Hy ¢.q = (A+CGt) [Ht(®j+CGj,t)+Hl,t<I>j+Hj+l,t] j=1l,...,g-1
(k.Lh)
— 1
Hq’t_l = (A+CGt) [Ht(cbq + C Gq,t) + Hl’téq] (k.5)
Hj’t =0 j=1,...,q9 . (L.6)

Gathering the results from (3.L), (3.7), (3.9), (Lk.2),

(k.3), (b.4), (4.5) and (4.6) leaves the optimal control
th

equations for the g order AR as
- g
X, = tht-l + = Gj,t Et-l(ut—j) (k.7a)

j=1
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G, = - (C'Htc)"lc'HtA (4.7b)
Gy ¢ = - (C'HtC)-l(C'HtCIDj +C'Hl,t<I>j +C"Hj+l’t) j=1,...,(g-1)
(4.7¢)
Gq,t =~ (c'Htc)'1 (C'Ht®q+C'Hl’t®q) (L.7d)
Heoq = Keog (A+CGt)' Ht(A+C Gt) (L.7e)

Hj,t_l=(A+CGt)'[Ht(cI>j+CGj,t)+Hl <I>.+Hj+1,t] j=1,...,(g-1)

PR
(b.7£)
Hy ¢o1 = (A +C G ) [Ht(®q+c Gq,t) + Hl,tcbq) (k.79)
Hp = Ky, Hj,T =0 j=l,...,q . (Lk.7h)

The equations corresponding to (4.7) for the MA case
are identical except that Hl & is set equal to zero through-
2

out, e.g., (4.7c) would become

-1 . _
Gj,t = - (C'HtC) (c'Htcbj + c'Hj+l,t) j=1,...,(g-1)

Furthermore, in contrast to the AR case where
Et_l(vt_l) = Vi1 » 1i.e., the values Ug_ys+v-sUp_o contained

in Vi, @re completely known at t-1, the components of
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E,_q(ve_ ;) for an MA must be generated. To do this, set

Z and observe that (2.3) and (2.4) constitute a

t = Ve-1

state space representation from which Vel = Et—l(vt—l) =

Et_l(zt) = Et 5 1l.e., the one-step predictor of z_ , must

t
be extracted. From the theory underlying the Kalman-Bucy

A

filter [ 10 ] this is given by 2z, = B 2 + K( o z

t t-1 Uil

where K' = [1 O ...0], which results in a recursive

t_l))

relationship for the computation of Ee_1(vioq)

Three comments may be made about (L4.7) and its MA
version. Firstly, the absence of Hl,t for the MA case
stems from the structure of B, i.e., the first row is
zero for a MA but has ®j (3=1,...,q) as jth element
for an AR. Secondly, there is a simple structure to (4.7)
that allows for easy computer programming and enables the
same program to be utilized for either disturbance format --
a symmetry that has been commented upon and exploited else-
where in estimation [11]. Thirdly, the order of the matrices
in (4.7) is never higher than that characteristic of the
model if it had no autocorrelation; an original objective

fulfilled.
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5. Generalization of the Algorithm

It is now time to generalize the control problem to
allow for specific targets in the welfare function and a
constant term in the reduced form. There is little diffi-
culty in so doing. In the expanded problem it is necessary
to minimize

T

subject to Ye =B Y 1 tCE X +th +te .

When Y¢ is the augmented vector of section 3 the

. 1 1 T _ '
vectors a, and b, will be a = [atcﬂ » by = [bt(I

where the correspondence is obvious. The optimal controller

for (5.1) is now R = G Yy * 9, (Chow [ 7, eq. (8)1)

where
9. = - (¢'H.CV" c'(Bb, - by) (5.2)
hy ;1 = ky+(@+cg) (b, -Hb) (5.3)
ke = K2, (5.%4)
» ET = ET , (5.5)

and all other matrices are as in (1l.3a) - (1.3c) (eq. (5.3) is



1k,

(15) of [ 7 ]). Substituting hy = [hf ht'], g = [g]gt']

and the partitioned form of Et into (5.2) gives

£ | 4 He  HE <bt [ Bt
_ !

_ H.b, - h
= - (C'HtC)l (c'o) £t ¢
X -
Hy'by - bt
g. = - (C'H c)'l c'(H,b, - h,_) (5.6)
£ t £t t . )
Similarly, for (5.3),
ht—l_, lkt_l (A+CGt)‘ 0 ht tht
= + ' -
hy¥ ' 0 (e +cef)' B e e

As (5.6) reveals that only h, is required for the

control computations, the appropriate recursion is
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(5.6) and (5.7) are identical to the adjustment that
would be necessary if there were a constant term and/or
targets but no autocorrelation. The influence of these
equations on the controller is expressed by modifying (4.7a)

to

>

d

X o= Gy g+ jil Gj,t Et-l(ut-j) + g, (L.72)".

This completes the development of the optimal control
law for the linear-quadratic problem with autocorrelation,
and the benefits from viewing it in this framework may be

enumerated.

(i) The dimensionality of the problem has been retained
at p , i.e., it corresponds to control with no
autocorrelation.

(ii) By a suitable partitioning of the H, matrix,

it has emerged that not all elements of this
matrix need be computed to derive the requisite
law: a result that has obvious benefits in terms
of the reduced number of multiplications that
must be performed.

(iii) Because we have merely manipulated Chow's equations
it is possible to extend the current results to
other situations that he has examined. In parti-
cular, if A,C and ® are stochastic, one can
employ the equations in [ 8 ] in an exactly an-
alogous manner to the above to obtain the appropriate
simplifications.

An Appendix considers the derivation of the expected

welfare loss associated with the optimal control rule.
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6. Implementation of the Algorithm

Under this heading we consider the conversion of a
structural equation model (see [ 9 , p. 297] for nomen-

clature)

Iy(t) +B x(t) +0(t) =0 (6.1)

to a reduced form y(t) = I x(t) + v(t) with an error format

either of the type

v(t)

N V(t—l)+..n.+©q V(t-q) + E(t) (AR) (6.2)

or

v(t)

1l

E(t) + 2y E(t-l)+u...+®q E(t-q) (MB) (6.3)

where E(t) has zero mean, finite contemporaneous covariance
matrix §Q and no serial correlation. Once one of (6.2) or
(6.3) is arrived at control can proceed with the algorithm

described earlier.

(i) AR _case

Assume there is a qth order AR in the structure

i.e.,

ult) = Ay U(t-1)+....+Aq U(t-q) + EB(t) . (6.4)
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Pre-multiplying (6.4) by - r-1 gives

-l yle) - -t A U(t-1)-...-I * By Ult-q) - TYE®)  (6.5)
i.e.,
v(ﬁ) = 9 v(t-1)+...+q>q v(t-q) + E(t) (6.6)
where V(t) = - r-i u(t), Qj(t) -t AjI‘ and E(t) = - F_lﬁ(d.

Now (6.6) has the requisite structure.

(ii) MA__case

Assume there is a qth order MA in the structure,

Ult) = E(t) + A E(t-1)+...+Aq E(t-q) : (6.7)

Pre-multiplying (6.7) by . gives

1

- lye) = ot Ee) - Alﬁ(t-l)-...-r‘lAqﬁ(t-q) (6.8)

or
v(it)

it

E(t) + 27 E(t-l)+...+®q E(t-q) (6.9)

where V(t) = 1

r’l u(t), ¢j = I Ajr and E(t) = -r'lﬁca

Now (6.9) has the required format.
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The chosen example involves the anti-depression

experiments performed with Klein's modelIby Theil [ 14]. This

model has the following eight equations (where the nomen-

clature and definitions may be found in [9, p. 303]):

C. = blPt + b2Wt + b5Pt-l + bh

It = b5Pt + b6Pt-l + b7Kt—l + b8
wié = ‘ngt +byBy 1 + bA + by,
P, = Y - W,

Ey = Y + T, - W

Yo = CL + I - T, + G

K, = K 3 + I,

W, = W+ w*é*

Theil considers optimal policies for the years 1933-

1936 with the strategy being, generally speaking, to restore

the economy to the 1929 activity levels by 1936.

Expressed
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in numerical terms this impliés the ideal values given in
Table 1 (see [ 1), p. 79]1), except that the desired
level of wages for 1936 was computed by applying the 1929
ratio of wages to income to the target income level for

1936 -- wiﬁh the latter coming from substitution of the values
of Table 1 into Y

=C, + I_ - Ty + Gy -- and then, following

t t t

Theil, linearly interpolating values for 193%-5. The division
of Table 1 is into the targets of consumption (C) , invest-
ment (I) and total wage bill (W) and the instruments,

taxes (T), government expenditure (G) and the government

wage bill (wW**),

TABLE 1

Desired Values for Target Variables and Instruments

1933 193k 1935 1936
C 49.69 53.78 57.88 61.97
I -3.10 0.00 3.10 6.20
W 37.86 hi.h2 | 4L .98 48.53
W% 5.038 5.254 5.469 5.685
T 7.396 7.635 7.874 8.113

G 10.438 10.868 11.298 11.727
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Full Information Maximum likelihood estimates of

the parameters of Klein's Model I under the assumptions of
no autocorrelation and a first order moving average specifi-
cation are in Table 2. An algorithm, described in [3 ],
was used to generate estimates for the MA specification,
under the assumption that pre-period values of the distur-
bances were zero.5

With a welfare function giving equal weight to each
of the variables in Table 1 and zero to all others, the
four-period feedback control matrices, when there is first
order M.A. autocorrelation, are in Table 3. Table 4 contains
the expected values of the target and control variables for
1933-6 assuming that the optimal control rule is in use
(computed from equation (9) of the Appendix). A comparison
of Table 4k with the desired values of Table 1 reveals two

outstanding features:

(a) a consistent failure to attain the wage target.
(b) the strange pattern of investment behaviour,
probably induced by the negative effect of

current profits but positive effect of lagged
profits.

These points suggest that the welfare function would

need to be modified to give more weight to wages and

3M.y thanks to Ray Byron for providing his program.
Extensive tampering with it on my part makes it even more
urgent that the usual caveat on responsibility be noted.
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TABLE 2
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F.I.M.L. Estimates of Klein's Model I

by -0.232
b, 0.802
b5 0.386
bh 18.34

b5 -0.801
be¢ 1.052
b7 -0.148
bg 27.26

b9 0.234
blo 0.285
by 0.235
by, 5.79

MA(1)

MA(2)

MA(3)

Likelihood 1.782

-0.019
0.779
0.267

17.341

-0.51k
0.996

-0.182

30.162
0.29k
0.25h
0.201
3.979
0.22k
0.lok
0.132

0.537

investment if the control exercise was a serious one. However,

as Klein's Model I is generally treated as a mere workhorse

for experimentation, such a recomendation should not be taken

too seriously.

To provide some index of the gains from recognizing

autocorrelation patterns in the controller the expected welfare

loss was computed twice; once with G

*
t

set equal to zero and
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X X

Tt we' G Tt Wi ¢
19353 1934
P 1 0.0126 -0.,1lkhk7 -0.4526 0.0108 =-0.1kk9 -0.4510
By 3 -0.0919 -0.1015 =-0.loLk -0.0885 -0.101% -0.1058
Ke_1 -0.0885 -0.0076 0.1l273 -0.0685 -0.0071 0.1200
el(t-l) 0.0366 =-0.1029 -0.1326 0.0343 -0.1029 -0.1317
e, (t-1) -0.0032 =-0.0023 -0.0308 -0.0031 -0.0023 -0.0307
e3(t-l) -0.0478 -0.0527 -0.05L43 -0.0460 -0.0527 =-0.0550
e,(t-1) -0.0010 -0.0031 -0.0183 -0.0010 =-0.0031 -0.0183
e5(t-l) 0.01k0  0.0155 0.0160 0.0135  0.0155 0.0162
e8(t—l) -0.0285 0.0801 0.1033 -0.0267 0.0802 0.1026
constant -0.4326 12.421 28.312 L.2603 13.659 24.638
1935 1936

P 1 -0.0910 -0.1557 =-0.3790 -0.2k69 -0.2394  0.0188
E 1 -0.0760 -0.1002 -0.1138 -0.0704k -0.103L -0.1016
Ki 1 -0.0084 -0.0016 0.0815 0.0439  0.0183 -0.0l7l
el(t-l) 0.017k -0.1046 -0.1202 -0.0054 -0.1167 -0.0629
eg(t-l) -0.0117 -0.00%2 -0.0246 -0.0251 -0.0105 0.0098
e5(t-1) -0.0395 =-0.0521 -0.0592 -0.0366 ~-0.0537 -0.0528
e, (t-1) -0.0057 =-0.0037 -0.0lLk9 -0.0130 -0.0076  0.0038
e5(t—l) 0.1161 0.0153 0.01l7hk 0.0108 0.0158 0.0155
e8(t—l) -0.1353 0.0815 0.0936 0.00k2 0.0909 0.0490
constant 15.851 14 .2kl 13.067 10.598 14,450 22.587
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TABLE k4

Expected Values of the Target

and Endogenous Variables Under Control

1933 193k 1935 1936
c L7.75 53.05 58.20 61.93
I -7.854 -1.231 2.808 5.024
W 31.28 36.39 h1l.62 Ly .69
Wx* h.981 h.736 4.518 5.578
T 5.991 6.519 7.588 9.0k9
G 17.55 15.78 1k .49 12.35

once with Gt equal to the values of Table 3. The losses
were 385.13 and 383.98 respectively, signifying only a small
advantage to the employment of the autocorrelation-modified

controller -- a not unexpected result given the small estimated

M.A. parameters.

8. Conclusion

A method has been described for the optimal control
of linear econometric models with a gquadratic performance
criterion when there is autocorrelation of either the auto-
regressive or moving average type. By augmenting the state
vector it was possible to convert the system to one with noauto-
correlation and hence to apply some well-known theorems. The
advantage of such a methodology is its potential for application

to a wider array of models than considered explicitly in this paper.
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APPENDIX

Computation of the Expected Welfare Loss Under Control

Given that a control rule has been established, it is of
interest to compute the expected welfare loss under such a rule.
This is most easily illustrated in the A.R. case where the

task is to evaluate

T
2 - t -
B2 (y, - 3.) K(yg-ay) (1)
t=1
subject to
Y. = By, +Cx, + b+ 0V, _,+ e, (2)
v, = BV, 1+ e §5)
oo
and E(eteé) =Q , E(eteé) = | o' o = R (since from
(2.4) and (2.5) €y = [et{O]).

(1) can be re-written as

MH

tr Kt[E(ytyé) 2 3, E(yé) + ataé]

t=1
The control rule is
_ *
e = G Yeop * G Vet (W)

which leaves the equation for Ye s under control, as

*
Ye = (A-+CGt)yt_l-+(CGt-+®)vt_l-+(Cgt-+bt)-+et
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or
Ye = Duye_q +Fve g+ dt e . (5)
- ' * t *¥% = !
If v, = E(ytyt), vi = E(vtyt) > V¥ E(Vtvt)’
P, = E(yt) and Pz = E(Vt) , the expected welfare loss is
.T
2

- 1 1
o1 tr Kt[Vt Zat Pt + atat]

where Vt and Pt are the solutions of

- 1 X ! ¥ 1 ! ** '
Vt Dtvt-l Dt + 2Ft Vt-lDt + 2FtPt_ldt + 2DtPt_ldt + Ftvt-l Ft‘ +

dtdé + 0 (6)
Ve = BVE | Dl + BVFF Fl o+ BRYA; + () (7)
vit = BVEY B' + R (8)
Py = DPep *F PRIy +d (9)
pf = B P, - (10)

Each of these equations emerges by utilizing (3) and (5)
to get the various expectations, eg. P, is formed by taking
the expectation of (5). Unfortunately, the M.A. situation is

more complex since the control rule is now linear in the

expected value of v(t-1) and not v(t-1), so that (5) is not
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strictly appropriate, i.e., it should be y,. = Dy, 5 + CG. Gt-1+

+ dt + e, where Vv = Et-l(vt-l)' When

t-1 t t-1

”~
=V +

-1 = Ve-1 T Ve-1
d, + e, . From the properties of the Kalman-Bucy filter [ 9 ]

it becomes Ye = Dtyt-l + Ftvt—l + CG? Veq

~

t
E(v ) = 0 so that (9) and (10) hold, but the variance of

t-1

gt-l is not zero and therefore (6) - (8) do not.

Can the use of (6) - (10) be justified for a M.A.? The
answer is in the affirmative if e(0),...,e(-g+l) are known
with certainty as e(t) will then be computed exactly from
e(t) = u(t) - j%léj e(t-j) for any t 1in the control period.
Because estimates of e(0),...,e(-g+l),A, ® and C are likely
to be obtained jointly by F.I.M.L. estimation, it seems logical
to treat all estimates in the same fashion. In particular, if
A, & and C are regarded as non-stochastic, treating the esti-
mated initial conditions as the correct values would seem
justified. However, if the stochastic nature of A, B and C
is recognized -- as in [ 8] -- new versions of (6)- (10) will

need to be derived.
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