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1. Introduction

In the study of optimal economic policy using a linear
econometric model and a gquadratic welfare function, the parameters
of the model are often assumed to be known for certain. Under
this assumption, the solution in the form of an optimel feedback
control eqgquation can be easily obtained. Although one recognizes
that in a2 realistic situation, the parameters of an econometric
model are never known for certain, he might still apply the above
solution, using a set of estimates of the parameters as if they
were the true values, if he believes thatit is a good approximation
to optimal policy. Such a procedure is well known to be 2
certainty equivalence solution.

In a recent paper, Chow (1973p), I have presented a method
of obtaining the optimal feedback control equations and the
associated welfare costs under the assumptions that the uncertainty
in the parameters is expressed in the posterior density computed
by Bayesian methods using data available up to the time of de-
cision and that this posterior density shall not be revised in the
future for the derivation of the current policy. Because future
learning about the model is not explicitly taken into account in
the design of the current policy, the above method is not truly

optimal. However, if the sample period is long as compared with
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the planning period, this method will probably be close to being
optimal. Furthermore, when this solution is compared with the
certainty equivalence solution in order to study the effects of
uncertainty on the optimel policy and the associated expected
weifare cost, it will provide upper limits to the impact of un-
certainty. Presumably, the presence of uncertainty will decrease
the value of the optimal policy, and the possibility for learning
will make the truly optimal policy superior to the above policy,
thus increasing the value of control.

The purpose of this paper is to present a solution to
optimal control when the possibility of learning is taken into
account in the design of the current policy. In the control
literature, this problem is often referred to as the dual control
problem because control is to serve the dual purpose of improving
the system performance and of learning more about the system for
the sake of future control. Numerous approximate solutions have
been suggested.l The solution of this paper appears to be the
simplest in conception, and yet it incorporates all theoretical
elements in the calculations. It accepts no compromise on any
theoretical relationships, such as the assumption that the expec-
tation of a function is the function of the expectation, or that
the expectation of a minimum is the minimum of expectation, or
that 2 random variable equals its mean value, or that a wvariable

in period t+l1 equals its value in period t , or that learning



L]

. ¥

can take place for no more than two periods ahead. It contains

a logical structure which brings out clearly the effect of learning
on the optimization process and enables the effect to be measured
numerically. It provides useful contrasts to the certainty equiva-
lence solution and the solution for unknown parameters without
learning, being a natural generalization of these two solutions.

We will set up the problem and describe the method of
solution in section 2. This method will be compared in section 3
with the two other methods just mentioned, both in conceptual
terms and in terms of computations. Two simpler, modified versions
of the method will also be briefly described. They are simpler to

compute, but they still take learning partially into account.

- Some numerical results using a simple one-equation model will be

presented in section 4, to bring out the effects of learning on

the optimal control solution. This paper is confined mainly to
presenting the method and providing some illustrative calculations.
A comprehensive study of the effect of learning on optimal policies
using the method of thisg pPaper remains to be undertaken.

From the viewpoint of economics in general, other than the
study of quantitative economic policy wusing econometric models,
the content o f this paper may also be relevant., Maximization is
in the heart of economics. Most of economic theory assumes maxi-
mization to take place in a static situation under certainty. When

generalizations are made in a multiperiod, dynamic situation under



uncertainty, the present paper shows the nature and complexity

of the solution. 1Its results are perhaps useful to the economist
who wishes to reflect on the applicability of maximizing behavior
to dynamic and stochastic economics, and to investigate into the
form that a dynamic theory should take and the way it can be

applied to the study of actual behavior.

2. Description of the Method

Assume a linear econometric model of the form

(2.1) v

Ve A yt-l +Cx_ +u,_ .

t t

Here Yy is a vector consisting of current dependent variables,
lagged dependent variables (to convert an originally higher~order
system into a first order system), current control variables
(which are simply equal to the right-hand-side control variables
X. » With the corresponding row of A equal to 0), and possibly
lagged control variables (which are explained by identities).2

A and C are matrices with unknown elements, except for the rows
corresponding to identities in the system. u, is a random vector
(having zero elements corresponding to the identities) with zero
mean and unknown covariance matrix & » and is independent of ug

for t#s. There may be exogenous variables z, in the system, with



unknown coefficients B s but we have Omitted Bz on the right-

t
hand side of (2.1) to simplify the algebra in the following.3
The welfare cost for the planning period from 1 to T is

assumed to be

( ) 1 T T - T
2.2 W =5 Z ylK v, + Z Z y!K Y. + Zylk_ + d
2 7ttt £=1 gep © E2878 T D7t
where K =K! ., k and d ares known constants. The function
t,s s,t t

(2.2) is more general than what can be found in the control litera-

ture which usually assumes that K = 0 for t#s , or that

t,s
welfare cost takes the form of a sum E Wt(yt)' The standard
treatment using dynamic programming makes this special assumption.
We will treat the more general welfare cost function in this paper.
The problem is to choose XyseensXn sequentially to
minimize the expected welfare cost as of the beginning of period 1.
Since the policy variables for later periods need not be chosen
until the outcomes of earlier decisions are available, the problem
should be solved by first minimizing out the control variables for
the later periods, given the outcomes of earlier decisions, angd
proceeding successively backward in time until the control variable
X for the first period is to be chosen. The logical structure
of the solution is thus, Given a welfare cost function W = WGH;uvYTL
we first eliminate x

T
of W given all the data up to T-1, then eliminate Xp.p by

by minimizing the conditional expectation



minimizing the conditional expectation of the .above minimum

given all the data up to T-2 , and so forth until we minimize,

with respect to X, @ conditional expectation given the data

at the end of time O

(2.3) Min (Eo ¢+ (Min E

" T-B(Min Bpp (Min Ep (W )))eee)

1 R ) a1 Eep

To carry out the first minimization with regpect to x

T
we write
" l T=-1 T
(2.4) B W = [ T Y + Y Zlﬂ Yg + hg Ty3
1 T-1 T=-1 7 T-l
+ = y y z Z ylH Y. + y'h -+d
2t ettt 2 S Ve % TR
= Bpay W + Wy

where the function W has been decomposed into two parts, W

T
and WNT - BAll the terms involving Yp » Wwhich can be influenced
by Xp » 2are included in WT . The terms in WNT are not
T _ .. T _
affected by Xp ¢ We have let Kt,s = Ht,s s kt = ht and d-—dT
to facilitate generalization in a future step (following equation
(2.9) below). To minimize ET-lWT’ we substitute AyT_l +

CXT + ug for Yp in WT and take expectation:
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1 T
(2.5) Ep_q Wy = ET-l[E(AYT-l'*CXT + ug) HT’T(AYT_l-PCxT-kuT)

+ (A + CxX, + u,)! (TEIHT Yo+ b))l
YT"l T uT s=1 T,s8"s T

l

T
1 :
= 5 Ypoy(Bp_y2'Hy ,® *2Eqp A'HT 1-1¥p.1 * 5%p(Ep_1C'Hy 0Oy
T T T2 r h T
I +h
+ xplEn HT,TA'+C'HT,T-QYT-1+(ET-f:)g=1HT,sYs T
' . + hT) + E u! HT u
*ovpy(Bp A 2 oEL oy o+ by T-1 °r ", Yr -

When taking expectations, we have adopted the Baysian view that
the matrices A and C hsve @ joint posterior density function
at the end of T-1 » @nd have assumed that U is distributed
independently of them.

Minimization of (2,5) by differentiation with respect to
Xm yields

T
T,7-1)Yr-1

T-2
+(ET lc)( leT sY th )]

- T -1 H
(2.6) xT:-(ETl C'H c) ]KOHLTA+CW

(2.6) is a feedback control equation, determining the optimal
policy for period T in terms of observations yl,yg,...,yT 1°
These observations affect the posterior dentisy of A and C and

thus the expectations involving them. Substituting the solution



(2.6) for x, in (2.5) gives

T

. 1 T T
(2.7) 1\/}1{1n Ep.Wp = 2 yT',_l(ET_lArHT,TA + 2 Bp )A'Hp o0 )yg g
T

T=2

- Lp T T! , o7

2¥p.g By @1Hy oC tHp g1@ ¥y HY b )E Oy CHY I
(B, ,(c'HE Aa+cmf ) + (& cr)(T;:2 T + hI)]

7-1'C By b T, T-Y¥r-1 * Bpo €U0 B By o Yo+ hyg

T=-2 1 T

T e 1
Y1 (Bp 13" )( ZlﬂT s¥s * Bp) + 5 By g Up Hp g Up

T
= 2YT 1 Eq. A'HTTA*’EE*r-lA'Hm-l By C‘“HTM)(ET 1¢'H C)

T
ET-l(c'HT,TA * C'HT,T-l)] Yooy

T-2
T ol
* ¥py [(Ep y2t) - Ep .y @Hy gC+Hy o 0@y C TTC) &0 Zlﬂ'rsy+h )

T-2

"3 2 v e nn ) (B Oy ot N, e 5 2 By ovyth)+ Ry jub Loy

The essense of the method of this paper is to approximate
(2.7) by a quadratic function in Yp.3s¥papse++sYy . This qua-

dratic function can then be combined with Wep in (2.4) to yield

Min ET_1W, which will be quadratic in yT-l’YT-e""’yl « One

Xq



then proceeds to minimize ET_Q(MinEﬁ,_fN) with respect to
Ap
¥p.p » following the steps from (2. L) on, with T-1 replac1ng T

in all the derivations. To be specific, let
T-1 P

1
5 ZyiQ .y o+
2 .27t P, tve

71 T T-1 | T
b Tyl o Y.+ Z Vv, q, +r,.
t=1 get t Tt,sts £=1 t=t T

(2.8) Min Ep Wy =
X

Discussion of the choice of this quadratic approximation will be
postponed until the next paragraph. Combining the right-hand side

of (2.8) with w in (2.4), one gets

NT
T-1 T-1 T-1
. 1 ¢ oT-1 P gL 1 1 T-1
(2.9) ”;I{lTn Bp.gW = 2.2 ¥e He e Ve oot oo Ye B, s Vs TR %D Tt dpy,
where
T-1 T T . C
Hi’j = Iﬁ,j + Qi)j (i=1,...,T-1; j<i)
(2.10)
T-1 T
dp.y = dp + oo

Once (2.9) is Obtained, it can be treated in the same way as (2.4)
with T replacing T-1. Thus (2.9) will be decomposed into two

parts, and W N( - l), the former involving Ymp.1 while

Wpay
the latter does not. T-2 T-l will then be minimized with respect
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to Xpnoq s yielding results analogous to (2.5) and (2.7). The

analog of (2.7), namely Min L WT-l’ will be approximated

¥pa1
. . . —_ T-1 T-1
by a quadratic function with coefficients Q 5 dp and ooy *
)
This quadratic function will be combined with WN(T~1) to yield

Min ET_2(Min ET_lW) as in (2.9)., The coefficients of the last
X X

T-1 t
quadratic function are obtained by recursion formulas (2,10) with
T-1 replacing T . Now one is back to minimizing the expectation
of 2 quadratic function in the form of (2.4)., The process will

continue until one minimizes, with respect to x the conditionsal

l 2
expectation of a quadratic function in Yy, hamely,

P | 1
2 Y1 By 1Y)+ vipy .

To return to the problem of finding a quadratic approximation
of (2.7), it is necessary to choose a tentative path (yg,“.,yg_l)
around which a second-order Taylor expansion of (2.7) will be
numerically computed. Any good approximation to the solution of
the optimal control problem of this paper can be used for this
burpose. In particular, the solution of s previous paper (Chow,
1973p) €30 be used. 1In thst paper, I have employed the method of
solution as described above, except that all conditional expec~-
tations Et are treated as EO « Thus the possibility of learning

(revising the posterior density of A and C) is ignored in

deriving the optimal policy for Xy + When this aspproximation is
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taken, and under the assumption that K in the welfare

t,s

function (2.2) is zero for tfs, (2.6) and (2.7) will be reduced

respectively to (for 1<t < T)

(2.11)

(where

(2.12)

. _ - -l 1
X, = (EOC'HtC) [(EOC'HtA)yt_l + (EOC )ht]
= gt -t
H = Ht,t and ht = ht) and
: i 3 : “lig.co
l"}l{ln E, W =5 y{:_l[EoA'HtA - (EOA'HtC)(EOC HtC) . (EOC tha)]yt_l
t

+yi_[EA! -(EOA'Htc)(}z:oc'ﬂtc)"l (EOC‘)]ht

J:. -1 .].-. t
-eh;:(EoC)(EOC‘HtC) (EOC')ht + 5 ByufHu .

(2.12) is truly a quadratic function of Ye.1 » 2nd need not be

approximated. Thus, the coefficients of the gquadratic function

(2.8) will be reduced to

(2.13)

t

_ -1
Q. _q = Qt_l’t_l = EOA'HtA-(EOA'HtQ(EOC‘HtQ E,C'HAB)

t -1
qt_1==[EOA'-(EOA'HtC)(EOC'HtC) (E,c')In

ey =
r, = - h!'(E C)(E c'H c)'l (E_C')h +E2 B wH U
t 2 "t o (o} t o t 2 ottt
t t ; Sy
Qi,j = 0 1 qi = 0O (1. < t"l? :]4:].)
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The joint density of A and C » based on data up toany time t s
can ke obtained by Bayesian method. The first two moments of
this density, which can be used to compute the expectations
required in (2.13), are explicitly given in Chow (l973b)ﬁ One

then uses (2.13) together with (2.10) to compute H h

e 9 By
"N
and dt backward in time, t = T-1, T-2,...,1. Finally, x
~

is obtained by a formula analogous to (2.11). This x

1
, will
be employed to generate Yy » using the model (2.1), with EA
and E,C replacing A and C respectively and preferably but
not necessarily including the stochastic disturbance u; . ﬁ%
will be obtained from Y; @°nd the corresponding optimal control
equation, and so forth. Thus a tentative path (yi,...,yg_l)
can be obtained for the ‘quadratic approximation of (2.7). Once

the method described in this section is applied to obtain a

A

better #1 » ©One can use it to generate a second tentative path,

possibly improving upon the previous feedback control eguations
in the calculations by stochastic simulations of an open=-loop
policy. Better §l and better feedback control equations could

always be used again to find better tentative paths, and vice-versa.

3. Comparison with Other Methods

In this section, the method of section 2 will be compared

with two simpler, and less hearly optimal, methods in terms of
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the structure of the solution. The comparison will provide
interesting interpretations of the various calculations required
in obtaining the solution. The methods chosen for comparison
are certainly equivalence and stochastic control for unknown
parameters without learning. The first employs the crude assump-
tion that the unknown matrices A and C equal their point
estimates A and € obtained from data up to time O . The
second has been described at the end of section 2 as a means of
finding a tentative path to perform the quadratic approximation
of (2.7). It takes into account the uncertainty of A and C as
of the end of period O » but does not anticipate future learning
about them in the design of an optimal policy for the current
pericd. One could very well revise his posterior density of A
and C passively after period 1, .but, according to the second
method, he does not incorporate such revision in deriving the
policy for period 1. The third method, that of the present paper,
does take into account possible future learning in finding the
current optimal policy. 1In the minimization at each future stage,
the conditional expectation of the welfare 1loss utilizes the
posterior density of A and C as of the time of the future
decision, and not just at time O as in the second method.

It would be convenient to begin with the first method,
that of certainty equivalence, assuming K in the welfare

t,s
function (2.2) to be zero for t+s . The solution is a simple
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modificatidn of the second method, as given by equation (2,10),
(2.11), (2.12) ana (2.13). If the unknown parameters A and C
are reduced to A and C » their point estimates (or the means
of their posterior density) as of time O » We simply replace the
expectations of functions of A and C by the same functions of

A and € . Thus, following (2.11) to (2.13) the optimal control
for each period is given by the feedback equation

- Gt sy-1 Ct i\ Gt
(3.1) X = - (CTHC)TTHE B Ry, , +C h.]

and the minimum welfare cost from period t on is given by

i - = r + X
(5.2) NP Bere T 5 Vilp Qo Yeop f Y9yt T,
t

where

= ot S E'HA - Rvm &(Em Ayl g
(3.3) Q. = Qt_l’t_l = A'HA - A'H C(C'HE)H(CH,A)
_ = =y fmien w1 =
dQp.y = 9g.; = &' - (A'Htc)(C‘ch) C' h,
Ly scme)l a 1
re = -3 hé C(C'HtC) C'h, + > Eg ul H u,

By (2.10), Hi, he and d_.  are determined by the difference

equations
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(3.4) He = HE,t = HE?% ¥ szi = K +Q
hy = h:,t - htjt * qtjé = Kg +a
d¢ = el ¥ Tes .
In (3.4), we have utilized
() L - G ek e x,
e S e hy = k,

since, by (2.13), sz = 0 and qz = 0 for i<t-~1 .

For each period t , the optimal policy X minimizes the

expected value of a quadratic function in Yy » with H and ht

t
as coefficients. By (3.4), this quadratic function can be decom-

posed into two parts:
L 1

The first part is the contribution of Ye to welfare loss as
Y,y @appears directly in the welfare function. The second part is
the minimum future welfare cost due to Yt+l’yt+2""’yT assuming

the future Fg412 o+ s%p to be optimally chosen; it is also a
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quadratic function of the initial condition Y. on which future
decisions will have to be built. This decomposition shows the
relative importance of setting Yy for direct contribution to
welfare and for foundationbuilding for the future. The optimal

X, is chosen to minimize the sum of the expectations orf these two
quadratic functions in Yy » one for current benefits and the
other for future benefits.

The same decomposition and interpretation apply to the
second method. The only difference is that in computing the qua-
dratic function for optimal future cost, different coefficients
Qg and g, will be used. They are given by (2.13) rather than
(3.3). When uncertainty in A and C as of time O is allowed
for, the minimum future welfare cost will have to be computed
differently from the case of certasin A and C . The difference
between these two functions is explained in detail in Chow (l975b).
For the present purpose, the comparison of Qt and q, @as between
(2.13) and (3.3) shows how the above uncertainty affects the

weights given to the preparation for future optimization in the

determination of the current policy.

The possibility of learning as treated in this paper does
not invalidate the present-future decomposition of the quadratic
function of Y. Wwhose expected value is to be minimized by X, .
However, it makes the future component more complicated. When

learning is absent, the only concern for Ye from the future point



=

17

of view is thaﬁ it affects the minimum expected future cost from
t+l on; it does not affect minimum expected cost from t+2 on
because, the model (2.1) being first-order, the latter is a
function of yt+i””alohé"and not of y,. ?  When learning is
present, Y, 2ffects the optimal expected cummulative costs from
all future periods on, for equation (2.10) implies
(3.7) He = Ht,t = Htjtl: * Q:i = Ke gt Qtjil: * <Q§f§+---*@§,e
and similarly for h, . The terms in parentheses above show
respectively the effects of Y. on the optimal expected future
costs from t+2 on, from t+3 on, etc., These terms are treated
as zero by the first two methods. They are actually non-zero
because, in spite of the first order system, Ye affects not only
Yt+1 but the planner's conceptions of all future y's through
its influence on his posterior densities of A and C 1in all

t+1

future periods. Note that Qt £ = Qt
2

the corresponding estimates given by the first two methods as it

in (3.7) also differs from

incorporates the effect of Yy on the posterior density of A

and C in t+l1 while the others do not.

T .
Thus by comparing the Q. of method two with Z Qt &
i=t+1 —2

of method three, one can measure the effect of learning on the
weight given to the future~-component of the quadratic function

of Yi whose expectation is to be miﬁfﬁized. Presumably, when



18

learning is allowed for, the future-component will receive more
weight, as the above sum will measure. Therefore, besides
providing a solution, the method of this paper gives an explicit
measure of the effect of learning on the quadratic function to
be minimized in each period. The comparison of this function
for the three methods will give more information about the
impact of learning than » simple comparison of the optimal value
for e o

The above decomposition analysis can also be applied to
the evaluation of other suboptimal methods. I will briefly
mention two other methods which also + incorporate some element
of learning. One is a simplified version of method three,
Obtained by omitting all Qz,j for ifj in the quadratic
approximation of optimal expected future cost from period t on
and otherwise following method three. It will also compute the
sum i§t+lgé;t which can be compared with the corresponding
sum of method three to ascertain what is missing in the simpli-
fication. Second, as it has been suggested in the literature,
oneé may choose to account for learning for only M < (T-t) future
periods.6 This simplification can be implemented in the framework
of this paper by performing the minimizations backward in time
up to t+M by method two, thus Obtaining H§+? and h§+? ,» and

s 2

then using the method of this paper to complete the remaining

t+M
minimizations. It will yield a partial sum £ qtf for
T i=t+1 o %
comparison with the sum I ot of method three.

i=t+1 £t
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L., Some Numericsl Results

In order to illustrate the use of the method of this paper
and to measure the effect of learning on the decomposition between
immediate and future welfare and on the optimal control policy,
a8 simple model with a scalar dependent variable y{ is used. The
explanatory variables are Y@-l and a scalar control variable Xy -
To include both v and x in a vector Y of dependent

t
variables, we write

(k.1) Yi = + X, +

Or, in the notation of (2.1),

(k.2) Ye = B Yey +Cx_+u .

Let n observations on the system (4.1) be available by
the end of time O : assume Ye and its explanatory variables to
have been observed for t = - n+l,...,0 . Let the prior density
of the parameters a and ¢ be diffuse as of the beginning of
period -n+1.7 Using the results of Chow (1973}>Lpne can evaluate
the expectations required in the cruciasl function (2.7) as follows.

Let gT-l and gT—l denote respectively the least squares



estimates of a3 and c¢ using data from period

T-1

20

-n+l to period

s and let Sp.q denote the sum of squared residuals of Ve

from the least-squares fitted regression, also from -n+l to T-1

Let h,. be the i=j
1]

superscript and subscripts of H in equation (2.7).

exXpectations in (2.7) are

(4.3) Bp-1® = 3py 7 Epge = oy
and _
hy; ET_la2 0
1 °
(b.h) Eq.qA'HA ;
o) 0
N
1] — o
ET-lC HA = [hll Ep,_joc + h12 3p_1 o] :
2 A
BpyC'HC = hy; E;_jc” + 2 n, Cp.p t o bop
where
- 1 7] o1
2 Ag ~ A *2
Ep.3® Ep_y3c ®p.1 2p-o3Spoy Z ¥Yig
Sp.q |~n+l
(k.5) = + E Xl 3
(n+T-1) -k -1
2 " ”~
E,_y2c E _1C 8m_1Cm_ 2 Zy¥ %
T-1 T-1 J T-1571 e o It oY 1

element of the matrix H , omitting the

The required

T-1
L yF.X,
cnigiti
T-1
z xi
-n+1
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Equations (4.3), (4.%) and (k.5) are sufficient to specify the
function (2.7) and, with t replacing T , the minimum expected

future loss from any period t onward. Note that the last term

T T
t - 1
p-1%p Bp pUp = 8 Hp p Eqy Uplg

is not to be influenced by the choice of X and can therefore

of (2.7) E H though unknown,

be regarded as a constant for the purpose of deriving the optimal-
policy. In the computations below, the sample covariance matrix
of the regression residuals using the n available okservations

is used to represent E (t=1,...,T=1) in each of the

!
-1 Y%
three methods. Although this calculation is only approximate,

it will not affect the.comparisons between the methods.

In the following example, v¥ of equation (Lk.1l) is
represented by annual gross national product in billions of

current dollars, and x is represented by annual government

t
purchases of goods and services in billions of current dollars.
Annual observations of these variables from 1953 to 1972 consti-
tute the sample of 20 observations available before planning
begins. The equgtion explaining GNP by lagged GNP and govern-

ment expenditures G can be interpreted as a reduced form

equation from a structure consisting of an identity GNP

C+I+aG,
a consumption function explaining C by GNP and GNP;l , an

investment function explaining I by GNP and GNP _ although

l’
one may not wish to take this structure too seriously. For what-

ever it is worth, the regression using the 20 annual observations
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is (with standard errors in parentheses)8

(k,6) ﬁ_ = .890 yig * 779 X, RS = .998
A (.072) (.311) s = 159.1
DW = 2.109

Assume that, at the beginning of period 1 (1973), one
utilizes the sample data and the model of equation (L4.6) to
steer GNP and government expenditures toward their target paths
by applying cne of the three optimal cohtrol policies. The target
paths specify a 6% annual growth rate for GNP from its 1972 figure,
and a 5% annual growth rate for government expenditures from its
1972 figure. The Kt,t matrix is assumed to be a 2 x 2 iden-
tity matrix for all t, assigning equal cost to the sguared
deviation of each of the two variables from its target. The
planning horizon T is assumed to be 0 years. The regression
(4.6) shows that the coefficient of the control varisble x_ is
significant at not much better than 5%, There seems to be about
the right amount of uncertainty in this model to make the example
interesting. If the standard errors of the coefficients were
much smaller, one might not be able to -observe the effects of
uncertainty and of leafning. If they were much larger, the model
would probably not be taken seriously for planning purpose. When
method III (the method of this paper) is applied, the result of
the certainty equivalence solution (method I) is used to provide

the tentative path, including the random residual in the equation,

although the result £ method II could very well have been used
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instead. Table 1 presents some results from applying the
three methods of optimal control to this example.

Following the present~future decomposition of the
quadratic function of Y whose expectation is to be minimized

at each stage, as it was discussed in section 3, one observes

t
He ¢

is reaching =& steady-state value as t decreases from 10 to 1.

that, for method I (certainty equivalence), the matrix

For period Hlo is simpl 10 the 2x2 identity
10, Hig 10 P K010

matrix, since there will be no future to speak of after period
10. Then some more weight is added to the square of the yz
varisble as t decreases, .or as the future becomes longer in
duration, until the future component becomes .65L. The con-
ditions under which the matrix difference equations (3.3) and
(3.4) for Ht = Ht,t will have a steady state solution have
been discussed in Chow (1972a) and Chow (1973c) and will not

be repeated here. The present example illustrates a steady-

t
t,t *

in the future component of the quadratic func-

state solution for H There is no weight given to the

square of X,

tion because all future y's from t+l1 on will not be

dependent on X, (y?é_,_l is a function of yt and x but

t+1’
not of xt) .

It was pointed out in Chow (1973b) that, in the case of
control under uncertainty without learning, the matrix

Q.1 = QE-l,t—l of (2.13), namely the matrix of the quadratic



TABLE 1

COMPARING THREE CONTROL METHODS :

2l

I) Certainty Equivalence
II) Unknown Parameters Without Learning
III) Unknown Parameters With Learning
Method
Resulé\ I 1I -
. o _ _ _ -
Hlo,lo 1 0 1 0 Il 0 J ;
0 1 0 1 0 i
3 G1o ([-.4317 o] [-3898 0] [-.4115 0 ]
930 1261 1181 1222
: . “ ¥
L X1, 417.1 é 419.3 k17.5 E
;} H§ 5 41.u955 0 E 1.5381 o{ 1.7290 -.1162:{
| ’ . ¥ s
1 - 0 1 [: _ 0 l_l :.1162 1.0132 ’A
r Gg [-.5434 o] [-.4896 0] [-.5k01 o ]
9 1400 C 1302 1395
X ko2.2 | 403.2 403.5
-1}-.,_.___,__;____~___5__; - : - - ké
HS 5 -] 1. 65k o] : |1.8043 o} |2.3316 —.27h5 '
p 0 1 ® o 1 | =.2745 1.0250 ;
. §
o 0-.5726 0] [ [-.5266 0] | [-.6206 0 ]
9 1155 ¢ 1087 1225 ?
% i 1.2 i 311.% 310.6 d
1 g xgl I 2
: 1 1= I -
“, Hy 4 j1.6540 0 1.8063 0] h.k859 ~-1.5685
‘ o 1 g |0 l_‘ ]_-1.5685 2.2303
1 Gy Eq I
| [-.5727 0] s [-.5269 0] [-.5351 o ]
i Xy 254 ,3 i 253.7 256.8
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function giving the minimum expected future cost (2.12) from

period t on; can be interpreted as the covariance matrix of

residuals in the weighted regression of A on C . Similarly,

in the certainty equivalence solution, the matrix Qt-l of

(3.3) can be interpreted as the covariance matrix of residuals

in the weighted regression of B on C . Insofer as A and C
can be viewed as A and C plus random errors, the former co-

variance matrix may be expected, under not unusual circumstances,
to be not smaller than the latter matrix, in the sense that their

difference is a positive semidefinite matrix. The present

t-1 }
t-1 t-1,t~1

Kt-l,t-l = Ht-l -1 having a larger leading term for method II

example illustrates this point, the matrix Q = H
than for method I. To put it in another way, the introduction

Oof uncertainty increases the weight for the future component of the
quadratic function to be minimized. When learning is introduced,
one finds the weight given to the future component further in-
creased, as the Hz,t matrices for Method III given in Table 1 shew.
One should care more about the future if he is allowed to learn.

Turning now to the feedback control equations

Xy = Gt Yeoqp *+ Ie » (where Y1 consists of y%_l and Xt—l)
one notices in Table 1 that the coefficient of y§~l (or lagged

GNP) is smaller in absolute value for method II than for method I.
This shows that when uncertainty exists, one tends to respond

less to changing circumstances. 2 more thorough discussion of
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this point can be found in Chow (1973b), in terms of the size of
the coefficients Gt in the weighted regression of A on C, as
compared with the coefficients in the regression of A on C
(variables without errors). The coefficient of vi_q by method
I1I is larger in absolute value than by method II, suggesting that,
if learning is allowed, it may pay to pursue a more active policy.
An active policy is also indicated by the intercept Iy in the
control equation. The role of g can be seen by considering the
simpler model y¥ = ¢ x_ + u_ . The optimal setting (the inter-
cept) for the one-period problem of minimizing Eo(yi - 2)2 sy 2
being the target, is §1 = (Eoc) z/ [var c + (Eoc)e] . Here more
uncertainty as measured by a larger var ¢ will tend to reduce the
intercept. 1Insofar as learning and uncertainty may have opposite
effects on G, , the relative magnitudes of these coefficients as
between methods III and I are indeterminate. It is important to
observe that, in spite of the noticeable differences in the reac-

» . - . - o
tion coefficients, the numerical values of the optimal x_ by the

t
three methods are remarkably similar; these values are obtained,
for comparison purposes, by applying the different optimal control
equations to the same set of values of YiFl as used in the
tentative path for method III. Presumably, a smaller (negative)
coefficient in the feedback control equation is partly compensated
by a larger (positive) intercept 9i » the latter playing the role
of steering the variables to targets after the feedback effect of

the former coefficient has been allowed for.
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At this point, a number of questions will certainly occur
to the reader. How will the results of this example change if
the degree of uncertainty is increased or reduced (partly by
increasing or reducing the standard error of the regression), if
the time horizon is lengthened or shortened, if the sample values
of X contain more or less variation, if the parameters in the
model or in the welfare function are different, and if the model
is larger, containing a system of several equations? How will the
welfare loss compare as among the three methods? On the theoretical
level, one might ask how close the quadratic approximation of this
paper is to the truly optimel solution, and how the method can be
modified or generalized to deal with systems of reduced form equa-
tions which are derived from structural equations (thus are subject
to certain non-linear restrictions on the coefficients), with non-
linear systems of dynamic equations, or with non-quadratic welfare
functions. The answers to these and other related questions will
have to await further investigations.

This paper has set forth an spproximate method of optimal
control of linear systems under uncertainty which incorporates
learning, and has provided a framework to measure the effects of
uncertainty and of learning on the optimal control policies. The
small numerical example given illustrates the above effects. It

tentatively suggests that, while the effects of uncertainty and of
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learning have turned out to be in the directions expected from
theoretical analysis, the solution in terms of the optimal value
of the instrument has not been materially affected. Undoubtedly,
by changing the example such as increasing the standard error of
the regression, one can intensify the effects of uncertainty and
of learning on the optimal setting of the instruments. Neverthe-
less, for a wide range of situations in which the degree -of
uncertainty (however measured) in the parameters is not too large,
one might find that the certainty equivalence solution, expecially
when applied in an open-loop fashion, will turn out to be a
reasonable first approximation to the 'optimal. I leave this

conjecture to further investigations.
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The references in the control literature are too numerous to
cite. In the economics literature, Prescott (1972) deals with
the problem of learning using a very simple model but provides
No new method of solution; its results were computed by com-
plete enumeration. MacRse (1972) and Tse (1974) provide in=
teresting approximations to the optimal solution, and are highly

recommended to the reader.

The conversion of a higher-order system into first order and
the incorporation of control variables in the left-hand-side
vector Y. to simplify derivations are explicitly shown in
Chow (1972a) and Chow 1972b). See also the illustrative

example of section & below.

The reader will be easily convinced that adding this term will
not affect the derivation of the method below, except to make

the algebra lengthier.
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See also the example of section 4 below.

Of course, by Y. Wwe mean possibly lagged endogenous variables
if the system (2.1) has been converted to first~order from an

originally higher-order system.

See Rausser and Freebairn (1974) for some calculstions using
this solution and other suboptimal adaptive control solutions

as applied to the U,S., beef trade policy.

If the prior density is informative, one can easily modify the
following formulae, See Chow (1973a) for the required

modifications.

Data for GNP and government purchases of goods and services

from 1964 to 1972 are from Survey of Current Buginess, July

issues of 1973 back to 1968, and, before 1963, from The National

Income and Product Accounts of the United States, 1929-1965

(U.S. Department of Commerce, 1966). GNP from 1952 to 1972

are 345, 365, 365, 398, Ll9, bL1, kb7, L84, 504, 520, 560, 591,
632, 685, 750, 79k, 86k, 930, 977, 1,056 and 1,155. Government
purchases of goods and services from 1953 to 1972 are 81.6, Th.8,
The2, 78.6, 86.1, 9L.2, 97.0, 99.6, 107.6, 117.1, 122.5, 128.7,
137.0, 156.8, 180.1, 199.6, 210.0, 219.5, 23L.,3 and 255.0.



