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1. Introduction

Since the contributions of Lintner [13], Sharpe [16]
and Mossin [1L4] in the mid-1960's, a great deal of work has
been done on the analysis of competitive equilibrium in ‘
securities markets. In most cases the analysis has been
confined to exchange economies in which individuals own
fixed initial endowments of securities. Each individual
is assumed to possess probability beliefs about security
returns, which are independent of current security prices,
and to select a portfolio which maximizes the expected value
of a concave utility function subject to a budget constraint,
the argument of the utility function being the monetary
return from the portfolio.

Typically the model is considerably simplified by
assuming first that individuals' probability beliefs are
identical, secondly that expected utility is a function only
of the mean and variance of the portfolio return, and
thirdly that there is a riskless security which may be held
in unrestricted amounts. From these assumptions some parti-
cularly simple relationships between the equilibrium prices
of securities and their means, variances and covariances

can be deduced.

*I would like to thank Professor Michael Rothschild for
valuable suggestions and comments on an earlier draft of the
paper. Not to be quoted without the author's permission.



These relationships are obtained on the assumption
that an equilibrium exists. Surprisingly, no attempt seems
to have been made to establish the existence of equilibrium.
The usual existence theorems (see, for example, Debreu [L4])
cannot be applied directly, since, as a result of the fact
that short-sales of securities are permitted,l consumption
sets (in this case the sets of portfolios individuals are
permitted to hold) are unbounded below. In Section 2, it
is shown, in a model considerably more general than the
mean-variance model, that an equilibrium exists even if pro-
bability beliefs are not identical, as long as there is
agreement about the expected returns of securities.

In the general case where individuals disagree about

expected returns, an equilibrium may well not exist. Suppose,
for example, that one individual believes with certainty that
security 1 yields a higher return than security 2 and a

second individual believes with certainty that security 2
yields a higher return than security 1. If the price of
secufity 1l is less than or equal to the price of security 2,
the first individual will engage in profitable arbitrage opera-
tions by buying security 1 and selling security 2, and, if the
price of security 1 is greater than the price of security 2,
the second individual will@engage in profitable arbitrage opera-

tions by buying security 2 and selling security 1. Hence no

equilibrium exists.



In this example, no Pareto-optimum exists either. The
central result of Section 2 is that an equilibrium exists if
and only if a Pareto-optimum exists, in the general case when
there is disagreement about security returns. Establishing
this result is the first step in obtaining necessary and
sufficient conditions for the existence of equilibrium in terms
of individuals' probability beliefs and attitudes towards risk.
The second step, which is carried out in Section 3, is to
derive necessary and sufficient conditions for the existence
of a Pareto-optimum. This is accomplished by using some recent
work of Bertsekas [2].

In Section L, the results of Section 3 are used to
explore the intuitive idea that an equilibrium exists if indi-
viduals' probability beliefs afe similar in some general sense,
A standard metric on probability measures is used to formalize
the notion that probability beliefs are similar, and an equili-

brium is shown to exist when beliefs are sufficiently close
in terms of this metric.

The problem of finding sufficient conditions for the
existence of equilibrium when individuals' feasible sets are un-
bounded below has been analyzed in a somewhat different context
by Grandmont [6] and Green [8 ], [9]. Grandmont and Green con-
sider a situation where consumers make decisions about how
much money to borrow or lend, or how much of a good to buy or
sell forward, on the basis of uncertain beliefs about future

commodity prices. Grandmont's and Green's analysis is more



general than ours in that they ailow beliefs about future
prices to be influenced by current prices, whereas we follow
Lintner, Sharpe, and Mossin in assuming that beliefs about
security returns are independent of current security prices.
The independence assumption simplifies the analysis considerab ly
and, more importantly, permits stronger results, including
necessary and sufficient conditions for the existence of

equilibrium, to be obtained.

2. The Model and the Eguivalence of the Existence of
Pareto-Optima and Eguilibria

We consider a one-period model in which trading in
securities takes place at the beginning of the period and
security returns are determined at the end of the period.

The return of a security may be interpreted as the total
value of one unit of the security at the end of of the period
including any dividends received during the period. Indi-
viduals are assumed to be interested in the value of their

portfolio at the end of the period.
Let there be n securities and m individuals.
Individual j(j=1,...,m) 1is assumed to have an initial en-

dowment of ig units of security i(i=1l,...,n) , a von Neumann-

Morgenstern utility function Uj: R—=> R, and beliefs about
security returns which are represented by a probability

measure Pj defined on the 0-field of Borel sets of



n
+

R = [xeR.n[x;§O}.2 Pj(A) - is individual j's probability

‘belief that (rl,...,rn) €A, where r,(i=l,...,n) is the

uncertain return of one unit of security i . 1In confining

our attention to A C R

of each security is non-negative.

n

. » We are assuming that the return

3

We make the following assumptions about tastes and

probability beliefs:

Al:

A2:

A3

Bs

Uj is concave (j=1,...,m);
Uj is increasing, that is Uj(wl) > Uj(wg) if
Wy > v, (3=1,...,m);

Pj(C) = 1 for some bounded subset C of Ri(j=l,...,m)?

says that, for each individual, security returns are

bounded with probability 1.

In order to be as general as possible, we assume that

each individual is restricted to choosing portfolios from a

feasible set, which might, for example, be determined by legal

requirements. Let XJ C R® be individual j's feasible set.

The vector

xeX) refers to the portfolio consisting of X

units of security i(i=1l,...,n). We assume:

cases.

Al

xJ  has the special form XJ - {xeRnlij > bJ],
where AJ = {a%i} is an (Hxn) matrix and

bJ is an H-vector (§=1,...,m).

Assumption AL appears to include all the interesting

For example, if ad -0 and bjszo, xJ = R™ and



individual 3j can hold any portfolio; if A2 1is the identity

matrix and b3==0, XJ==R2

and individual j is prohibited
from selling short. The more general case, where individual j
can hold some securities in non-negative amounts, some in non-
positive amounts, some in zero amounts, and some in unrestricted
amounts, is also allowed for by Alk.

We make some further assumptions about the feasible sets:

A5: For each i(i=l,...,n), there exists j such that

the ith column of AJ is non-negative;

A6: for each 3j(j=1,...,m), there exists i such that

the ith column of AJ is non-negative and

Pj({reRI:Iri >0}) > 0.°

A5 says that, for each security, there is an individual
who can hold that security in unlimited positive amounts
(assuming his feasible set is non-empty): A6 says that, for
each individual, there is a security which the individual
believes yields a positive return with hon—zero probability
and which he can hold in unlimited positive amounts (assuming
his feasible set is non-empty).

Finally, we make a standard assumpﬁion which insures
that feasible sets are non-empty and, more importantly,

that individual demand behaviour is continuous:

A7: There exists xJex’ satisfying §3<:i3(j=l,.°.,m).



Assumption A7 is much stronger than necessary, and
- is made only to simplify the proofs. For a discussion of how

this assumption can be weakened, the reader is referred to

Debreu [5].

If individual j's portfolio is given by xeR™ , his
expected utility is [ Uj(rx)de .7 Define Vj: R® — R by
Vj(x) = f Uj(rx)de (=1, ...,m). It is easy to show that
Al implies that Vj ié concave.

Given prices p =(pl,...,pn)eR2, where pi(i=l,...,n)
is the price of one unit of security i , individual 3

j B8

selects X maximizing vj(x) subject to xeXJ and px < pxJ ,

Equilibrium

. _ n . Ca ey .
Prices p = (pl,.o.,pn)eR_F yvield an equilibrium if
there exist xl,...,Xm such that

(1) xJ ¢ {xelepx < pxJ} and Vj(xj) > Vj(x)
for all xe {xeXJ|px < pil} (3=1,...,m) ;

(11) = x3 - z 53 .2

J J
(1) is the condition that xJ is optimal for individual
J at prices p , and (II) is a market clearing condition.
In defining an equilibrium, we are allowing individuals

to hold portfolios which yield a negative return with non-



.zero probability. If all eéonomic activity ceases at the end
of the period, those individuals holding portfolios with
negative values will presumably go bankrupt. We assume, how-
ever, that no bankruptcy provisions are taken into account
when portfolio decisions are being made, so that Uj(ixj) is
individual j's assessment of his utility in the event that
r-=% even if Fx)< O . For a discussion of models in which
bankruptcy is dealt with explicitly, the reader is referred

to Grandmont [6] and Green [9]. An alternative interpretation

of the model, in which bankruptcies do not occur, is that

securities markets re-open next period with new initial
endowments given by the equilibrium portfolios of this period,

modified to take account of any dividend payments.

Pareto-Optimum

The set of feasible portfolio allocations, F , is

defined by F = {(xl,...,xm)lxjexJ for each 3§ and

; xJ = Z %3} . (xl,...,xm) is said to be a Pareto-optimum if
] J ,
1
(1) (X7, 0., x) eF ;
(11)  (&,...,28MeF and V(&) > vi(x))

for each j = Vj(ij) = Vj(xj) for each j

c 1 .
In other words, (x ,...,xm) 1s a Pareto-optimum if

it is a feasible allocation and there is no other feasible



2

allocation which makes some-people better off and nobody worse
off. The terms better off and worse off are used only in an
ex-ante sense.

Since individuals' feasible sets are not necessarily
bounded below, neither an equilibrium nor a Pareto-optimum
need exist. Theorem 2.1 states that, under weak assumptions,

an equilibrium exists if and only if a Pareto-optimum exists.

THEOREM 2.1: If each Uj is strictly concave, the
existence of a Pareto-optimum is a necessary and suffi-

cient condition for the existence of equilibrium.

PROOF : Necessity is obvious since an equilibrium is Pareto-
optimal under our assumptions. To establish sufficiency, we
consider a sequence of bounded economies converging to the
original economy. We show that eventually the equilibria

of the bounded economies are also equilibria of the original
economy .

Let IE denote the economy described above, which we
assume has a Pareto-optimum, and let ZEt , t=l,2,..., dénote
the economy in which there is an added restriction that each
individual may hold only portfolios x satisfying x > -t ,

where § is an n-dimensional vector, each of whose components

is t . We confine our attention to t > - ii for all i and j.
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Define
Bl(p) = (xexI|px < pxl}
Bz(p)z {xelepxgp{;j and x> -t },
pI(p) = {ﬁij(pHVj(}E) > vj(x) for all xeBI(p)} ,
Dg(p) = {ieBg(p)le(i) > Vj(x) for all xeBE(P))

Under our éssumptions, the economy IE has an equilibrium

t
for each t (see Debreu [4, pp. 83-84]). That is, there exist

pteRi and xJ ¢ D](pt) (§=1,...,m) with = xg <5 %7 and

t t
. - J J . -
pt(; x% -5 %)) = 0. We may assume indeed that % x% = % X
J j _ _ j j
For let u =3 x’ - % x% . By A5, for each i, there exists
. ] w3 iio. : :
i such that the i column of A 1s non-negative. Define
x'ji = xji + u;e for i=1 n
t t i1 vt
and i .
X = xi for j+jl""’jn ,
-.where us is the ith component of u and e; 1is the ith
unit vector. By construction, = xéj = 2 %) , and, since
. . 3
u > 0 and pt11 = 0, xéjeDggﬁﬁ (3=1,...,m).

Proposition 1 states that pt is an equilibrium for
the original economy IE if the lower bounds on the xg's

are not binding.

PROPOSITION 1: Suppose that, for some t , x%eDg(pt)

(j=1,...,m), = xg =2 xJ, and xJ > -t for all j . Then

t ~
J J _
pt is an equilibrium price vector for E and the xJ°

S are
£ r

the equilibrium portfolios.



PROOF: We need only show that x%eDj(pt) (3=1,...,m).

This follows immediately from the facts that xieDg(pt) s

& £ re convex, and Vj concave. Q.E.D.

In view of Proposition 1, we may confine ourselves

to the case where, for each t , there exist pteS and

x% (j=1,...,m) satisfying

L4t _
x3end(p%) (3=1,...,m), (1)
£ x) - 3x (
t 2)
J J
and
x% # - E for some j . (3)
%3
Consider the subsequence {—E__EE-} , where, for
5 =gl
k=1 1
n . . n 2.2 :
acR", |al]] is defined to be ( 2 aj)}” . Choosing
i= xg
a subsequence if necessary, we may assume that T
k
tends to a limit as t-w . Let kf”Xt”
xg
lim ————=——— = xJ (=1, ...,m) (L)
t—w k
z =gl
Clearly
= - 1, (5)
J ‘
. . m K :
and, since Exgzzgij by (2)and lim = ”Xt” > lim max Hx%” >
J j tesw k=l T ot ] =

lim t = « bY (5))

tow

11
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zx3 - o, (6)

The next step in the proof is to show that rxj= O with
probability 1 for individual j . The notation xj =, 0 will

be used throughout the paper as a short-hand for this.

PROPOSITION 2: xJ =. O

PROOF: Let z = (z ,v..,2"%) be a Pareto-optimum, which

exists by assumption. 3Since x% is chosen by j when %

could be chosen,

vj(xg) > v.(x)) . (7)

m

It follows that the sequence {xg} , with o = = th” ,

satisfies the conditions of the following Lemma, which is

proved in appendix 1.

LEMMA 1: Suppose that {xt} is @ sequence such that
X

xteX:l 5 Vj(xt) is bounded below, and lim &E = X , where
tox t
{at} is a sequence satisfying lim O = = . Then, for any

tow

Ve R™ and for all >0, Vj(yw-ux) > Vj(y) and y~FuX€XJ

if Y€X]



(53
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Putting y::zJ in Lemma 1, we obtain

+ pxdex] (8)

and ' . .
V.(z3 + ux?) > v.(z9) (9)

for all w > 0 . (6) and (8) imply that (zl-huxl,...,zm+uxm)

e F, the set of feasible portfolio allocations, and hence

1 .
by (9) and the fact that (z ,...,z") is a Pareto-optimum,

Vj(zj-+uxj) = v.(zd) for all u > 0 . 1In particular,
J

J
J Jjy - 1 ] J 1 - 21
Vj(z +x7) = 5 Vj(z +2x7) + 5 Vj(z ) . Putting A = 5

x = zJ +2x) and x' = zJ in Lemma 2, which is proved in

appendix 1, we obtain xJ o . : Q.E.D.

1l

]
LEMMA 2: Assume that Uj is strictly concave and
O <A <1. Then Vj(xx+(l-—>\.)x') = xvj(x) + (1= Vj(x')

implies that x-x' Ej 0

If security returns are linearly independent for each
individual, xj =. O 1implies that xj = 0 , This contra-
dicts (5) and proves Theorem 2.1. The case of linear dependence
requires a little more work. We use Lemma 3, which is proved

in appendix 1. It is in this Lemma that the assumption that

xJ  has the special form XxJ = {xeRnlAJx > b))} is important.



LEMMA 33 Suppose that (x

t} is sequence such that
X
Xy >~ t , lim &E =X, O < Yt , where VY > O 1is
= ~ t-—)OO t =
independent of t , and 1lim o_ =« , Then there exists

tow €

T such that (xt-x)e}él and %, - x > -t for all

t

Since x% > -t for all j and = x% =5 %) by (2),
B 3 J
k .

j m . . m k
xg < (m-1)t + % x° for all j . Hence L=l < v
B k=1 k=1 -
for some ¥ > O independent of t , and we may apply Lemma 3
; m
to {xg} with o = = HXE” . It follows that there exists

7] such that

(%7 - x7)ex’ (10)
and
x% - xd > -t (11)
for all t > ™ . Let T = max T . Proposition 3 completes
a J

the proof of Theorem 2.1.

PROPOSITION 3: pT is an equilibrium price vector for IE

with (x% - x7) as the equilibrium portfolios (j=1,...,m).

1k
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PROOF ; We note first that >:(x:| - xj) = 3 x% = 5 %7 by
J 3

(2) and (6) , and
(12)

by Proposition 2. If we can establish that pT>5] > 0 for

all j , it will follow from (1), (10), (11l) and (1l2) that

(X%-xj)eD%(pT) , (13)

and therefore by (11) and the concavity of Vj that

(x% - xJ) e DJ(pT). This proves Proposition 3.
In order to establish that pT;él > 0 for 21l j

2

we suppose the contrary., Then, since =3 pij = pT > xJ =0
J J

Jo
by (6), pT>< >0 for some jo , and hence
jo jo jo T
(xT - x e Dy (p”) and
J J _J
pT(xTo -x 9 < pT x 2 . (1k4)

By A6, there exists i such that the ith column of als
is non-negative and Pj({reR£|ri > 0}) > 0 . Let

o 3 o
T

th

x = (x - x 9 1e ei), where ¢ >0 and e, is the i

J J

unit vector. Clearly, Vj (x) > Vj (xTO - x O).
Jj o o)

by (1k), xeBé%pT) for small ¢ , which contradicts

j J J
(x%o - x 9% DTO(pT) } 0.E.D.

However,
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Remark: The assumption in Theorem 2.1 that the Uj's are
strictly concave is stronger than necessary. It can be
replaced by the assumption that the Uj's are strictly
concave for large values: that is, there exists K such
that Uj(>\wl + (1-x)w2) > A Uj(wl) + (l—x)Uj(wg) if wy & W,

leH-FHw >K, and 0<A<1l (j=1,...,m). The

|
assumption cannot be dispensed with entirely, however.

In Theorem 2.2, which states that an equilibrium exists
if there is agreement about expected security returns, the
strict concavity assumption is not required.

Before stating this theorem, we make some definitions.

We define, for each 3j ,

gfl - \/‘ rx d P. ,
X J
rx>0
E_J =k/‘ rx d P. ,
rx <0
f
EJ = \j rx d P, ,
N au.(w)
S. = 1lim =—1—
3 dw ’
W--> 0
and
_ du.(w)
S:J = lim E e



Clearly E.J >0, E3<o0 and B2 -3 + 83 . st ana
X = X = X X X J
S; are well defined since a concave function mapping R

into R has a derivative except at a countable number of
(= 0]

points. S; is finite and S; is finite or +

For each i and j , define

Ez = Ej. where e. is the 1" unit vector. we say that
i

there is agreement about expected security returns if, for

each i , Eg is the same for all 3

The following Lemma, which is useful in the proofs
of Theorem 2.2 and several other theorems in this paper,
follows directly from a result of Bertsekas [2, Proposi-
tion 2]. The convention that ®.0 = 0, w.5 = -~ if a<o,

and -o+ a = ~o 1f a is finite, is adopted.

LEMMA L: If y,xeR",

Vj(y-+px) > Vj(y) for all
w>0 if and only if s! EJ +s. EJ >0
= J X J X =

THEOREM 2.2: If there is agreement about expected

security returns, an equilibrium exists.

17



PROOF : The proof is identical to the proof of sufficiency
in Theorem 2.1, except that we replace Proposition 2, which
assumes the existence of a Pareto-optimum and the strict

concavity of the Uj's , by a weaker proposition which

assumes only that there is agreement about expected returns.

Proposition 2, we obtain Vj(Y'+LLXj) > Vj(y) for all

u >0 . By Lemma L, it follows that
FEtd L g7 g
S. EJ+8.E3J >0. (15)
J 4] J 3 =

Since Uj is concave and increasing,

st < s: (16)
] = J
and
s. > o (17)
J
Therefore,
-5l - g7(gtd -] + ot - e7J 18
S. EJ, =S.(E'2 +E 3) >SS, Ez +S5,E3 >0, (18)
J &3 13 3= 1 L) J %3

and, hence, by (17),

El. > o. (19)

18

Since individuals agree on the expected returns of securities,
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> EJ. = the expected return of 3 xJ = 0O by (6). Therefore,
j xJ j
by (19),

8. - o. (20)

From (18) it now follows that

s;E3 +sIE3d - stedigsiedlo,
% B B s o

and therefore, by (17), either S; = S; or E'J - E_g = 0

In the first case, j 1is risk neutral and Ejj = 0 by (20).
x

In the second case, x7

1

. O . In either case, Vj(x:J - xJ) =
Vj(x%) . Q0.E.D.

The remainder of the proof of Theorem 2.1 now applies.

5. Necessary and Sufficient Conditions for the Existence
of a_Pareto-optimum and an Equilibrium

In this section, we derive necessary and sufficient
conditions for the existence of a Pareto-optimum. As a con-
sequence of Theorem 2.1, these are also necessary and suffi-
cient conditions for the existence of equilibrium.

We begin with some definitions from Rockafellar [15]

n

(see also Bertsekas [2]). Let X(CR" be a closed convex

set. X 1is said to be a direction of recession of X if
v+uxeX for every yeX and for all >0 .lO It is to
be noted that if y+pu xeX for some vyeX and all bL>o0,

the same is true for every vyeX.



As in the proofs of Theorems 2.1 and 2.2, we use the notation

X Ej O to mean rx=0 with probability 1 for individual j .

THEOREM 3.1: If each Uj is strictly concave, a
necessary and sufficient condition for the existence

. . . ~1
of a Pareto-optimum is that there do not exist x7,...,

such that
(1) 5 % =0 ;
J

(11). %) is a direction of recession of XJ satisfying

s; E'3 +8. E3 >0 (3=1,...,m) ;

X X

(I11) for some j , =7 ¢j o .

PROOF :

Necessity

1

Let (=z ,...,zm) be a Pareto-optimum, and suppose there exist

il,...,im satisfying (I) and (II). By Lemma 4, Vj(zj—+p§j)>

Vj(zj) for all u > O and each j . Hence, since (zl,...,zm)

is a Pareto-optimum and (zl-kuil,...,zm-+u§m)e F by (1) and
(11), Vj( T uxd) - vj(zj) for 211 p > O and each j .
Applying Lemma 2, as in the proof of Proposition 2, we obtain

%3 = o (j=1,...,m), which contradicts (III).

Sufficiency

Suppose that there are no il,...,im satisfying (1), (II)

and (III), and a Pareto-optimum does not exist. Let

20



(23

21

- {(xl,...,xm)ezFle(x]) > vj(ij) for all 3} and

=v{(xl,...,xm)e F|xj > - E for all §3}. 1f E > - xJ

for all 3j , ﬁt is (a) non-empty by A4, A5 and A7,

(b) closed since each Vj is concave and therefore continuous,

and (c) bounded since xJ > -t for all § and z xJ - 3 %) =
m J J
: “k _
xJ < (m-1)t + = % for all 3§ . It follows from Weierstrass'
- k=1 : .
theorem that the problem: maximize z Vj(xj) subject to
(xl,...,xm)e F, has a solution if t > - %1 for all j .

Let (x%,...,xﬁ) be a solution to this problem. We show

that

x3 $ - £ for some § . (21)

If not, since the Vj's are concave and the Xj's are convex,

(xi,...,xﬁ) is a solution of the problem: maximize z Vj(xj)

1 J

N
subject to (x,...,x")eF . This in turn implies that

1 m)

(Xt""’xt is a Pareto-optimum, which contradicts the

assumption that no Pareto-optimum exists.

Consider the sequence {(Xi,...,x?)], where t takes

on integral values greater than max - %7, Choosing a subsequence

. 1,3 oxd |
1f necessary, we may assume that = - -———=—-_ tends to a
z =g
. k=1""t
X7 .
limit as t—x . Let 1lim _E_E_E_ = 2 (j3=1,...,m). Clearly
| Eoe 3 =l
t
k=1
E R -1, (22)

J
. 1 o
and, since (xt,...,xﬁ)e F and 1lim g ”Xk” =w by (21)
t 2
t—w k=l
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£x - 0. (23)
j .

~ Noting that Vj(xi) > Vj(ij) , we may apply Lemma 1

3 . mook .
to (xg} with o = = |x(l| to obtain

%3 is a direction of recession of X7 (oh)

and Vj@+H§j)i Vj(y). Hence, by Lemma k4,

RTINS
S. B - + S, E -1 > 0.
3 723 s S I (25)

(23), (24) and (25) imply that ﬁl,...,im satisfy (I) and

(11), and, since il,...,im do not satisfy (I), (II) and

(III) by assumption, it follows that

% =; O (3=1,...,m) . (26) -
3 Tk

Applying Lemma 3 to (x{} with o = = thH , Wwe obtain

Gl -3 exd (a1, (27)
and

x%->'23>-'5' (§=1,...,m) . (28)
(23), (26), (27) and (28) imply that (xé - xl,...,x$ )
is @ solution of: maximize £ V.(xJ) subject to

J

A

£ However, (x% - xJ) > - T for all j,

which contradicts the argument leading to (21). Q.E.D.

;1 m ~
( ,...,X)eF



25

THEOREM 3.2: If each Uj is strictly concave, a

necessary and sufficient condition for the existence

of equilibrium is that there do not exist §l,...,§m
such that
(1) s %) = 0;
J
(11) % is a direction of recession of X7 satisfying
b 33 J I =

(IIr) for some 3§ , XI #j o .

PROOF': Apply Theorems 2;1 and 3.1. Q.E.D.

Remark 1l: If ST =0 or S, = ® for each j , the

J ]
necessary and sufficient condition is that there do not exist
=1 ~m =3 . =3 .
R, e0e,X such that Z x° = O, where, for each j , x- is
J : .

a direction of recession of X7 satisfying r %7 > 0 with
probability 1 for individual j , and some x’ #j O . This
is the general equilibrium version of a partial equilibrium

result obtained by Leland in [12].

Remark 2: The results of Sections 2 and 3 have been proved

under the assumption that the ri's are bounded with pro-

bability 1 for each individual. As long as flrilde is
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finite, the results also hold in the unbounded case provided
that fIUj(rx)lde is finite for all xeR" . This is

guaranteed if S; is finite and Uj is @ non-decreasing function.

Remark 3: The restriction that each feasible set is of the

form {xeRnlij‘z I } appears to be an important one if
security returns can be linearly dependent. 1In the linear in-
dependence case, Theorems 2.1, 3.1 and 3.2 hold for more general
feasible sets; Theorem 2.2 also holds for more general feasible

sets if risk neutrality is ruled out in addition to linear dependence.

4, The Existence of Egquilibrium when Individuals' Probability
Beliefs are Similar

Let IB be the 0-field of Borel sets of Rﬁ s

and
let M be the set of all probability measures defined on

IB . The notion of probability beliefs being similar is made
precise by defining a meFric on ™M . If Pl,Pee ™M , define
d(Pl,PE) = inf{e > O]Pl(A) < P2(A8) + ¢ and PE(A) < Pl(AE) + €
for all Ae¢B}, where N {XeR?I lx -v|l <e for some

yeA} . It can be shown (see Billingsley [3, p. 238]) that

d is a metric on M .

The metric d is less restrictive than the more
obvious metric p , defined by p(Pl’Pg) = inf{e > O IPl(A) -
PZ(A)I < e for all AeB )}, in the sense that probability
measures which are close in terms of p are also close in

. 11
terms of d , whereas the converse is not true. The weak-

convergence topology induced on WM by d has been used
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elsewhere in economics in the study of convergent economies (see
Hildenbrand [11]) and in the study of continuity properties of

von Neumann-Morgenstern utility functions (see Grandmont [7]).

Let Pl,...,Pm denote the probability measures of
individuals 1,...,m and :E(Pl,...,Pm) the resulting
economy as described in Section 2}2 Theorem 4.1 says that,
under weak assumptions, an equilibrium exists for the economy
EKPl,...,Pm) if Pys+«.,P are all sufficiently close to

some probability measure P in terms of the metric d

THEOREM L.1: Suppose the Uj’s are strictly concave

and PeM satisfies:

(1) P({r|rx=0}) = 1 = x = 0 ;

(1) Pp(c) = 1 for some bounded set C in R"
Then there exists ¢ > 0 such that ZE(Pl,...,Pm) has

an equilibrium if:

(111) d(Pj,P) < e (3=1,...,m) ;

(1Iv) Pj(C) = 1 (3=1,...,m) ;
(v) for each j(j=1,...,m), there exists i such that the
iR column of a3 is non-negative and Pj(ir]ri>o})>>o.
PROOF : Suppose not. Then we can find a sequence
{(Pt,...,P;)} such that, for each t , ZE(PE,...,%E) has no
equilibrium, P§ satisfies (IV) and (V), and Pg-g> P s

t —> o (j=1,...,m). Therefore, by Theorem 5.2, there exist,
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for each t , it""’§2 such that
Tk = 0, (29)
3 A
ii is a direction of recession of X9 (j=1,..,m), (30)
and
/ rxf: dP:' +sJ j rx] apl > 0 (j=1,...,m) . (31)
r&d 2]
xtz rxt<O

In view of (III) of Theorem 3.1, we can scale the ig's SO

that .
U = 1. (32)

[k
Since a subsequence may be chosen if necessary, we may

A \
assume that xa tends to a limit as t-w . Let lim Q% =

A ) t—)oo
xj(j=l,...,m). (29) and (32) imply that
z 3 - o (33)
J
and
s Z = 1. 3L )
]

Using a result of Billingsley [3, p. 17, Exercise 8] and

the boundedness of C , we obtain

lim \/ rxd d L/ rzd
tox . t
J

ri%i()
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and
lim ‘/ ri% art - k/ rxd ap ,
to ® J ~
rit]__<o rx” <0

and therefore, by (31),

st Jride+Sj_. j rxd dp > 0 . (35)
3

rxd >0 rxd <o

We may now argue as in the proof of Proposition 2

to show that (33), (35) and the strict concavity of Uj imply
that P({r|rxd = o})

1 . Hence, by assumption (I) of this

theorem, %J = 0 (j=1,...,m) , which contradicts (34). Q.E.D.
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TR A R S

LEMMA 1:  Suppose that {xt} is @ sequence such that
. X
X, € X , V.(x,) bounded below and lim _t . X, where
t i a
t-® 7t

{Oﬁ } is a sequence satisfyin lim o
t__>OD

veR" and for all >0 Vj(y-kuzc)z Vj(y) and

£=%- Then, for any

y+P~xer if YEXJ .

PROQF: Since Vj is concave it is continuous. Therefore

: B p
Vj(Y‘*“X) = %iﬂovj((l'-at) y + o xt). For large o ,

since Vj is concave,

Ll il - il
vy(1 ott)y+oét x.) 2 (1 O‘t) vily) + o vi(xe)
u ®
> (1-2=) v.(y) + —— B
> ( O‘t) 5(v) a B

where B 1is a lower bound for Vj(xt) .

. ; Ll Lol
s Vsly +bx) 2 iin; (1 - O‘t) vily) + o B}

J B el J ; J
If yex” , (1 at)y-kat x, eX for large «_ since X
is convex., Taking limits we obtain y+—HXeXJ since X’

is closed. Q.E.D.
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—_——— e e —

LEMMA 2: Assume Uj strictly concave and o < M < 1 ,
Then Vj(Nx-k(l—k)X') = \ Vj(x) + (1-)) Vj(x') implies

that x-x! Ej 0

since Vj(h>c+ (1-2)x") -7\ij§ - (1-2) Vj(x') = O . However,

Uj(xzrx + (1l-2)rx') - xtH(rx)-(l-x) Uj(rx') > 0 since Uj
is concave, and so Uj(xJ:x + (1l-A)rx') - ht%(rx) -(l-M‘Uj&x')=()
with probability 1 . By the strict concavity of Uj it follows

that rx = rx' with probability 1 and hence x-x'

n
O

Q.E.D.

______ %,
X, >2-t, lim - = x

LEMMA 3: Suppose that (xt} is a sequence such that
o
toe Tt

A

, £ Yt , where Y > 0 is

independent of t , and lim ¢, = « . Then there
t—=w t

-x)eX) and x, - x> -t

exists T such that (x &

t
for all t z T

PROOF: XJ = {xeRP|alx >bJl} , where aJ - {ahg} .  Therefore,
ijt > bJ , and, since 1lim G, = @ , alx >0 .
tow -

J PO J _
Suppose Z a1 Xy > 0 ¢ Then 1lim _%1 3] ¥jpg = @
too 1=

o)

since lim @t = © , and so we can choose T such that
t-o h

n . '
> a3 (%3¢ - %) > B (36 )
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1

t 2 Th

(36) holds for all

Then,

(%

for all

- x)ex’

Suppose it

Then,
that

X

AV

it

implies that X <0

Hence

and so

choosing

X

i

X.
1

t - ¥4
£, %

=0

x, < -
1 =

J =
If I aps Xy o= o,
i=1
t , so that Th =
t>T", Aj(xt - x) >

is not the case that

a

AN

on the other hand,

1

bl

- X > -

t

Let T' =

30

max T

h

h

and conseguently

subsequence if necessary, we may assume

-t

> 0

for some i

On the other hand,

eventually, and so

and X. = -t . Therefore
it

i
Y

2

which contradicts

X.
1

and all t

Sinc

e

t eventually.
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APPENDIX 2

Throughout the paper we have assumed that security
returns are non-negative. Since some important cases, including
the case of normally distributed returns, are thereby excluded,
we discuss briefly in this appendix the consequences of dropping
the non-negativity assumption. It turns out that, with small
changes in other assumptions, all our theorems hold in the
negative return case, as long as equilibrium security prices
are permitted to be negative.

In Theorems 2.1, 2.2, 3.2 and 4.1, A7 must be replaced
by the stronger assumption that xJ ¢ int xJ (j=1,...,m) in
order to insure that demand correspondences are upper semi-
continuous when prices are negative. 1In addition, the assumption
that no individual has a bliss point, that is for each xer
there exists x'er such that Vj(x') > Vj(x) (3=1,...,m), is
required in Theorems 2.1, 2.2 and 5.2, and the assumption that
individual 3§ has no bliss point when his probability beliefs

are given by Pj (j=1,...,m) replaces (V) of Theorem L.1.

A5 and A6 are no longer required.

The proofs of Theorems 2.1 and 2.2 are modified in the

following way. ZEt is now defined to be the economy in which

individuals can hold only portfolios satisfying |x|| <t
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The following theorem from Hart and Kuhn [10, Theorem 2.4]

is applied to the excess demand correspondence of ZEt

Let 2 Dbe a compact subset of R"  and let E

be an upper semi-continuous correspondence mapping points

. n-1 n, & 2
in S = {peR"| = P; = 1} to non-empty, convex subsets

i=1
of % . Suppose that, for each peS" 1 » 2zeE(p) = pz < 0.

Then either

(a) there exists peSn—l with OeE(p), or
(b) there exists pesn-l with zeE(p), z'ecE(-p),
such that Xz +(1l-A)z'=0 for some Ace (0,1).

If (2) holds for infinitely many t , the same argument
as in the non-negativity proof shows that equilibria of ZEt
are also equilibria of E for large t . A modified version
of Lemma 3 is used in which the assumption that thH <t for
all t and the conclusion that th-xH < t eventually replace
the assumption that xt-x>>—E for all t and the conclusion
that X, - X > -t eventually. The case where, for infinitely
many t , (b) holds and (a) does not can be shown to be impossible.

No changes are required in Theorem 3.1. In the proof,

~ . . 1 m - J .
F. 1s defined to be ((x7,...,x )eF|[x"|| < t for all 5 }

and the modified version of Lemma 3 is used.
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Even if risky securities cannot be held in negative amounts,
no lower bound is placed on the amount of the riskless
security held.

If xeR" » X2 0 means x, >0 (i=l,...,n); x>0

means x >0 and x £+ O; x > O means x; >0 (i=1,...,n).

This assumption is made only to simplify the analysis.
A discussion of the negative return case may be found

in Appendix 2.

The concavity of Uj implies that Uj is unbounded unless
it is a constant function. The unboundedness of U. , as
Arrow has pointed out in [1, Chapter 2], is inconsistent
with the usual assumptions about preferences over risky
alternatives which are used to justify the existence of

a von Nehmann—Morgenstern utility function. There seems no
alternative to assuming concavity, however, if we want to

prove the existence of equilibrium when there are a finite

number of individuals.

This assumption is relaxed in Remark 2 at the end of

Section 3.

Pj({reRl_’:Iri > 0}) 1is the probability that r, >0

according to individual 4§ .
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10.

1l.

12l

n

For a,be R , ab denotes the inner product I aibi

i=1

3L

It might seem more sensible to assume that budget constraints

hold with equality in a securities model. It turns out that,

under our assumptions, budget constraints do indeed hold

with equality in equilibrium.

m
; is used as a short-hand for Z . Similarly, for all 7
3 . j=1
is used to mean for j=1,...,m and for all i to mean
i=l,ocn’no

Rockafellsr defines directions of recession only for

whereas, in our definition, O 1is automatically a direction

of recession.

td

It is shown in Billingsley that P —>P <= lim Pt(A)-P(A)

t— o
for all Ae¢B with P (boundary A) = O

£ .
PC E>p <> 1im PY(a) = P(A) for all AcB

tox

, Whereas

Throughout this section, the Uj's

agsumed fixed, and hence this notation makes sense.
xJ's and XxJ's are assumed to satisfy assumptions
Al, A2, AL, A5, AT.

, xJ's and x7's

Xt

are
The

0]

for

U.

J

YS’
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