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PREFACE

The operation of linear regrgssion in multivariate
analysis has, from its first principles, an involvement with
Euclidean concepts. Some of these are immediately conspicuous,
for instance in the way in which sums of squares and of cross-
products feature, or in the fundamental rcle of orthogonality;
and others are arrived at through further construction.

This exposition attempts to exhibit the Euclidean
framework in as complete and explicit a form as possible, by
reference to a Euclidean space and its transformations, sets
of its points and volﬁmésfthey determine, and the subspaces
they span and their MUtUal relations.

It is é familiar scheme to show regression as resolving
vectors of measurements into orthogonal components, one, the
regressional part, lying in a space spanned by vectors of
measurements, and the other, the residual part, lying in the
orthogonal complement of that space. But the step from
recognition of this scheme, to consideration of the pair of
symmetric idempotent linear transformations which derive
these components, defining a complementary pair of orthogonal
projectors, and then to systematic formulation of analysis
in terms of these projectors, is one that does not appear to
have been explored, though basic elements of geometric method
are already well established in the subject. The advantage

such a step yields, apart from any possibility of finding
natural approaches to useful hew concepts, are that, Jjoined
with a fitting symbolic notation, it leads to a compact and
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penetrating formalism for handling the familiar processes;

and also it gives the terms for some simple proofs and concise
formulae. At the same time it makes a valuable enlargement

of didactic method, by directly displaying the subject in

its intuitively comprehensible algebraical-geometrical
aspects, which is illuminating for the description and expla-
nation of what is being done.

Whatever the essential addition that might be made in
concepts of statistical analysis, which can be treated as a
separate matter, it i1s a formalism which is to be elaborated,
and which 1s closer to the writer's knowledge. Proofs of
the main propositions involved have already been given in a
separate algebraical paper (Afriat 1957; and also 1956), of
which this is the promised statistical sequel. Now there
mainly has to be shown the definitional and propositional
scheme in which symmetric idempotent matrices, defining
orthogonal projectors, have the fundamental role. Only a
most naive, but also the most fundamental, view is taken of
multivariate regression analysis; not the more developed one
founded on the normal distribution, which justifies the
naive view, and in this gets a c¢ritical part of its own
Justification. When reference is made to a variate, variance,
covariance or correlation, which terms are properly for con-
cepts relating to a distribution, all that is meant is a
factor measured on objects, and certain functions of measure-
ments of factors, which, when a factor is interpreted as a
variate, and a trial as a population sample, can also be

interpreted as sample measures which, in the case of
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normality, correspond in the usual way to those things in the
population. Reference is made to Halmos (1948) for theory

of linear spaces, and about projectofs; and to Anderson (1958),
and the bibliography there contained, for the general subject
of multivariate analysis.

Hotellihg (1935) has given an analysis of the relation
between two sets of variates, in his canonical correlation
theory. It can be formulated as an analysis of the relative
position of two subspaces of a Euclidean space, spanned by
vectors of measurements, as he has pointed out. This analysis
is made complete by a set of orthogonal invariants, which
characterize the figure formed by the spaces, and which are
given by a certain set of angles determined between them,
Such a characterization of a pair of spaces by angles was
demonstrated by Jordan (1875), using synthetic methods: and
a further such account has been given by Somerville (1929).
Algebraical method for determination of the angles has been
investigated by Schoute (1905), and more recently by
Flanders (1948). Hotelling's theory implies another method,
equivalent to consideration of directions whose variation in
the spaces leaves the angle between them stationary. A
further method is developed in Afriat (1956 and 1957), and
has an improved description here, which turns on}ponsidera-
tion of the characteristic values and latent vecfors of the
pair of products of the orthogonal projectors on ﬁhe spaces,
Still a further method is stated in a note followi@g this
exposition, which consists in the simultaneous traﬁsformation

to diagonal form of a certain pair of symmetric matrices



one of which i1s positive definite. The generalized problem,
for the relation between subspaces of a Hilbert space, has
been treated by Dixmier (1948). Another treatment of this
problem is suggested here, in an appended note.

The account of canonical analysis, in the form in
which it is stated here, founds it directly in its geometrical
interpretation,and amplifies the algebra accordingly. Com-
binations of one set which are uncorrelated with every
combination of the other must exist in any case where the
variates are different in number, and generally when there
is a subspace of the space spanned by the observation vectors
of one set which is orthogonal to the same space for the
other. This case is the same as that studied by Anderson
(1951), in which a matrix of regression coefficients is of
defective rank; so the regression components obtained admit
between themselves a system of linear relations. This
dissociation of one set with another, resulting in dependent
sets of regression components, exists automatically when the
dimensions are unequal; and it is a mutual relation in the
event that the total multiplicity of positive canonical
correlations is defective. An entirely different process
of calculation applies to these residual components, which
have zero correlation with all the rest. Another matter
that has wanted a certain elaboration is the treatment of
multiple canonical roots, and the complete system of orthog-
onality relations which hold between canonical variates in
this case, irrespective of whether or not they belong to

roots which are distinct. It is to be noted that, between
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the algebraical processes which arise here, and in Mann
(1960), there are some striking resemblances of form, though
a difference of interpretation.

While a complete set of canonical angles, or their
cosines, which define the canonical correlations, give a
complete specification of the relation between the spaces,
or the sets of variates, it is desirable also to have coef-
ficients which express aspects of this relation. Wilks (1932)
and Hotelling (1935) have defined coefficients of correlation,
and alienation, which have this character, and which are alge-
braically equivalent to the here-defined coefficients of
inclusion and separation of one space with another. Pre-
sented in the geometrical way, and determined in terms of the
orthogonal projectors on the spaces, their significance and
properties are immediately evident. Some further coefficients
are now defined, which have special properties, both in regard
to a pair of spaces, and when they are given between the three
pairs taken from a set of three spaces, in which case certain
inequalities are obtained, limiting the association between
two spaces in terms of their association with a third.
Coefficients are defined in an analogous way for sets of
three or more spaces, which take critical values according
to the character of the configuration the spaces form together.
There may well be problems for which these various coefficients
provide appropriate statistics. One of these coefficients,
for a pair of spaces, gives a direct generalization, for sets
of arbitrary numbers of variates, of the multiple correlation

coefficient, defines between a single variate and a set of
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several, this itself being a direct generalization of the
correlation coefficient of Pearson defined between a simple
pair. This coefficient is non-negative, and at most the
dimension of each of the spaces, and also of the common
dimension of the orthogonal projections of the spaces in
each other, this defining their dimension of inclination;
it is zero if‘and only if the spaces are orthogonal; and
equal to the dimension of inclination if and only if the
spaces cut at right angles, which is to say they are
orthogonally incident, with the orthogonal complements in
each of their intersections mutually orthogonal: and it is
equal to the dimension of one of the spaces if and only if
that space is included in the other. The properties of
this coefficient have been derived in Afriat (1957): and
subsequently it has had consideration, in a different but
equivalent form, by Hooper (1957), who has applied it to the
simultaneous equation method in econometrics. Another,
related coefficient, defined for a pair of spaces, is bounded
between zero and unity, being zero just when the spaces are
orthogonal, and unity just when they are identical; and it
has special properties when taken between the pairs from any
set of spaces, such as are considered in an additional note.
A multivariate generalization of the concept of vari-
ance has been studied by Wilks (1932) and Anderson (1958).
Here a formula is shown which gives the variance of a set
of variates, in terms of the separate variances of comple-
mentary subsets, together with the coefficient of separation

between them. Geometrically, it is a generalization of the
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familiar formula for the area of a parallelogram, in terms of
the lengths of a pair of edges and the angle between them.

If a multiple regression is partitioned, into a sum of
complementary partial regressions, then the associéted orthog-
onal projector, represented by a symmetric idempotent, 1is
correspondingly split into a sum of mutually annihilating
oblique projectors, that is non-symmetric idempotents whose
product together in either order is null. A formula is given
for these oblique projectors, which obtain partial regressions,
Just as orthogonal projectors obtain total regressions; and
then a formula is immediately deduced for the matrices of
partial regression coefficients. This formula, derived in
Afriat (1957), also appears in Scheffé (1959, p. 203). It
becomes directly evident that a partial regression matrix,
obtained in this way, involving three sets of variates, is
identical with the total regression matrix between the residuals
in the regressions of two of the sets on the third; which may
generalize a proposition at least familiar for when the sets
consist of single variates.

The basic formula for the orthogonal projector on the
space spanned by a given set of vectors, shown in Afriat (1957),
1s derived again. This formula is also fundamental for the
computations of the gradient-projection method of linear
programming, account of which has been given by Rosen (1960).

Further observations are contained in a number of

additional notes.
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1. Factors and measurement.

There 1s to be considered a universe U of objects.
The objects are characterized by factors forming a variety ,6
of different elements, each object having each simple factor-
element to a numerical extent decided by measurement. The
result of measuring a simple factor x e on a single
object a €U is a point in the number scale ¥ , which is

denoted by Mi s thus,
Mic—s? (a€U : x€4) .

A combination of simple factors, each measured by a
single number, provides a multiple factor, measured by a vector.
The measurement of a multiple factor on any object is equiva-
lent to the measurement of each of its elements; so a factor
x € £ of dimension ©p , or a p-factor, measured on any object

ac€WU, is represented by a point in a p-dimensional vector

space :
p »‘}’p
a _ a a -
MX— ( X19 ooy MX ) S Fp 9
1Y
where x = (X1, o000, x.) , and a €U .,

2. Experiment.

A trial is constituted by any multiplicity of objects;

and an experiment, with some factor, is a trial measurement

with that factor, that is the measurement of the factor on all

the objects in some trial. There is obtained a measurement

matrix, each row of which shows the vector measuring all the



elements of the factor on one cbject of the trials and corre-
spondingly, each column gives the measurement, on all the
objects of the trial, of one element of the factor.

Thus, let an experiment be made with a factor x of
dimension p and a trial J of N objects. Then there is
obtained a matrix Mg of order N X p , which will be denoted
Jjust by Mx when, as is usual, a certain trial J is taken
as implicitly understood. The ith row is a vector Mi « ?b R
represented in a vector space S;p of dimension p , which

th

gives the factor x measured on the i object of the trial

(i =1, o0, N)o The columns are to be represented as points

in a measurement space, which is a Euclidean space & = EEN
of dimension equal to the multiplicity N of objects in the
trial. Thus MX , first formed as a set of N measurement-
vectors of order p , is also considered as a set of p vectors
ij e & (3 =1, vce, p) of order N , each of which gives
the N trial measurements of one element Xj of x o

An experiment may be performed in which various multiple
factors x, y, ooo are measured in conjunction on each of the
multiplicity of objects in some trial, its purpose being for
the examination of experimentally defined relations between

the factors, founded on analysis of their measurement matrices

M_, M

X oo These matrices can be considered as components

y9
of order N X p;, N X g, ... of a complete measurement matrix
Mx,y,ooo = (MX, My’ coo) of order N X (p + g + oo..), where

N is the trial-multiplicity and p, g, ... are the different

component factor dimensions. They determine sets of points,



which are p, g, ¢o. in number, respectively, and in general

independent, in a Euclidean space 'a of N dimensions,

3. Components.

A factor y 1is defined to be a component of a factor
x 1f 'y 1is measured on any object whenever x is measured

on that object, with result determined in the form

M2 = M2a
X

a
Y

where a defines the coefficient matrix of Yy as a component

of x , with row and column orders equal to the dimensions of

x and y . Symbolically, any component y of a factor x

may be indicated by
y = xa ;
and there 1is the equation
a _ ,.a
an = an .

The relation which two factors Xx;y have when vy is

a component of x will be denoted by
y 4 x o

It is a reflexive and transitive relation, that is

Xdx, x4dyAydz .= x4z o

If vy 4 x , let dxy denote the coefficient matrix of y
as a component of x . Then the coefficient matrices, implicitly
involved in the reflexivity and transitivity conditions, have

the properties



a =1, a__«a =
Xy yz Xz

[+

Two factors x,y will be defined to be equivalent if

they are components of each other, the relation thus defined

between them, which will be indicated by

X O VY s

being reflexive, symmetric and transitive. It is necessary

for equivalence that

a dad = 1 s a o =1 9
Xy YX b YX Xy q

where 1py 1q denote the unit matrices of order p, q the
dimensions of x, y . But this is only possible if p = q ;
and then axyp ayx must be regular, mutually inverse matrices.

The linear spaces, with the naturally defined opera-
tions of scalar multiplication and addition, formed by the
simple components of a multiple factor x , define its range
Rx

y € R3<§ y 4 x 3

and then

y 4 x &= RyC RXO

4, Spa o

The measurement of a factor x of dimension p in a
trial of multiplicity N obtains a set of p measurement
vectors Mi e E, (1 =1, 600, p) of order N , these forming
the columns of the measurement matrix Mx of order N X p ,

and represented as points in a Euclidean space & = EIQ of



5

dimension N . These p vectors in E, , in general inde-
pendent when N > p , span a subspace E’x C‘E, , in ggneral

of dimension p 4 which is to define the span of the p-factor x ,
in the experiment with that factor and the given trial. Thus,
having

[m ] = {an ; a € ap}

as the range of the matrix Mx s which is the space spanned by

the vectors forming its columns, there is made the definition
&= d,

for the experimental span of a factor.

The criterion that E’x attains the dimension p , or
equivalently that the p‘ vectors forming the columns of Mx
be independent, is that the P X p matrix MX”MX be regular.

Every vector M € 'Ex s in the experimental span E’x
of x , is of the form M = an s Where a & EF’ is a unique

vector of order p given by

a = (M_'M)"'m M .
X X X

Accordingly, any vector M € & is the measurement vector
My = an » in the experiment, of a uniquely determined simple
component vy = xa of x . Conversely, the measurement vector

an = an of any component xa& of x belongs to the span

E’x - In this way there is an isomorphism between the range

)@X of x , that is the linear space formed by its components,

and the span E;x of x obtained in any experiment:

ye X, e>ue Ex,;(M=My;y=xa) .



The residual span ¢f x , in the experiment, is now

defined as the orthogonal complement ?fx in &: of the
s thuss

§?x - E’@ Eix °

A variety of experimental relations between multiple

span E

factors may be founded on the various possible relations be-
tween their experimental spans, which are to be instrumental
for deciding expectations about one factor from knowledge of

the other.

5. Projectors.

A p-factor x in an N-trial experiment has span Ex ,
which is a subspace of dimension p in a space E, of
dimension N , and residual span zfx of dimension N-p ,

so that
E><i- zix ’ éx @)§fx== E ¢

Every vector Z & E, has a unique resolution into a sum of
components ng fx in the span and the residual span of x ,

which is determined by linear transformations e s Ex of Z

where

z, =ezZ€ & , I =%7€E .

The thus=defined linear transformation e is called the

projector on the space E;x s 1t being more explicitly the

projector on E’x parallel to its orthogonal complement Efx )



that is to say the orthogonal projector on E’x ; and the com-

ponent ZX defines the projection on E’x of Z . The simi-
larly defined linear transformation Ex is the complementary
projector of ey s it being the projector on the orthogonal
complement & = of E’x :
It is directly evident that

and similarly for Ex o Thus the complementary orthogonal
projectors are complementary symmetric idempotent linear trans-
formations, that is with sum equal to the identity, with the
range of each the same as the null-space of the other, and the
ranges together forming the complementary orthogonal subspaces
Eﬁ( and ?fx o

Thus the projector e, on E’x is a symmetric idem-
potent with E’x as 1ts ranges gx = exg . Conversely, any
symmetric idempotent with ﬁ,x as range must be identical with
e, o

The trace of any idempotent is equal to its rank, which

is the same as the dimension of its range. Therefore.
trace e_ = rank =
C « ank e P o
Consider the matrices

E.=M_(M_'M )M , E =1 -E |,
X X X X X X X

defined in the case ¢f E’x = [MX] being of full dimension ©p ;
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in which case lMX“MXl # 0 . They are complementary symmetric

idempotents, with
[EJ c vl = &

where the inclusion will be an identity if the spaces have the

same dimension. But

trace E_ = trace M_(M M )" "M *
X xx Ux X

— ; ? -1
= trace M Mx(Mx Mx)

I

t 1= ;
race 1, =p

so the dimensions are the same. Therefore
(] =&

and hence the orthogonal projector e s on E;x = [MX] , is

calculated by the formula

e =E_ 3
X X

whence also

—e- = E °
X X

From the measurement matrices ng My of factors x, y

in some joint experiment, there can be computed the projectors
€y ey on their spans E’x’ Ey,; and then criteria for the
various relations between the spans can be applied to these.
For, since E)U Ey{ can be derived as the ranges of the
matrices e ey which are defined as the unique symmetric
idempotents having these spaces for ranges, any condition on

the spaces can be expressed as a condition on the projectors.



6. Orthogonality.

The condition that & = e & . Ey = eyE be orthogonal

is that ex"ey = 0 . But €y s ey are symmetric; so the condi-

tion is exey = 0 , and equivalently eyex = 0 , thus showing
the condition for the orthogonality of the spaces in terms of

the projectors on them.

7. Incidence.

Two spaces are said to be incident if they have a
non-null intersection, and otherwise to be separate. The
criterion for the incidence of the spaces E)U éy, is expres-
sible in terms of the orthogonal projectors e ey on them
by the condition

[1 - exeyl =0 .

An algorithm for obtaining the intersection of the spaces 1is
by determining it as the null-space of the matrix 1 - exey 5
or equivalently, of the matrix 1 - e e : for

Z € Ex N gy, = (1 - exey)Z =0

8. Orthogonal incidence.

Spaces are said to be orthogonally incident if the

orthogonal complements in each of their intersections are

mutually orthogonal
C,o{E n& 1 E 08 Nk}

and otherwise they are obliquely incident. The criterion for

orthogonal incidence, in terms of the orthogonal projectors on
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the spaces, is given by the condition

e e = e e
VAR xy °

In this, and only this case, exey is a symmetric idempotent,
with the intersection of the spaces for its range; and it is

therefore the orthogonal projector on this intersection.

9. Inclination.

Ifbtwo spaces are such that there is no subspace of
one which is orthogonal to the other, then the one space 1s
sald to be inclined to that other, and otherwise to be
disinclined. Thus, for E to be inclined to &

y X
relation between the spaces will be indicated by

L, &,

y

, which

the condition is that E’y has no intersection with the
orthogonal complement ETX of Z‘x ; and the criterion is
therefore
[1 - Exeyt £0
For the inclination of one space to the other, it is
necessary that the dimension of the one space be at most the

dimension of the other:
E y q Z,X = q<p o

Therefore if the spaces are completely inclined, each being

inclined to the other, which relation is indicated by

S0 f

they must be of the same dimension: g =p ; otherwise the

Y
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Spaces will be incompletely inclined. If

r = rank ey < rank ey =4
defines the dimension of inclination r of the spaces, then

& y E>< & r=q .

10. Inclusion.

Consider the condition exey = ey » which, by the

symmetry of ey ey is equivalent to the condition e e

i
®

<

It is that ex(eyZ) = (eyZ) for all Z ; that is, e Y =

m
vy

for all Y=eze <§y » But e Y=Y if and only if Y
Thus the considered condition is that Ey - Sx o

Thus if spaces are given, by sets of base vectors, their
inclusions may be thus decided from the orthogonal projectors
on them, computed from the base vectors by the formula which has

been givens,

11. Imitation and dependence,

If two factors x, y have equal measurements for all

objects in a trial J , thus

M = Mi (a€J ), or M_ =M |,

a
Y Y X
they are said to imitate each other in the trial, which rela-

tion they have may be also indicated by

More generally, one factor y may be said to be experimentally

dependent on another factor x s in regard to some trial 7 R
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if it is imitated by some component xa of x s thus:

b4 xa g

¥
or equivalently,
M = M a o
y X

The experimental dependence relation thus defined between

Yy and x may be indicated by

y < x
with the trial 7 wunderstood. It is evident that if y is
a component of x , then it is dependent on x in every
experiment: |
y dx= vy < x ,
The relation of experimental dependence between factors
is equivalent to the relation of inclusion between their spans:
y < x &= ZchX o
There is thus the criterion
y < x <=$‘ey = exey
for experimental dependence in terms of the orthogonal projectors

on the spans, from which it follows that

y < x & M = Mxr s

Yy Xy
where
— 0 -1 7
Ty = (MX MX) MM .
But
Mx Xy Mxr °
Y Xy

Accordingly, if vy 1is experimentally dependent on x s as

decided by the condition ey = exey s then it is experimentally:
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imitated by the component ery of x , which may be denoted
by vy(x)

= y K 9 ] = l\/n s
Y = y(x) equivalently My ky(x)

Experimental equivalence is defined by experimental

mutual dependence. The criterion is the identity of spans,
for which the condition is ey = e, o Experimentally equiva-
lent factors must be of the same dimension, with rxy and

ryx Tegular and mutually inverses

ryxrxy = 1 o

Ixyryx
Factors which are incident, in that their spans in an
experiment are incident, are such that they have common factors,
given by components of each which imitate each other in the
experiment. The common factors are represented by parts of
their ranges which are experimentally identified. Thus, if

Ex 0 :Ey # 0 , then there exist components xr, ys of x, vy

which are measured equal on all the objects in the trial.

Mop = Mys o

They can be considered as determining a common factor =z of

Xy ¥ > whose span lies in the intersection of their spans.

12. Configuration coefficients.,

Two linear subspaces of a Euclidean space may be
identical; one may be included in the other, or each may con-
tein a part excluded from the other; they may be separate or

incident; oblique or orthegonal; one may be inclined to the
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other, with no elements in the one orthogonal to all elements
of the other, or disinclined; they may be orthogonally incident,
with the orthogonal complements in each of their intersections
mutually orthogonal, or obliquely incident. With all these
various relations, which are invariant under orthogonal trans-
formations, and therefore characteristic of the‘configuration
formed by the subspaces in the Euclidean space, some are
opposites, being negations of each other, and some form sequences
of increasing restriction. There are to be considered some
different coefficients, that is non-negative real-valued
functions defined over the pairs of spaces, which have certain
critical values when the spaceé exactly attain to certain
relations; but more generally, they each will put the config-
uration formed by a pair of spaces in a scale, measuring the
extent to which there is attainment to or departure from some
relation, in a way which is invariant under orthogonal
transformations.

These considered relations form a scheme in which
certain pairs are linked by negation or by implication or by

one being a limiting form of the other:

negation
identical limit distinct
included excluded
incident inclined disinclined separate

S limit N

oblique > orthogonal
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Now various coefficients are to be introduced in the

following theorems, each of which, by its properties there

stated, fulfills a role as a configuration coefficient, having

certain critical values when the spaces satisfy certain

relations,

( . 2 _ — —
THEOREM: If ny = trace exey sy d_ = trace e. = rank e and

X X X —

dXy = rank exe

Xy

dxy &= éx.orthogonally incident with Ey(exey

then

2
O <RE, <d <dx

2 _ N _
RE =0 &= Ex orthogonal to Z),(e e. =0)

Xy

=d, & EX included in Ey (ee =ce_)

X"y X

= eyex)

The critical values of R;y are thus O , the dimensions

d,,
X Y

Y

d of the spaces E)U E and their dimension of inclina-

tion dxy s which is the dimension of the orthogonal projection

of either space on the other; and its general values can be

taken as measure of correlation between the spaces.,

COROLLARY: If Qiy = trace eXEy then Qiy + R% = d

0< Qiy s dy

2
QXy

Xy x ?

0 <= Ex included in é

dx &= Ex orthogonal to E,y

Here it appears that the dimension dX of E, is

X

partitioned into two parts Qiy and Riy which measure the
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extents to which this space 1s associated with the other, and
with the orthogonal complement, respectively. While ny Sym-

metrically measures the correlation between the spaces, Q

1s to measure the residual correlation of E‘x to E;y Ty
COROLLARY: If Ciy = (trace exey)g/(trace e )(trace ey) then
0 < ny <1
ny =0 &= E:x , E,y orthogonal (exey = 0)

=1 &= Ex ; Ey identical (exzey) 0

Thus ny s which is to define the coefficient of

association between the spaces, appears with properties like

those of the cosine of the acute angle between a pair of direc-
tions; and it sets a pair of spaces in a scale between extremes
of orthogonality and identity., Similarly, the non-negative

real number Sxy satisfying

S2 =1 .c3 |
Xy Xy

which is to define the coefficient of dissociation, has

bproperties analogous to the sine.

&
THEOREM: If s = |1 - e e |® then
== Txy X7y ——
0 < Sxy <1
Sxy = 0 &= E’x ) E’y incident

=] & Z’x . Z’y orthogonal o
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The number Sxy has properties again analogous to the

sine. It measures the separation of the spaces, being a minimum

when they are incident, and a maximum when they are orthogonal.

4
o — ~ 2
COROLLARY: If Sy = 1 - exeyﬁ then
0< Cxy <1
ny= 0 Ex disinclined to zy
=1 e Ex included in Ey

Thus ny s analogous to a cosine, measures the extent of
inclusion of one space in relation to another. It is the
application of the coefficient s 1o one space and the
orthogonal complement of the other, and is a maximum when the
relation of inclusion is attained, and a minimum when there
is a part of one space which is orthogonal to the other,

Like the Q-coefficient, but unlike the others, it is not s

symmetric function of the two spaceso,

13- Parallelipiped volumes,

Any set of vectors determines a parallelipiped, with

the origin for a vertex, and with fundamental edges, at that

vertex, giVen by the vectors., The ¢pace spanned by the funda-
mental edges contain the parallelipiped, and define its

supporting space; and the dimension of the supporting space

gives the dimension of the parallipiped, which is called
regular if the dimension and the number of the fundamental

edges are equal.
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A matrix Mx of order N X D , considered as making by
its columns a set of b vectors of order N , spanning a
subspace E:x = [MX] in the Euclidean space E of dimension N ,
determines a8 parallelipiped T whose volume VX is the

non-negative real number determined by the formula

2
v, = AMX“MXJQ ,
and is positive just when the parallelipiped is regular,

Two parallelipipeds together determine a third, their
resultant,; whose fundamental edges are their fundamental edges
taken together., If the parallelipipeds are regular, and their
supporting subspaces separate, then‘and only then their resultant
is regular, of dimension equal to the sum of their dimensions,
and with supporting space the union of their supporting spaces;
and the volume is the product of their volumes with the coef-

ficient of separation between the supporting spaces. Thus,

with M, y = (MxD My)-g there is the identity

»

= ]
lmxyy“ngy’ = !MXﬁMXl!My Myﬂ‘1 _ exey‘ y

from which it follows that

Yoy T VVysey

generalizing the familiar formula for the area of a parallelo-
gram in terms of the lengths of a pair of edges and the sine
of the angle between them.,

Now the parallelipiped T, may be orthogonally projected
onto the orthogonal complement ?Ty of the space Ziy , to

obtain a parallelipiped which may be denoted by Ey“x s whose
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fundamental edges are determined by the matrix gny ; and

the square of its volume is, by the symmetry and the idempotence

e

of e, , given by

Yy
e M )'e M| = e e,
l(ey x) ey xl HMX ey eXMyl
= 15 '
= IMX eyMX] o
But there is the idéntity
lMx“enyl = jmxvmx111 - exeyl o

So it follows that the wolume of the projected parallelipiped
is the product of the original one with the coefficient of
separation between its supporting space and the orthogonal

complement of the space onto which it is projected.

14, Multivariance.

The multivariance of a multiple factor in an experiment

is defined by the volume of the parallelipiped which has for a
set of edges at a vertex fhe experimental measurement vectors
of its elements,

Thus the multivariance of a factor x 0f dimension p
is the volume Vx of the p-dimensional parallelipiped which
has edges determined by the vectors forming the columns of the
measurement matrix Mx o The multivariance of a simple factor,
or simply its variance, is given by the length of its measure-
ment>vectoro

Two multiple factors x, y  of dimension p,¢q taken

together constitute a further multiple factor (x, y) of
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dimension p + q . The multivariance of two factors thus taken
in conjunction is determined by their separate multivariances
together with the coefficient of separation between them,

according to the formula

: ' 1
. = ‘ El
: ngy = VXVy ‘1,= exeyl s

—VVS o

Xy Xy

15. Projection and regression.

Consider an experiment in which a pair of multiple
factors are measured together on a multiplicity of objects.

The experience thus gained concerning the aséociation of the
factors has to be analyzed from the data of measurements, in
order.to have, on any new objectg‘an expectation of one factor,
from an inspection of the other.

The factors X; Y in the experiment have measurement
matrices ng My and spans‘i Exg Ey' on which the orthogonal
projectofé e, e, are computedn |

1f 'y is experimentally dependent on x , for which

the criterion is

then

M =M = M?(x)
so that vy 15 exactly imitated by the Component v{x) = ery
of «x throughout the experlmento " The expectatlon then is that

the imitation will persist on a new object a 3 so that the
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expected measurement A? of 'y on a , when only x is
observed, with result Mi s 1s defined by
ME = M2 o o @ .
y (%) XTy v X rxy

However, vy not being given as a component of x , it
will not generally be found‘experimenfally to be exactly
dependent on x . There will be a discrepancy Dr between
the measurement matrices My of 'y and MXr = Mxr of any

component xr of x , thus:

My =M. +D, (DL #0) .

This discrepancy matrix Dr can be considered the measurement

matrix of a further factor, to be denoted by y - xr

It appears that the value of the coefficient matrix r which
obtains the sum  trace DIVDr- of the squares of the elements

of D. an absolute minimum is given by

r=r
xy °
where again

r == ¢ -1 ' °
Ty (MX MX) M, My

Accordingly, corresponding to this value of s there
is the resolution of the measurement matrix My of y into
two parts, associated, and dissociated with «x s respectively,

each with the form
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thus:

My = exMy + exMy = M?(X) + M

y-y(x)

The function y(x) of x obtained in this way defines the
value of y to be expected when x 1is given, Then vy - Q(x)
is the deviation of Y ‘frdm‘its expected value. Evidently,

since e e =0 ..
X X s

or the‘expecféd aeviafion bf‘vy from‘its expected value is
zero, on all the objects in the experiment.

The component Q(x)‘z Xy of x thus determined
experimentally in regard. to ‘y is to be called the regres-

sional image of Y in x , in the experiment; and r

Xy
defines the regre551on coeff1c1ent matrix of y on x .

The part . e My“ln the cOrresponding resolution of My con-

stitutes the regre551onal part it being the measurement

matrlx of the regre551onal 1mage §(x) = xrXy ; and

e M =M is the re51dual part being the measurement

Yy~ y=y(x)
matrix of 'y —‘y(x) o Thereuls said to be a null regression

when the regressional part is null, and a perfect regression

when the residual parf is null.

The regressional image of y in x in an experiment
can be defined again as that uniquely determined component
xr of «x whose measurement vectors, forming M Xy = Mxr ;
are the orthogonal pIOJectlons exMy in the span E;X of «x

of the measurement vectors My of v , thus:
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for, from this relation, it follows that

M '™M r=M"'eM =M "M ;
X X X Cxy X oy
and then that
r =1 o
Xy
This form of the derivation of the component xr of x in

Xy
relation to y in an experiment may be called statistical

projection and the operations of least squares regression

and statlstlcal progectlon have here appeared equivalent.
If the: Xx-image of y is not null, y 1is said to be

correlated with x , in the experiment; and the condition is

that the span of y Dbe oblique to that of X o But obliquity
is a symmetrical relation between the spans, whence so is

correlation between the factors. Now complete correlation

of y with x  is defined by the condition that none of the
elements of iﬁs x;image xrxy ‘be null; and this is equivalent
to there’beipgno,partof‘the‘span Ey' of y which is
orthogonal‘ﬁo'fhe span ‘Ex of X , which is to say that E
is inclined‘fo"ifx‘ the noe symmetry of which relation
carries with it the non-symmetry of the relation of complete

correlation,

From a regressional decomposition

M, =eM +eM =M +M =
y T Sxy ToeMy =My M o

of My there follows the decompOSLtlon

M 'M =M ve M + M e M = Ma'Ma + M

A TM
Y ¥ Yy Y Y Xy Yy 'y Y=Y

Y-y

of My"My into two parts with a similar form, using the
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symmetry and idempotence of the projectors; and then, taking

traces, the decomposition

t M M = trace M~'M~ + trace M ~'M .
race y My a My race

of the sum of the squares of the elements of My into sums of

squares. of elements of M9 and My_§ - The second part gives
the absolute minimum value of the sum of the squares of the

discrepancies Dr = Mysxr in the dependence of Yy on x .,

Between the extremes of being perfect and null, a regression
in general has'a certain intermediate extent, which may be

measured by a comparison of the parts trace My'eXMy and
trace My“éxMy in the partition of trace My'My o Alternatively,
multiply by (My”My)“1 first, and then take traces; and by a

cyclical permutation of factors, which leaves traces unchanged,

there follows the decomposition

- R2 2
9 = nyv+ Qxy-

of the dimension of Y into the coefficients of correlation
and residual correlation of y with x .
Now the variances of Y » and of the x-image and

X-residual of vy , are given by

Ve = |M 'M . v_; = |M 'e M
g =1 y Myl § | y eyl

‘e M |, vV Mol

2

= |M -
(x) | y “xy y-y(x)
and then their comparison is shown in the identities

V. o=c¢c , v (X)/V'-= s ,

y-y y Xy

where ny s the coefficient of inclusion of y in x , is a
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maximum just when the regression of y on x is perfect,
and a minimum just when it is null, and where Sxy ,» the
coefficient of separation, is a maximum when the regression
is null, and a minimum when the spaces afe incident, in which
case there are components of one factor whichrregress

perfectly on the other.

16. Principal reduction.

Any two spaces which are oblique may be reduced to a
pair of components which are inclined to each other, and a
pair which are orthogonal to these and alsc to each other.
The principal pair, which are mutually inclined, are obtained
as the orthogonal projections of the spaces in each other;
and the other, the residual pair, are the orthogonal comple-
ments in each of the spaces of either space in the principal
pair. The principal pair also have the property of being
reciprocals, in that they are the orthogonal projections of
each other in the 5paces.

The fundamental proposition from which this reduction

is obtained is expressed in the scheme:

where the relations indicated are that z’x and Z:Y are

oblique, that is exzy is inclined to Ey , and that

%%xy s which appears as orthogonal to both eXZEY and E’y ;
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can be defined in three equivalent ways:

E,0¢e8

Y

that is, as the orthogonal complement in E;x of the

orthogonal projection in E){ of E,y s or of simply E){,

or of the orthogonal projection of E,X in E’y « Applying

this scheme to one space with the other, and then again with

the spaces interchanged, there is obtained the further scheme

TN

EX = eXEy o R
SERVAN
£, = eyEx o R

\}__/y
which defines the principal reduction of the pair.

The reciprocal property of the principal components is

stated by the relation

and the same relation with the spaces interchanged.
An algorithm for obtaining the reduction is by computing

as the range of exey , and R as the null-space

Xy
of 1 - ex§y s the orthogonal projectors having been computed,
from any bases for the spaces; by the formula which has been

given.
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17. Reciprocal and reflexive directions.

In a pair of Spaces, reciprocal directions are those

which are the orthogonal projections of each other in the

spaces, Thus
eX')r ""(LQ; 9 GY% =‘U 9

for reciprocal directions U qu in spaces Z’x s Ey on

which the orthogonal projectors are e s ey » The products

define the dual pair of biprojectors on the spaces. Since

the orthogonal projectors are symmetric, the dual biprojectors
are the transposes of each other,

A reflexive direction in one Space relative to another

is one which is identical with the orthogonal projection in
that space of its orthogonal projection in the other. Accord-
ingly,

U = exey
for a reflexive direction U in EX in regard to ‘Ey .
Evidently a reciprocal pair of directions in the spaces are
each a reflexive direction in one space in regard to the other,
Conversely, any reflexive direction in one space in regard to

another forms with its orthogonal projection in the other a

Teciprocal pair of directions in the spaces; for

it Y = exeyqﬁ , and O = eilﬂ ;, then Y = eX(U7 »

Thus the determination of the reciprocal directions between

a8 pair of spaces is equivalent to the determination of the
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reflexive directions in either one in regard to the other;
and these are the invariant directions of either one of the

biprojectors,

18. Proper angleso,

A proper angle between the spaces is defined as an

angle made by_gipair of reciprocal directions, Thus, if

1Z9Qf are a pair of reciprocal directions, the acute angle
QZ?%‘ which they make between them determines a proper angle
between the spaces. If U, V. is any pair of vectors spanning

the directions U QQY then
-

cos2Y U = (Urv)2/(uru) (vry)

where
A

T .
O <cosUV <1, with 0< UV < a2 .

While any reciprocal pair of directions determines a unique
proper angle, a given broper angle may be made by many distinct

reciprocal pairs.

19. Reciprocal vectors,

Now reciprocal vectors are defined as those which span

reciprocal directions. Thus, if U, V are reciprocal vectors

in ng Zy then

eXV = Up , eyU = Vg ,

for some multipliers ps ¢ # 0 , which, it appears, are given by

p = (UU)TUNV , o = (VIV)TTviy :

from which it follows that
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Moreover,

where N\ = p0 ; so U, V are latent vectors of the dual

biprojectors exey’ eyeX with common characteristic value

which is the product of the multipliers p,0 and also is
the square of the cosine

Pl
B = cos U,V

of the angle between them, which is also a proper angle between
the spaces.
If, further, U, V are unit vectors, then
p =UW=0 .,

In this case, ¢ = pe where e = ¢ and then

eyU = (Ve)u , eX(Vs) = Uu ,

showing U, Ve to be a reciprocal pair of unit vectors with
multipliers which are equal to each other, and positive; with
which properties they are to define a normal reciprocal pair.
The characteristic values of the dual biprojectors on
the spaces are the same, and non-negative; and they are all
zero only if the spaces are orthogonal, which is when the
biprojectors are null. Therefore, if the spaces are oblique,
let up? denote any non-=zero characteristic value, where it
is taken that p >0 3 and let U be any corresponding unit

latent vector of exey s 50 that

— 2 7 — o
exeyU =Uu* , U'U =1 g
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and define V by
U - V o
ey i
Then v

exv =Uu , and V'V = 1 :

when U, V are a normal reciprocal pair of vectors in the

spaces Exg E. 0

Y
Accordingly, to any non-zero characteristic valuye T

of the biprojectors on the Spaces, there corresponds a normal
reciprocal pair of vectors making a proper angle between the
spaces with cosine u . It has already appeared that the
square of the cosine of every proper angle between the spaces
is a characteristic value of the biprojectors. Thus it is
seen that the characteristic values of the biprojectors on
the spaces are precisely the squares of the cosines of the

proper angles between them.

20. Rank and multiplicity.

Let Zix o (0 € a € n/2) denote the null-space of the

matrix A1 - e*ey » where A = cos®q . Then evidently
Ex»acexéy ;

and Z:x a # O just when ¢ 1s a proper angle between the
9
spaces, which is just when A\ is 3 biprojector characteristic

value, in which case 2 is composed of the latent vectors
X, a

of exey for the characteristic value A\ , which span reflex-
ive directions associated with a proper angle a .

The space E and the corresponding space E

X, 0 Ysa
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have the same dimension L which will be taken to define

the rank of a as a proper angle between the given spaces.,
Since latent vectors of a matrix corresponding to

different characteristic values are independent, the spaces

&

union is the sum of their dimensions. Thus

x. g @are independent, and therefore the dimension of their

? Exga = exz‘; !

§

and correspondingly
Z r < . r |,
a:ua
a

where 1 1is the dimension of inclination of the spaces, being
the dimension of eXE§[9 which is the rank of eXey o Here
the relation between spaces must be an identity if the relation
between dimensions is, as will appear in fact to be the case,
an equality,

Let the multiplicity m, of o as a proper angle be

defined as the multiplicity of A = cos®q as a biprojector
characteristic value. But there is the general proposition

that, with ey ey symmetric and idempotent, the nullity of

the matrix ‘Kﬁ - exey is equal to the multiplicity of A

as a root of the equation |[A1 - exeyl =0 . It follows that

r = m 5
a a

and also that the rank r of e is equal to the multi-

e
Xy
plicity of its non-zero characteristic values,

r = Z mo
a
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whence

Accordingly,

B, 0%

which shows the reflexive directions, associated with the
different proper angles, spanning the orthogonal projections

of the given spaces in each other.

21 . Orthogonality relations.

Let ﬁﬁeg Qf@ (6 = a, B) be two pairs of directions,
making angles q, B o Then a direction in one pair can be
orthogonal to a direction in the other pair in four possible
ways, defining four possible, in general independent, orthog-
onality relations between the pairs. However, should the
palrs be formed of reciprocal directions in a pair of spaces,
there is then'in this case the proposition that the four
orthogonality relations are equivalent, any one of them implying

the other three. Thus, in this case, there are the equivalences
(UCG BL (Lgﬁ = r}la .,L (lfﬁ 9

and the others deduced from symmetry, by interchanges in the
symbols Qﬁgqr and a, B . If the four orthogonality rela-
tions between the members of the pairs are taken together to
define orthogonality as between the pairs, then there is the

further propeosition that reciprocal pairs making distinct

broper angles are orthogonal:

a ¥ ﬁ == (/Mavs (z[a) CL (%ﬁn (wﬁ) °
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Thus, in the following scheme, any one of the orthogonalities
indicated implies all four; and all four are implied by the

distinctness of a, B o
——
U U

A b
Vg
S

Q ~—0—-0n

i}

22. Isogonality.

Consider a pair of spaces which are such that any
direction in one space is g reflexive direction of that space
with regard to the other. An equivalent condition is that
the spaces be of the same dimension, and have the proper
angles between them all the same. Such a pair of spaces will
be called isogonal. A necessary and sufficient condition that
spaces E;ﬂ Ey of dimension p be isogonal, with proper

angle o , is that

2 b _
{cos® g1 - exey) =0 ,

In an isogonal pair of spaces, any orthogonal pair of
directions in one space projects orthogonally onto the other
.space into an orthogonal pair of directions; then, pairing
the directions with their orthegonal projections, two
reciprocal pairs of directions between the spaces are obtained
~which are mutually ocrthogonal.

Accordingly, by taking an orthogonal set of directions
spanning one space, and then taking the orthogonal projections

of these directions in the other, there is obtained an
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orthogonal set of directions spanning the other. These two
sets of directions are arranged in a set of reciprocal pairs.
Each direction, in either one of the two sets, is oblique to
its reciprocal, in the other set, making with it the unique
proper angle between the spaces; but it is orthogonal to
every other direction, both in its own and in the other set.
The construction of such reciprocal orthogénal bases
of directions in the isogonal spaces constitutes the form for
their total decomposition, which is now to be extended to a

general pair of spaces.

23, Total reduction.

A pair of spaces is to be considered totally reduced

in relation to each other when together they are resolved into

canonical directions with the property that any canonical direc-

tion in one space is orthogonal to every other in that space,
and also to every one in the other space with the possible
exception of at most one. The angles made by the oblique

canonical directions define the canonical angles between the

spaces, in the decomposition.

It appears immediately that oblique canonical directions,
in such a reduction of the spaces, must be the orthogonal pro-
jections of each other in the spaces, and thus form reciprocal
pairs of directions. The canonical angles are then identified
with the proper angles, uniquely defined; so in every total
decomposition, the canonical angles obtained are the same, and

given by the proper angles, the squares of the cosines of which
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are determined algebraically as the biprojector characteristic
values,

A total reduction of any oblique pair of spaces may
now be obtained by the following algorithm. First take the
principal reduction of the spaces, into their orthogonal pro-

jections in each other, and the orthogonal residuals:

& =exgy@hxy’ {{y:eyzx@hyx .

X

Then there is the further scheme of decomposition:
exz’y 2? Ex»Ot ’ eyE’X =? Eyya ’

where the components

£, . &

X,a Vs 0

are isogonal; in particular é,x o E)’o are identical,
9 1

being the intersection

E’x,o‘= z:’x n Ey:= E

°
9

YsO

but all other components are orthogonal. Now take the

total decomposition of the isogonal pairs, into mutually
orthogonal reciprocal pairs of directions all making the same
angle. Finally, take any orthogonal bases of directions in
the residual spaces VEXy”‘myx o All the directions thus
constructed have together the property that they constitute

a total reduction of the spaces,

Matrices

U = Mxr . V = Mys

of order NXp , NXq where s s are any regular square
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matrices of order p, g are any bases for the spaces

EX:= [Mx], Ey,= [My] - They are orthonormal bases, com-

posed of orthogonal sets of unit vectors, if

U'u =1, VIV =1

?

in which case the orthogonal projectors on the spaces have

the simpler form

If, moreover,

where 1 > py >

eoe 2 M. > O, they will be called a canonical

pair of bases for the spaces. In this case (Uiy Vi)

(1 =1, 00, T) will be normal reciprocal pairs of vectors

on the spaces, with

eXEy= (Ui, oo, UrL e Ex== [Vi, ooo, vr]

Yy
and

PRXYZ[UI"*"‘Eg °co0 o0y Up]; %yx=[\/r+1, © 0oy Vq] o

The problem for constituting a total reduction of a pair of
spaces is, to give it a pure matrix formulation, that of trans-

forming the bases, with which the spaces happen to be given,

into an equivalent canonical pair; alternatively, to
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simultaneously rotating orthonormal bases into a canonical
pair. The analysis which has been given shows the possibility
of this, together with an algebraic algorithm for the

realization.

24. Analysis of configurations

Two pairs of subspaces of a Euclidean space may be

considered equivalent, or the spaces in the pairs to present
the same configuration in their relation.to each other, if
they can be rigidly rotated into coincidence; that is to say
one pair is the image of the other pair under an orthogonal
transformation. A linear transformation which preserves
orthogonality also preserves angles., It follows that two
equivalent pairs of spaces have total reductions with the
same canonical angles. For, an orthogonal transformation
which sends one pair of spaces into the other sends canonical
directions in one pair into canonical directions in the other,
with angles'unchangede It has already been settled that
different total reductions of the same pair of spaces always
obtain the same canonical angles, given by the proper angles;
and now the question arises as to whether different spaces
with the same canonical angles, thus uniquely defined for
each, are equivalent: so that the angles will constitute a
complete analysis of the configuration formed by the spaces,
It is only necessary to present a canonical form, into which
pairs of spaces with given canonical angles can be rotated.

It will then be established that two pairs of spaces are
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equivalent if and only if the proper angles between them are
the same; so the proper angles between spaces gives a complete
characterization of their configuration, invariant under

orthogonal transformations.

25. Normal form,

An orthogonal transformation in a Euclidean space is
determined by a correspondence between one complete orthogonal
set of unit vectors and another. Let the coordinate vectors
of the space be taken as one such set; and let the other be
defined as follows, in relation to a given pair of subspaces.
Take the vectors in a canonical pair of bases; let the dupli-
cates among these, belonging to the intersection, be removed;
and augment the remainder by an orthonormal base for the
orthogonal complement of the union of the spaces; and let every
reciprocal pair U, V making an angle d » determined by

cos a = U'V , be replaced by an orthogonal pair
Ucos a/2 +V sin a/2 , U cos o/2 « V sin a/2 ,

The set of vectors thus obtained constitute the second ortho-
normal base. The orthogonal transformation thus defined makes
the given pair of spaces the image of a pair of spaces with

canonical bases in the following normal form: reciprocal

pairs of base vectors not in the intersection have the form
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/ E B
j 0 ‘ i 0 :
cos a/2] f cos q/2}
sin a/2 -sin a/2;
0 - o
0 0 /

while all others have the form
0
0
1 o
0
0

Every pair of subspaces is the orthogonal image of a pair

with bases in such a form,

26, Stationary’variationo

The canonical directions obtained in a total reduction
of a pair of spaces have been characterized by the property
that those which form oblique pairs are reciprocals, in that
they are the orthogonal projections of each other in the spaces.
Now there will be shown a different but equivalent characteri-
zation,

An angle a made by certain directions in a pair of

spaces will be called 3 stationary angle between the spaces

if it is stationary when the directions undergo constrained
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variation in the spaces. It appears that the stationary
angles are precisely the proper angles between the spaces;
and that directions characterized as reciprocals are charac-
terized equivalently as directions which make stationary
angles. o

Thus let

be any unit vectors in the spaces, making an angle with
cosine W , where r, s are now vectors of order p, q « Then
rVMx’MXr =1 SVMYVMys = 1
and
r*MX'Mys =N o
The condition for p to be stationary under the constrained
variation is

‘ 0 - R 7 - ?
Mx Mys = Xer Mxr , My‘Mxr = KSMY Mys .

where Kr’ Ks are the Lagrangian multipliers corresponding to
the constraints on r, s . It appears now that

7\r==u=>\so

But, with Xr = Xs one of the constraints becomes redundant;
whence a necessary and sufficient condition for the stationarity

under constraint is

]
«qu M

? - ’ — v ? =
X MX MY\> r \ =0, r Mx st =1 ,

My Mt (s/‘[

Thus the stationary values of MW are those which satisfy the

equation
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UM M MMl =0 o
y ,
5 Y '
pOTM =i M
by Yoy

But, in view of the identity

YNT

i Nt S
L =H ~uM_ T} M7l = (op) Py "M '™z
(=) WM M M My‘ (=p) [ M, ngjmy Myf!u 1 exey[

e i .

M. '™ =M TM
y X Yy oy
this equation and the equation

2 ! — -
[u21 - exeyf = 0

have the same positive roots, with the same multiplicities.

The proper angles and the stationary angles are thus identical.,

27. Canonical statistical analvsis,

Consider two multiple factors x, Yy correlated in an
experiment in which their spans ;’x = [MX] , A;y = [Myj
have canonical bases U = Mxr y Vo= Mys o They are equivalent

to factors
U= Xr ; v = ys

which have U, V for their measurement matrices:

M o= M = = == == g == o
M, M‘ mmer U, Mv Mys Mys‘ V

The elements of wu, v define canonical components for x, y .

They have the property that they are all of unit variances;

the pairs Uis Vs (i =1, eoss; I) have positive correlation,

given by numbers My the squares of which are the character-

istic values of exey s and which define the canonical corre-

lation coefficients of x, y 5 while all other pairs, taken
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from within and from between the two sets, are uncorrelated.
The derivation of components with such a pattern of correla-

tions constitutes the canonical analysis of the factors.

'28. Oblique projections.

Any vector in a Euclidean space has a unique resolutiocn
into a sum of components in each of a supplementary set of
subspaces, that is a set of subspaces the sum of those dimen-
sions is the dimension of their union, and whose union is the
whole space: and these components, obtained by linear transe-
formations of the vector, define the projections of the vector
relative to that supplementary set. Correspondingly, the
identity is resolved into a sum of projectors, the idempotent
linear transformations which obtain the projections, the range
of each being cne of the spaces, while its null-space is the
union of the rest; so the product of any two of these projectors
is null. Conversely, any set of mutually annihilating idem-
potents summing to the identity are the projectors on the
supplementary set of subspaces formed by their ranges.

With any idempotent, its range and null-space are
complementary, and it is identified with the projector on its
range parallel to its null-space. It is an orthogonal projector
if it is symmetric, in which case its range and null-space are
orthogonal complements; and otherwise it is an oblique
projector.

More’generallyg"relative to any set of subspaces which

are just independent, and not necessarily supplementary, the
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sum of whose dimensions is the dimension of their sum, not
necessarily the whole space, there may be taken the orthogonal
projection of any vector onto their union, and then, with the
vector obtained, the oblique projections on the supplementary
set which the spaces form relative to theirvunion? .In this
wa? any vector is rescglved intoré pair of orthogonal components,
one of 'which is resolved further into a set of obligque come
ponents in the given spaces, while the other belongs to the
orthogonal complement of their union.

If the supplementary spaces are mutually orthogonal,
then projection on each space relative to the set is the
same ag orthogonal projectidn on that space, that is the

projection on that space parallel to its orthogonal complement.

29. Split orthogonal projectors.

The question now arises as to explicit formulae for
the determination of projectors defined with respect to a pair
of spaces, either on one parallel to the other, if they are
complementary, or, more generally, on one parallel to the
other relative to their union, in case they are just separate.
A formula can be given directly in terms of the bases, or
alternatively, in terms of the orthogonal projectors on the
spacese. 4
If two spaces Ex = [Mx] 9‘Ey = [MyJ on which the
orthogonal projectors are e v e are separate, for which

Y
condition the criteria are given by

1 - exeyj # 0, and, equivalentlyg [M“Eny! A0,
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there is defined the projector, which may be denoted by ©

on é:x parallel to & | relative to their union E;x v
J ]

that is the projector an E’x rarallel to the complementary
space given by the union f’y @ &« y of :’y with the
9

orthogonal complement - of their union; so e | is
XY Xy
r
the unique idempotent with range Cﬁx and null-space

e

"y(ﬁ A'X y © Then, in terms of the orthogonal projectors

on the spaces, there is the formula

~ -1
e = (1 - exey) e (1 -« e e )

xly X Xy

5 0T, more immediately in

for the determination of exly :

terms of bases, and in a form which directly generalizes the

formule ’

. oy =1
e = M_{M_'M M_?
X kax x) X
for the orthogonal projector on a space in terms of a base,

there is the formulsa

- " =1 g
= MX(MX eny) M 'e .

e :
X

x|y

From here it is noted, incidentally, that
Zyexiy =esx &, -
Y
The sum of the complementary oblique projectors on a
pair of spaces relative to their union is the orthogonal
projector on their union:
+ e

e = e °

x|y ylx X,y

Now any vector Z in E has a unique resoltuion

Z = Z + e Z +e Z
®xlve T Bylx® T ex,y
. ‘ . 4 - -
into components in (ax s y and C’xgy o
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(@)

1f 5,9 E are, moreover, complementary, so that

X Y
E oy = E and exgy =1
for which the condition now is simply that
pPtag=N |,
then exiyg eyfx are complementary projectors, on and parallel

to a complementary pair of Spaces; and in this case

30. Multiply split projectors.

Now let Exp E 5 (l')

y z?
Ps U5 Ty oo which are independent, and so form a supplementary

coo be any spaces of dimension

set relative to their union Z i of dimension
nggzpooo

P+q+r+ ... o« Then there is determined the projective

resolution

Z + 600 + 8 z

L o= e Z + e y
X}IYngooo y,‘xngooo XsVYsZjyooo

of any vector Z in E into components in E)ﬁ Eyg voas

The orthogonal projector on the union has

e

d
an E’XDYQZQOOO °

the decomposition

e = e +e + °
X9YsZyooo XjYD29°°° lesz9°°° °°

into the sum of mutually annihilating projectors, on each
parallel to the union of the other with the orthogonal comple-

ment of their union all together. Thus, e is the

xﬁygzsooo

projector on E;x parallel to the complementary space given by

£,08,6...0F

XsVYsZyooo0 »
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and, moreover,

rank e = trace e = .
xfy,zyooo x| P ¢

39Zso00e

If Mx,ygeao 1s any base obtained for E;X,y,a,; then

(M, M wes ) is obtained a8s a regular square matrix,
X y x;y,eee .

the components of the inverse of which, when transposed and

—
°© 60y N

conformably partitioned, define matrices Nx’ N. Xy

y9
thus:

o -1 . - S
M oo e = ’ ' oo e N ’ v ! )
( X MY MX9y,aoo) (NX Ny Xngoou )

The projectors which have been considered can be computed thus:

e = M N ¢! PP
X|VsZ, 00 X'x rocr

31. Partial regression.

Consider three factors Xs ¥, z and the regression
of z on the factor composed out of x, vy together. It

obtains the resolution

Mz = ex,yMz + ex,yMZ °

For the regressional part here there is the separation

ex,‘yMz = Mxyyrx,y;z

+
Urxly,z T M,
into further parts corresponding to the partition
U,y = (M)
and, conformably,

I r
X,¥32 X'y,Z

r
ylx,z

9
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New

is the regression of =z on x, vy together, given as a sum of

complementary partial regressions, defining the regression
of z on x partially with respect to v , aﬁd on vy
partially with respect to x »

It 1s required to have a formula for the partial

regression matrix

Toly. o belonging to the regression of =z
DA B :

on  x partially with respect to y o Splitting !z orthogonal

projector e, y into oblique components, corresponaing to the
9
resolution of its range E;x y into complements Exﬁ Ey,z
9 ; )
e M, ==e + M_ + e M o
X,V 2 x|y z ylx z

Substituting from the formula which has been given for the

split projectors, it follows immediately that

9

= i VA R =1 e
rxfygz (MX eyMX) M eyMz

directly generalizing the corresponding formula for a total
regressions.

From this formula it is seen that a partial regression
matrix can be expressed as a total regression matrix. The
partial regression matrix, of =z on x partially with
respect to y , appears the same as the total regression
matrix of the residuals in the regression of z on y on
the residuals in the regression of x on y . For these

residuals fqrm the matrices



48

which, considered as the measurement matrices of factors

2 z-2(y), X*= X=L£(¥), give

32. Inversion and partition.

Consider a factor z = (x, y) composed of subfactors
X; Y o Its measurement matrix has the partitioned form

M = (Mx M

z ) 3 and correspondingly,

? — i ?
M, ‘M, = <MX M MXMy) .

7 K
My MX M '™

Y

y 'y

The question now is to obtain the inverse in a similar form

(M_'M_ )™ = N_'N_
z Z Z Z

where

N, = (Nx Ny)

is partitioned conformably with Mz s and, moreover, is such
that

NUM =1 ®

It can be verified, though it is not immediately obvious, that

this scheme is obtained by

MX)C‘1 , N =% M (M 's.M )" .

— Ly
N, =¢e M (Mx e v My (M e M

X y X y

It is noted that, for any matrix M with independent
columns, there is a variety of matrices of the same order such
that

(M'M)™" = N'N , N'M =1 ;
for a special example,

N = M(M'M)~"
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and there is & turther example, as just indicated, associated
wlith any partition in the columns of M .
Now

R 0 0
MZNZ = MXNX + MYNY )

which obviously gives one projectoi as a sum of two mutually
annihilating projectors. Then, in view of the formula for

split projectors, there is made the identification

=MM?"' , e

exﬂy X X

= M N * ,
yix Yy

and hence, though otherwise not obviously,

. 7
ez MZNZ °

33. Experimental uniformity and mean valueso

In any experiment it is always possible to entertain
a fictitious factor, to be denoted by I , which remains

unchanged throughout: it defines the uniform factor of the

experiment, taking the value 1 on any ocbject. Its measure-

ment matrix is thus

—_— eoco —

the vector with all its elements equal to 1 .
Now consider the regression of any factor x on the

uniform factor I , thus:

Since
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and therefore that

where

-T,:i M WMX = ;{l)

*EILITRN Y

defines the mean value X of x in the experiment, it being

its vector of regression coefficients on the uniform factor;
and it gives its expected value on any further obj:zct, subject
to the fictitious uniformity. The residuals Eimx L this
regression measure the deviation x - X of x from its mean,

thus:

34, Multiple regressions.

The regression of a factor w of a factor (X5YsZsooo)
of dimension p+g+r+ oo composed of subfactors x,y,zZ;oec.

of dimension p,q,r,... has the form

(X9y9000>r = XI + o6

» +yrﬂ
XyVsoeoojW XEYngooogw YIXyZgooogW

where

T T
X YseoolW x| Vszsooosw

T
YﬂxgngOO;W

o
o
©

Just as the total has the determination

= @ M
XyVsoao)T XsYsooo W

Y
‘nggooogw



51
by orthogeonal projection, zo the parts have the determinations

M = &

- M 5 coo
X VsZsooozw

X[ Vezsooow

by oblique projections, determined by the oblique projectors
into which the orthogonal projector is split. But these have
been obtained in the form

e =

X|YsZsooo X X
so that

M, T
X XHYg29ooo§W

=MN ﬁM g ©0o

XX W
whence the set of partial regression matrices are ob.ained in
the form

I ’—:NXWM 9 00 0

X§Y9Zgooogw W

35. Multiple configurations.

Just as various binary relations have been considered,
applying to any pair of spaces, and therefore to any pair of
factors through their spans; and coefficients have been defined
which measure the extent in which any configuration of a pair
of spaces attains to or departs from them, so the same might
be done for the configurations of three or more spaces, by
defining n-ary relations, holding between n spaces taken
together, and which have criteria for attainment to or departure
from them given by certain coefficients, defined as functions
of the spaces. These relations and coefficients are considered
functions of the configurations formed by the spaces, and

remain invariant under orthogonal transformations.
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The most obvious multiple relation to be considered
for any number of spaces is mutual orthogonality. More special
than this is the relation of mutual distinctness. More general
than the negation of this relation, which is the occurrence of
a coincidence, is a relation of linear dependence'between the
orthogonal projectors on the spaces, which may be termed

composability. An equivalence of the condition of composa-

bility is the condition that there exist two subszets of the
spaces, which have their unions identical, and witi‘n each of

which the spaces are mutually orthogonal.

extremes

orthogonal <« » composable
i T
distinct OEEEiifes coincident

A coefficient will be defined whicthets tHe aohfiguratiﬂn
formed by any three spaces in a scale betweenqthe extrémes of
orthogonality and composabilityo For three spaces, composa-
bility is that either a pair of them are identical, or a pair
are orthogonal and the third is their union. A natural exten-
sion for the coefficient to any number of spaces is readily
suggested, and partly established.

Let the number

Keoy,z = |1 sy Cxz
ny 1 Cyz
zx  Czy ]

determined for any three spaces'symmetrically in terms of the
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coefficients of association between their pairs, be taken to

define their coefficient of dissociation. It can be shown

to have the property of being non-negative, and equal to zero
if and only if the three spaces are composable. It will now
be seen to be-at most one, and'éqUal to one 1f and only if

the three spaces are mutually orthogonal. For it is seen that

— 2 2 ‘ 2
0L Kxgy,z = (1 - ny)(1 - sz) - (Cyz - nycxz)
= G2ig2 _ - g
Sxysxz (Cyz nycxz)

2 g2
< Sxysxz A

the bounds being obtained since the S and € coefficients
are bounded between O and 1; and similarly with the spaces
permuted. It follows that the K-coefficient between the

three spaces equals 1 if and only if the S-coefficients between
the pairs all equal 1, whiéh is 1f and only if the spaces are

mutually orthogonale.

Accordingly,
0 < prypz <1
Kxgy,z = 0 &= composable

= 1 <&=> orthogonal .

In terms of orthogonal projectors, composability is one of

the conditions

=0 and e + e = ¢ R

e, = @ or e_e
? X"y X Y z

X Y
or one of the conditions obtained by permuting x, y, z in

theses
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Now for any number of spaces, corresponding to

Xy Vy 2, oso 5 define

Kx;y329a¢o = |1 ny Xz s
Coy 1 ve
sz Czy 1 .

Then it can be shown that

> 0
KX»Y,Z,ooo -

= 0 &> composable
It is obvious that |

Kx’y,z9°°° = 1 <= orthogonal ;

and it is natural to conjecture that
KX,Y,Zpoeo "S 1

= 1 == orthogonal .

36. Limits of association.

There is now to be shown how the relation between a
pair of spaces, or a pair of factors through tﬁeir spans, is
limited by intermediate relation to a third.

Already there has been shown the inequality

e 2 2 g2
(Cyz = nycxz) 5 Sxysxz !

with equality 1f and only if the spaces are composable, the
general discrepancy in the equality being given by Kx.y,z .
It follows that Cyz is limited thus:

nycxz - sxysxz < Cyz s nycxz * sxysxz !
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where equality to one or other of the limits is attained if
and only if the spaces are composables

In this way the coefficient of association between a
pair'is limited when their éoefficients of association and
dissociation with a third are given. There is to be noted
an gpalogy with the formulae for the cosine éf a sum and

difféience of angles.

37. Distribution characteristics.

With a factor z , through its measurement meztrix MZ R
there is associated a multinormal distribution with parameter
matrix

A= (M M)
and it is desirable to identify certain coefficients which
have been defined as functions of the measurements with func-
tions of the distribution parameters, so that they can appear
as direct characteristics of the distribution.

These coefficients have been formed relative to a
partition z = (x,y) of =z 4into subfactors x, y to analyze
the statistical relation between x, y ; and the measurements

have the corresponding partition

M, = (Mx My) .

from which the coefficients are calculated. Correspondingly,
the parameter matrix A, and its inverse
= A=Y _ m 0
2z = A" = MZ MZ ;

have partitions



56

where the diagonal submatrices are square, or order equal to

the dimensions p, q of x, y . Explicitly,

9

Y

o= M_"M_ , Z_ = M_'M
Xy X

- iy -1 - o
A = (MX e M ) s, A = (MX e

VI bl iy -1
XX vy xy M )T M e e M (M B M )T

Y X Ty’ xX'yly xy

The formulae giving the coefficient of correlation ny

and the coefficient of separation Sxy between x, y as

functions of the distribution parameters are

1

R2 = trace & _2='s ==1 | si = ‘
YA llz, |
xx ' xx

Xy YXTXXTXY Yy

or the same formulae with x, y interchanged. Similarly,
for the coefficients of residual correlation, and of

inclusion,

- Zxx Axxl

2 -~ R2 c?® =
QXY P Xy Xy °
The coefficients of association and dissociation are deter-
mined by

2 — 4 2 o )
Chy = Rypy/Pa . SZ =1 .-C2 .

The canonical correlation coefficients | and their multi-
plicities are determined from the positive roots, together

with their multiplicities, of the equation

2y 1] =
| v ZxxAxx - 1] =0

where % =1 ~ u? ;, or the same equation with x, vy interchangedo
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Additional notes

i+ Orthogonalization.

It is required to replace a set of vectors M1,oeoyMp

by an orthonormal set U1,e;o;Up in such a way that, in the

rth stage, U_ € [M1’°°°’Mr] = Er (r = 1,¢00,p) 3 in other

words, to carry out the Gramm=8chmidtvorthogonalization

4 process.

th

Assume the r-1 stage complete, and the orthogonal

projector e._41 on ar-1 computed. The rth stage 1s com-

pleted by taking
)EN,

N_=7%_ .M U_ = (N  }

i
I‘NI‘

and, moreover,

ii. Intersection.

The intersection of the subspaces - E;U Ey of

dimension p,q of a space E of dimension N has been

determined as the null-space of the matrix 1 - of

exey
order N . It can also be determined from the null-space U

of the matrix Mx“zyMX of smaller order p . For, if;ﬂ@

o V_ P 13 9 — =
is any vector, Mx enya 0 1is equivalent to enya o,

which is equivalent to an € Ex N Ey o Accordingly,

@ =la] & & N0 & =Mal .
An equivalent process is obtained when x,y are interchanged.

iii., Canonical pairs of bases.

(i) Since
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M, "W ’
. aflx 9 MX eny

are a pair of symmetric matrices, of which the first is pos-
itive definite, and the second nen-negative definite, they

can obe simultaneously transformed into the unit matrix, and

a non-negative diagonal matrix; thus, with some regular square

matrix o ,

K 2
9 3 _ 9 ¢ At
aMxan"19 aMxenya"L

where it is a real diagonal matrix with non-zero eiements, of

order the rank r of exey o Take

* *
U=ta=(UoU) , V' =eU=(vg Vi),

the partitions being at the rth columns; so that
* *
UTU =1, Up'Vp = Va'Va = p2
¥ my '
and take Vg = Vg U ;, 80 that
UOVVO = U-g VOVVO = Aﬂ [

Now let By be a base for the null-space of MyexMy ; and let
*¥* o

Vi = 'Myﬂ1 s this being a base for the intersection

Ey e Ex of Ey with the orthogonal complement of Ex s
which has been seen to be orthogonal to Qy25<° Let V4 Dbe
an orthonormal equivalent of VT* ; and let V = (Vg Vq) o
Then U, V are a canonical pair of bases, having the

properties

U= 1, VIV = quvm[“ O} .
0 0

, *
(ii) If some crthonormal base U of E){ has already
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been obtained, it can be rotated by an crthogonal transforma-
*

tion which will simultaneously transform _U*'eyU to diagonal

form. Take U = U*a ) Ve o= eyU , and proceed as in (i), where

now, more simply, e, = yut .

ive. Inversion and partition.

Given a rectangular matrix M with |M'M]| # 0 , it has,
according to the definition of_Penrose (19%5), a generalized
inverse given by M~ = (M'M)~'M' ., The matrix N defined by

M=t o= N,
that is, which is the transpose of the generalized inverse,

has the properties

(MM)TT = N'N, N'M=1 .
It 1s now interesting to make further observation on the form of

(M_'M_)"' = N_°N_ , N_'M_ =1,
z 2 ; )

where

Thus,

RX = eny 5 Ry = eXMy

are the residuals in the regressions of x,y on each other; and

=1 _ ? =1 _ '
Rx ——NX 5 Ry ——Ny >

ve. Quadratic decompositione.

The following is a reformulation of the algebraical

proposition on which the theorem of Cochran (1934) on the

PP
it
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distribution of quadratic forms depends, in which orthogonal
projectors again have a rolgs and which shows a significance
for the form in which a sum-of-squares decomposition has been
derived from a regressions.

If a, b, oeo are positive definite symmetric matrices
of rank p, g, oo and of order QNE, such that iai+ b + ceo=1
then ) |

D+ g+ eoo =tNE
if and only if there exists a decompésition of the unit matrix
into?mﬁtué;l&;ééth@gonalﬂprojéét@fsoéep f, ooo , that is
e+ f +.co=1, ef =0 s sso g

and an orthogonal transformation U s such that

a = U'eU 9 b = U'fU 9 ©o0o o

vi. Separation and inclusions

While the squares of the coefficients of correlation
and residual correlation of x with y have a fixed sum,

prescribed by the dimension of vy , thus

2 2 o
ny + Qxy =q

which can be written

trace fef + trace fef = trace f

which shows a quadratic decomposition of the form Jjust treated:
and the same holds for the coefficients of association and

dissociation, thus

2 2
ny + SXy | 1 0 )

there are no precise analogues for the coefficients of
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separation and inclusion, showing them as exactly partitioning
a fixed integral quantity into sums of squares. However, they

can be shown to satisfy the inequality

2 2
Cy + S%y <1

where the equality holds if and only if the first space is
either included in or orthogonal to the second. Further, by

an application of theorems of Holder and Minkowski, there is

the stronger result

9

(Ciy)q/p ¥ (Siy)1/p s

with equality again under the conditions just stated.

vii. Determinantal inequalities.

From the identity

‘M“M MVN! = MM} IN'N][1 - ef]|
N'M NN
and the properties which have been established for the quantity
[1 - ef| , it follows that

jM“M MﬁN! < [M'M[|N*N| (Fischer, 1908) ,

N'M N'N
with equality just if M'N =0 ., It follows immediately by
induction that if

A= Ay A

Agy Agg

00 0000CO0OCGO

9000 QOC

is any symmetrically partitioned positive definite matrix.

Then
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[A] < A Azg] oo

with equality just if all the non-diagonal component matrices
‘Aij are null, -

In particular, with c&ﬁp&nents all of ordér 1, Hadamard's
inequality is obtained. An advantagg of this approach is that
the most general inequality is obtained directly, together
with necessary and sufficient conditions for equality. Bellman
(1960, p. 137) remarks that "Hadamard's inequality is one of

the most proved results in analysis, with well ove  one hundred

proofs in the literature." *

viii. Dissociation,

An application of Hadamard's theory (1893) on the deter-
minant of a positive definite matrix immediately establishes
the conjecture that was made about the maximum of the coeffi-

cient K of dissociation between spaces E ; E 5 oo
XsYso00 X Y

which is that its value is 1, and that it is attained just when
the spaces are mutually orthogonal. Moreover, the more general
form of this theorem, discovered by Pischer‘(1908)p leads to
more genéral results. Thus, for several sets of spaces

E’x” Eyg ooe and tag Eb” ooe and so forth,

K < K

. K
XQY9OOOQapb9000900° s XsYoooo agbgooo

© 00

with equality if and only if spaces in different sets are
orthogonal. It should be noted that the previously defined
composability condition holds for a set if it holds for any

subset. Now 1f there is made the definition
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= K K e 0o
szygooogagbsooo;ooo X9y90009a9b900090a XsyYso000 agbgoao

then this coefficient alsc lies between 0 and 1; being zero
Just if all the spaces taken together are compeosable, and

1 Just if orthogonality always holds between spaces taken from
different sets. Still more general coefficients can be defined,
interminably, when sets of spaces are combined into further sets,
and so forth wunrestrictedly, preserving an analogous scheme

at every stage, showing an inexhaustible combinatorial,
schematically reproductive property of the digsoci;tion

coefficient,

ix. A generalization in Hilbert space.

The analysis which has been given for pairs of subspaces
of a finite dimensional Euclidean space generalizes with only
the slightest modifications of method directly to a finite
dimensional unitary space; and it can be put in a spectral
form which can be interpreted in Hilbert space, and suggests
that generalization. A different approach toc the related
question of the unitary invariants of a pair of subspaces has
been made by Dixmier (1948).

Let & , F be a palr of subspaces of a Hilbert space
ﬁﬁap and let e, f be the orthogonal projectors on them; so
e, £ are the pair of Hermitian idempotent operators in 7%
which have E R 9: for their ranges.

Now efe, fef are a pair of non-negative Hermitian
operators which have the same spectrum I , excluding O, Which

is a compact set on the real axis between 0 and 1. Then,
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following the formulation of the spectral theorem for
Hermitian operators given in Halmos {1951}, there exist
unique spectral measures E(o), Fle) (o ey ), defined on

subspaces g of 1 s such that
efe = [ ANdE(N) , fef = [ adF(\)} ,
where, in addition tc the automatic orthogonalities
E(¢)E(p) =0, F(o)F(p) =0 (onp=0),

carried by the general spectral theorem for Hermi.lan operators,

there are the further orthogonalities

which arise from the peculiar form of construction of this
pair of Hermitian operators cut of a2 pair of Hermitian idem-
potents. Moreover, the spectral measures E(I }, F(I ) of
the positive spectrum give the orthogonal projectors on the
orthogonal projection e¥F, £& . The matter is easily
settled sc far as the point spectrum is concerned; but i+
calls for future asnalysis in respect to the approximate part
of the spectrum, using the fact that the operators considered

can be approximeted by operators with point spectra.
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