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1. Introduction

It is a well-known proposition, due to Hicks (1939) and
Leontief (1936), but generally associated with the former,
that a group of commodities among which the relative prices
are constant can, in a natural way, be treated as a single
commodity. The phrase "treated as a single commodity"
summarizes the assertion that an individual will have pref-
erences over bundles containing the composite commodity and
these will have the same general properties -

continuity, convexity, etc. - as his more fundamental

* T would like to acknowledge the helpful comments by
Michael Rothschild on an earlier draft of this paper.
He is, of course, not responsible for its remaining
shortcomings.



preferences over the underlying goods. The proposition is
frequently used, as it was by Hicks, to analyze the demand
for a single commodity when all other commodities' prices are
held fixed. The standard diagram has units of the commodity
in question on one axis, and "dollars" on the other, understood
as spendable on the remaining commodities on constant terms.
The usual proof of the composite commodity theorem
assumes that consumer preferences are representable by a
continuous, twice differentiable utility function, and exploits
the second order properties of utility maximization. (See,
for example, Green (1971), pp. 308 ff.; Hicks (1946),
p. 310 ff.; Samuelson (1947), p. 141 ff.) Versions of the
theorem by Gorman (1953) and, most recently, Diewert (1973)
are considerably more precise about the properties of pref-
erences which carry over to composite commodities, and relax
the (sometimes implicit) restrictions commonly found. Both
of these writers assume that preferences are representable by
utility functions and analyse preferences in terms of proper-
ties of such functions. However, for some purposes it is
desirable to deal directly with preference orderings rather
than utility functions,particularly as some preferences are
not representable by a utility function. As is known

(Debreu (1959)) several independent properties of preferences



are required to assure the existence of a utility function,

and it is of some interest which of these properties separately
carry over to preferences over bundles including the composite
good "as a single commodity." This question is the principal
subject of the present paper.

In the course of answering the gquestion for a represen-
tative list of properties of preferences I demonstrate somewhat
more general propositions about the conditions under which
certain properties of binary relations are inherited by their
images in other sets under mapping. I have made a particular
effort throughout to deal with properties (such as transitivity

and continuity) separately and independently of one another.

The usual composite commodity theorem is a special case
of my more general results. The problem of spelling out the
composite commodity theorem in terms of properties of prefer-
ence orderings proved somewhat more difficult and the usual
theorem holds under conditions somewhat less general than I
had expected. In particular, some care must be exercised to
assure the continuity of the derived preference ordering over
bundles with the composite commodity as an element.

In section 2 below I describe the properties of pref-

erences which I shall consider and outline the strategy of



the remainder of the paper.

2. The Formal Setting

We are given a consumption set X, a subset of n-dimen-
sional Euclidean space,:Rn, and a preference relation R on
X, with properties to be specified. 1In the basic composite
commodity problem we are interested in a preference relation
R** on a set Y of ordered pairs of real numbers y = (yl,yz).
(Throughout the paper, subscripts on vectors refer to their
components.) By choosing a point (yl,yz) the individual
obtains quantity Y1 of the first good and Y5 "dollars"
which he can spend on goods 2 throudgh n at given fixed prices,
Ps thréugh P, - R** is therefore derived from R, and our
inquiry concerns its properties as a function of those of R.

R 1is a binary relation. The properties I shall assume

it may have (separately or in combination) are:

2-1 Definition:
(Pl) (Reflexivity) For all x in X, xRx.
(P2) (Completeness) For all x, x' in X, either
xRx' or x'Rx or both.
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(P3) (Transitivity) For all x, x', x" in X, if

xRx' and x'Rx", then xRx".

(P4) (Nonsaturation) For all x, x' in X, if

x > x', then xPx'.

(Here x > x' means x no smaller than x' in any component
and larger in some. The relation P is derived from R in
the usual way: xPx' if and only if =xRx' and not x'Rx.

For general discussions of orderings see, e.g., Debreu (1959),
Ch. 1; Fishburn (1972), Ch. 3; Rader (1972), Ch. 3; Sen (1970},

Ch. 2.)

(P5) (Convexity) Let R[x] = {x' € X| x'Rx}, i.e.,
the "no worse than x" set. For all x in X,

R[x] 1is convex.

(P6) (Strict Convexity) For all =x in X, if x'
and x" are in R[x], and 0 < 7 < 1,

(tx' + (1-71)x")PX.

(P7) (Continuity) Let [x]R = {x' € X| xRx'}, the
"no better than x" set. Then for all x in X,

R({x] and [x]R are closed.



Properties Pl ~-P7 are intended to be a representative sample
of those customarily ascribed to a preference relation R
over the consumption set X. I believe that the methods used
here will allow the results to be extended readily to other
properties.

The general outline of the way in which R induces a
preference relation R** on the set Y of bundles with the
composite commodity is simple enough. If vy = (yl,yz) and

y' o= (yi,yé) are elements of Y we say that yR**y' if the
bundle in X consisting of the best combination of Yy units
of the first commodity and such amounts of the remaining com-
modities as éan be purchased at prices PososP for Y,
dollars is as good as (according to R) the best combination
of yi units of the first commodity and such amounts of the
remaining commodities as can be purchased at prices Pys-:sPy
for yé dollars. Given that R has one of the properties

Pl -P7, we wish to know whether R** has that property.

The chdice of one bundle with composite commodity over
another is seen to be a choice of one subset of X over
another, it being understood that, having selected a subset
of X, a further choice of a particular element of that subset
can be made according to preference relation R. The relation

. . X
R** on Y is thus based on a relation R* on 2, the set



of subsets of X, where R* 1is as yet only implicitly defined.
We can divide the analysis of the ordering R** of bundles
with composite goods into the questions (a) when does an
appropriately defined ordering R* on 2X preserve the
properties of R and (b) when does the ordering R** on Y
induced by R* preserve the properties of R*?

I shall take up the latter question first. The ordering
R¥*  of two elements of Y is defined by reference to the
ordering of their images in 2X under the simple mapping
described verbally above. This situation has a simple general
form. Given sets V and W and a relation R on W, a
mapping £ from V into W induces a relation on V which

may be devoted R We say of two elements v and v' of

£
V that vav' if and only if £(v)Rf(v'). 1In section 3
sufficient conditions are established for Rf to preserve

any of properties Pl -P7 displayed by R.

In section 4 I show that the "composite good mapping"
satisfies the sufficient conditions described in section 3,
provided that the consumption set X (and hence its power
set 2X) satisfies certain restrictions. Counterexamples are
shown for some cases when X does not satisfy these restric-
tions. As a preliminary to the results in section 4 it is

necessary to spell out the definitions of scalar multiplication



and addition, of "vector inequality" and of closedness applying
" X
to éR (and thus to 2°) reguired to make sense of proper-
ties P1 -P7.
There remains the problem of relating preferences on
X . . C
2 in the appropriate way to preferences on X. This is
taken up in section 5. A natural definition is adopted
(a set is preferred to another if for every element of the
second there is a better element of the first), and it is shown
that properties P1-P6 of R carry over to R* guite gener-
ally. Property P7, continuity, requires special treatment,
. X
basically because 2" ' has both open and closed sets as ele-
ments.

Finally, in section 6, I state two composite good

theorems which follow directly from the earlier results.

3. Mappings Which Preserve Properties Pl -P7

Suppose that V is a subset of ®R' and W is a
subset of :Rp, that R is a relation on W with properties
Pl1 -P7, and that f maps V into W. It is convenient to
regard R as a subset of W x W, such that if w and w'
are elements of W, then wRw' if and only if (w,w') is an
element of R. The mapping £ induces a relation R on V.

il

Again, thinking of R as a subset of V x V, we say that if

£
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v and v' are in V, (v,v') 1is an element of Rf if and
only if (£f(v),£f(v')) is an element of R.

In the language of R as a set of ordered pairs our

seven properties become

3-1 Definition:

(P1') For all w in W, (w,w) € R.

(P2') For all w, w' in W, either (w,w') € R,

(w',w) € R or both.

(P3') For all w, w', w" in W, (w,w') € R and

(w',w") € R implies (w,w") € R.

(P4') For all w, w' in W, if w > w' then

(w,w') € R and (w',w) £ R.

(P5') For all w in W the set

R{w] = {w' € W| (w',w) € R} 1is convex.

(P6') For all w in W, w' and w" € R[w] implies
for 0 <7t <1, ((tw' + (1-7)w"),x) € R and

(w,(tw' + (1-"1)Ww"))Z R.

(P7') 1If [w]R = {w' € W| (w,w') € R}, then for all

w in W, R[w] and [w]R are both closed.
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If W' is a subset of W, £ ©

(W') 4is defined to be
the subset of elements v' of V such that f(v') is in

W'. We require the following lemmas.

3-2 Lemma: If V is convex and f is linear then for

all W' © W, W convex implies £ "(W') convex.

Proof: Suppose v and v' in f_l(W'). Since V is

convex, Tv + (1l-7)v' is in V. Because f is linear
fl(rv + (1 -7)v'") = 7f(v) + (L -71)£f(v'). Because W' 1is

S -1 .
convex, this is in W'. Hence £ (W') is convex. Q.E.D.

3.3 Lemma: If V 1is closed and £ 1is continuous then

for all W' © W, W' closed implies f “(W') closed.

: 1 2 . -
Proof: Suppose a sequence of elements v ,v ,... in £ l(W')

converges to a limit v. Since V is closed, v is in V.
. . 1 2
Because £ 1is continuous, the sequence £(v7),£(v7),...
converges in W' to f(v). If W' is closed f(v) must
-1 f—l

be in W'. Hence v is in £ (W'); (W') 4dis closed.

Q.E.D.

Now we can state sufficient conditions on V and f

to assure that Rf on V has the same properties as R on

W:



Proof:

(pP1')

(p2')

(P3')

(P4')

11—~

Theorem: If V is a convex and closed subset of R-
and if £ 1is a continuous linear mapping into a subset
W of Eﬁ‘ which preserves natural partial ordering ()
of vectors then'any of properties Pl -P7 (equivalently
P1l' -P7') displayed by R over W are displayed also

by Rf over V.

If R is reflexive, for all v in V, (£f(v),f(v)) € R.
Hence (v,v) ¢ Rf.
If R is complete, for all v,v' € V, either
(£(v),£(v')) € R or (f(v'),f(v)) € R or both. Hence
Rf is complete.

For all wv,v',v" € v, if

(v,v') € Rf and (v',v") € Rf then (f(v),f(v')) € R
and (f(v'),f(v")) € R. If R is transitive
(£(v),£f(v")) € R, implying (v,v") € Rf. Thus R is
transitive.

If £ preserves vector inequality, v,v' € v, v > v'
implies £(v) va(v'). If R displays nonsaturation
(£(v),£(v')) € R and (f(v'),f(x)) £ R. Hence

(v,v') € R. and (v',v) £ Res Re also displays

nonsaturation.
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(P5")

(p6')

(P7")
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If R is convex, for all v in V, the set R[f(v)]
is convex. By lemma 3-2, if f 4is linear and V

-1 . .
convex, the set £ "(R[f(v)]) is convex. It is

readily seen that f_l(R[f(v)]) = Rf[v]. For

v' € f—l(R[f(v)]) - if and only if (£(v'),£f(v)) € R

if and only if (v',v) € R Thus for all v € V,

£

Rf[v] is convex.

Suppose Vv' and v" in Rf[v]. Since V is convex,
Tv' + (l~-T1)v" is in V for 0 < 1t < 1. If R
displays strict convexity (7£(v') + (l-17)£f(v"),v) € R
and (v, 7£(v') + (1-1)£(v")) £ R. f being linear
this éays equivalently, (£f(tv' + (1-171)v"),v) € R and

(v,£(1v' + (1 -171)v")) £ R. Hence

(1v' + (L=m)v", v) € R, and (v, mv' + (1-1)v") £ R,

f
Thus Rf is strictly convex.
If R 1is continuous [£f(v)]R and R[{f(v)] are closed

for all v in V. If V 1is closed and £ continuous,
by lemma 3-3, £ T([£(v)JR) and £ (RI£(v)]) are

[vl and [vIR are closed.

closed; equivalently R £

£

Hence Rf is continuous
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4, The Composite Commodity Mapping Preserves Properties of

Orderings on 2

The composite commodity theorem concerns the connection
between a preference relation on the set ¥ of bundles with
composite goods and the preference relation R on X. How-
ever, as we have discussed we need to establish along the way
that the composite good mapping preserves the properties of a

relation on 2X. In particular we want to show that if a

relation R¥* on 2X has any of properties P1-P7, then its
image on A via the composite commodity mapping has the same
properties. This is basically a matter of showing that the
situation satisfies the hypotheses of Theorem 3-4.

Before proceding, however, we must adopt definitions
of scalar multiplication, of vector inequality, and of closed-

n
ness, on fR

n
4-1 Definition: If Xl and X2 are in fR and T a

scalar then

1

(x e R"| x rx'  for some x € X'}

-3
>
il

5 _
Xl + x for some xl € Xl

X~ +x° = (x erY| x

and x2 € X2}
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n
These are standard definitions, by which QR becomes a
vector space, where the set consisting of the zZero vector is

the origin.

1 2 12
4-2  Definition: If X and X° are in 2%, X© > X° if
. 2 . 2 . 1 .
and only if for all x in X there exists x in
Xl such that xl > x2.
Cxas 1.2
4-3 Definition: A sequence X ,X ,..., of elements of

n
fR converges to a limit X if and only if

(a) every sequence of elements of ZRn, one from each
set Xi, has a limit point, and

(b) ény limit point of such a sequence is in X, and

(c) any element of X can be written as the limit of

i
such a sequence of elements of X .

n
4-4 Definition: A subset & of QR is closed if and

only if the limit of any convergent sequence of
elements of § is itself in §.
With these definitions all of properties Pl - P7 become
Rr®
meaningful as applied to relations defined on 2 . We turn
then to the composite commodity mapping from the set Y, a

subset of IRZ, into 2X. Although I shall continue thus to

deal with the case of a single "natural” good and a single
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composite of the remaining goods, it should be obvious that

the same reasoning applies to any number of composite goods.

4-5 Definition: For vy EZR?, ply) = {x eimn| xl‘g Yy and

PoXy + ... 4 P X, < y2} where Py,+++,P, ~2re non-

negative real numbers, not all zero.

4-6 Definition: The composite commodity consumption set,

Y C:RZ, is defined by

Y = p—l(X)

The composite commodity mapping : Y —> 2X is defined
Px

for y € Y:

pX(y) =ply) N X .

n
4-7 Lemma: The mapping p is linear into fR , and if X

is (a) convex and closed and (b) has the property that
for any x in X there is x' in X, x' > x, then

P is a continuous, order-preserving mapping from Y

X

. X
into 2

Before proving the lemma it will be helpful to show
the function of the restrictions on X. The convexity of X
is needed to assure the continuity of Py> @s the diagrammed

countérexample to the lemma in figure 1 suggests.
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In the diagram the area to the northeast of the curved
boundary represents the available second and third components

of X in 3-space when Xy is held constant at §l' The

"budget lines" labelled kl, k2 and k constrain the guan-

tities of x and x purchasable with k

5 3 dollars, k

1 2

dollars and k dollars, kl < k2 < E, when their prices are
set at P, and Py Suppose the sequence of points in Y,
(§l’kl)’(§l’k2)"" converges to (§1’E)' Then the corre-
sponding sequence of subsets of X converges to a set with
X, and X4 components constrained by the line segment x'x"
in figure 1. However the point (§1,E) in A is mapped into
a set with %, and X5 possibilities including the point
labeled x" in figure 1.

To show the order-preserving property of p we must
use the fact that for any x in X there exists x' in X,
x' > x. Otherwise the counterexample of figure 2 might arise.
In the diagram, there is no point ih X to the northeast of
X', a point in p(y'), so even though y' < y" we do not have
p{y") > p(y'). For some plausible preferences the consumer
would be indifferent between p(y') and p(y"), because the

extra points in the latter are no better than points already

available in p(y').
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PyX, + Py¥y = k) 2

Figure 1. If X is not convex,

Py may not be continuous.

Figure 2. Even though y' = (yl,y2') < y" o= (Yl,yg),

there is no element of p(y") northeast

of x in p(y").



We turn now to the proof of Lemma 4-7.

Proof of Lemma 4-7: It is apparent that p is linear into

EP. In view of the preceding discussion it is further readily
shown that pX is order-preserving, and I omit the details.
To show the continuity of Py into 2X, we must show that if
a seguence yl,yz,..., of elements of Y converges to § in
Y then the seguence, pX(yl),pX(yz),..., converges to pX(§).
Let X be the element of ZX consisting of all the
limit points obtainable by picking sequences of elements of
X, one each from pX(yl),pX(yz),... . It is straightforward

to show that X is contained in pX(§). For suppose x € X.

. = . i :
By definition of X there 1is a sequence of elements x , with

xl in pX(yl) with a subsequence converging to X. By defi-
o i i j
nition of p, for each x , X, = yi and
i i i i i
+ + ...+ . i -
p2X2 Py %,y pnxn < Yo Since the sequence VY con

verges to §, any limit point % of the seqguence xT  must

) A= A A - ) )
satisfy X = ¥yo P,%, R P, < Yoy In particular this

must hold for x. Since X 1is closed, x € X and hence, by
definition of Pyr X € pX(y).

To complete the proof we must show that px(§) is
contained in X. Suppose X € pX(§). Can we find a sedquence

xl, one each from pX(yl), such that x" converges to x?
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Figure 1 tells us that the convexity of X will play a role
in the answer. Suppose the answer were no. That would mean
that there is some positive distance ¢ such that, given a
number m, arbitrarily large, I can find a larger number m'

such that for all <0 in px(yml), [§ - Xml[ > e¢. Without
loss of generality we may assume that we can pick m large
enough so that this is true for all m' > m (simply drop
from the original sequence of y's any for which it is not
true). The situation described is illustrated in Figure 1,
with x™ 4in Figure 1 playing the role of x here. However,
since X 1is assumed to be convex, for any given J if we

3

connect X to a point x in pX(yj) by a straight line,

all of the points on the line are in X. Such a point is of

the form

A7 - - ' - '

X~ = (TXl + (1-—¢)xi, X, + (l'—T)Xg, cees TR+ (l"T)Xa) ,
where x7J is in pX(yj) and where 0 < 1 < 1. Such points
satisfy

8 <y 4 (-0

1 - 1 1

AJ AJ = _ J
(p2x2 + ...+ pnxn) < Y, * (1 'r)y2

By the convergence of yl to vy, for any fixed 0 < 71 <1,
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and for any fixed 3j, there is a number m* large enough so

that for m' > m¥,
Ty, + (l-T)yj <y

1 \ 1 =71

Ty F(1-ny) <y

2 2 =72

This means the point in guestion (the convex combination of

- . . 3 o m' ,

x and a point in pX(y )) is in pX(y ) for all m' > m*.
By making T small enough, we can make the point as close to

X as we wish, in particular closer than e¢. Hence there must

be no element x in pX(§) and not in X. Q.E.D.

Lemma 4—-7 and Theorem 3-4 together establish that if
X is closed and convex the composite commodity mapping
generates preferences on Y which have any of properties
Pl - P7 holding for preferences in 2X. We turn then to the

origins of preferences on 2

X .
5. Preferences on 2 Derived from R

The connection between preferences R on X and
X . . . A .
preferences on 2 which seems to accord with intuition 1is
the direct analogue of Definition 4-2 of partial ordering of

n
. fR 1 2
vectors in . If X and X are subsets of X we say
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2 .
that Xl is weakly preferred to X if for every element of

X2 there is an element of Xl weakly preferred according to

R. Formally,

X 2
5-1 Definition: If Xl and X2 are in 2 , then XlR*X
T 1.2 :
(equivalently (X ,X7) € R*, viewed as a subset of
X X, . . 2 2 .
2% x 27) if and only if for all x € X there exists

xl € Xl such that XlRX2 (equivalently, (xl,xz) € R).

Now it is a simple matter to prove

5-2 Theorem: If R on X has any of properties Pl -P6,

X .
then R* on 2 has the same properties.

Proof:

(pPl) (Reflexivity) To show for X' in 2X that X'R*X'

we need only observe that for all x' in X', X'Rx’',

by R reflexive.

(P2) (Completeness) Suppose R* were not complete. Then

1 2 . X . 1 2
for some X and X in 2°, neither X R*X nor

2 1 . - .
X“R*X~. The first means for some X2 in X2 there is

1 . 1 . 1 =2 .
no x in X for which x Rx"~. Hence, because R 15

-2 1 1 1
complete, x Px for all x in X . Similarly, from

. . 1 -1 2
the second, there 1s X in X such that x Px for
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all x2 in X2. But this would imply §1P§2 and

-1 . . . .
X Px , which 1is impossible. Hence R* must be complete.

(P3) (Transitivity)
(P4) (Nonsaturation)
left as exercises.

(P5) (Convexity)

(P6) (Strict Convexity) , Q.E.D.

The remaining property, continuity, presents some
problems. Figure 3 shows a case in which R 1is continuous
but R* not continuous. The curved line is an ordinary
indifference curve, which is asymptotic to the vertical line
(xl =1, X, > 0). The set B consists of all the points in
the first guadrant on the vertical line and to the left of it.
Define Bi to be the set consisting of all the points obtained

L1
by adding to B the vector /C—f ,O0 . Clearly the sequence of

2
sets Bl converges to B. It is also true that, by our defi-

nition each set B is better than the set consisting of the

single element, x': BlP*[X'}. Yet we see that (x'}P*B.
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0 (1,0) X,

Figure 3

Figure 4 shows a somewhat different case of R¥ not

continuous.

Figure 4
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The set C consists of the interior of the circle, but
not its boundaries. The curve u = u is an ordinary indiffer-
ence curve tangent to C, and tangent as well to the line
P{¥q + p2X2 = b. If we take the sequencg of ordinary budget

1t

sets described by P1%q + poX, < b - ,5/ , we see that it

converges to plxl + p2X2 S'E. The latter set is preferred to
C, but every set in the sequence is strictly worse than C.
These examples indicate it will be necessary to restrict
our attention to the relation induced by R* on some subset
X , . . sy
of 2 in order to obtain a continuity condition. The most
. . . X
obvious candidate is the set 2C of compact subsets of X.

In doing so we must be cautious about the meaning of conver-

gence.

e ' X .
5-3 Definition: A sequence of elements, Xl, of ZC will

. . X . . .
be said to converge in 2C if and only if there 1s an

—_— . X 3 —
element X 1in 2C such that {Xl} converges to X

. X . . .
in 2°. Similarly, we say that the relation induced

X . . X . X
by R* on 2C is continuous on 2C if, for X € 2C’

X
the limit of any sequence in R*[X] 0 2C which con-

verges in Zﬁ is in R*[X] and the limit of any sequence

X \ X . .
in [X]R* N 2C which converges in 2C is in [X]R*.

5-4 Theorem: If R is continuous on X, R* is continuous

X

on 2C.
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Proof: Suppose a sequence Xi of compact subsets of X
converges to the compact subset §, and that for all i,
Xi € R*¥[X'], where X' € 2?. We wish to show that X € R*[X'].
We know that for all x' in X' there is at least‘one
element Xi in Xi such that xin'. Consider a sequence of
such elements xi. Since the sequence of sets Xi converges
the sequence of points xi has a limit point; call it x*.
Since R is continuous, x*Rx'. By definition of E, x* € X.
Hence, for all x' in X' there is an element x* in §
such that x*Rx'. By definition 4-1, gR*X‘, i.e. X € R*[X'].

The analogous argument applies to [X']R*. Q.E.D.

6. Composite Good Theorems

It is now a simple matter to state two composite
commodity "theorems," which are direct corollaries of
Theorems 4-2 and 4-5. These theorems concern the ordering
R** on the set Y of bundles with composite commodity,
where, in terms of our previous notation, R¥* = R; , where

X
Py the composite commodity mapping, is defined by 4-6, and

R* is defined by 5-1. For reference we note

6-1 Definition: If y' and y" are elements of Y,

y'R¥*y" if and only if pX(Y')R*PX(Y")'
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Then we can state

6-2 Corollary: If X satisfies the conditions of Lemma
4-7, and R has any of the properties P1 - P6, then
R** has the same properties on Y. If, furthermore,
for all vy €Y, pX(y) is compact, then R** is con-

tinuous if R 1is continuous.

6-3 Corollary: (Hicks-Leontief) If X is a closed convex
subset of the non-negative orthant, such that x € X
implies x' € X for all x' > x, and the prices of the
component goods are all positive, then R** on Y has

any of the properties Pl -P7 characterizing R on X.

We see that as far as properties Pl - P6 are concerned,
the conditions for the composite good theorem in the Corollary
6-1 version are reasonably mild. The condition to assure
continuity, however, is less agreeable (although we should
keep in mind it is sufficient, perhaps not necessary). It
is fulfilled in the Hicks-Leontief version, basically by the
non-negativity of X. For many purposes their restriction of
X to the non-negative orthant is not acceptable. It isrby
now fairly standard, for example, to treat an individual's

sales of labor as negative consumption of leisure. 1In
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externality problems the individual may be subject to arbi-
trarily large negative effects. It may be necessary in such
models to adopt explicit bounding assumptions to assure

validity of the composite commodity device.
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