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In this paper we state necessary and sufficient
conditions for the convergence of the age structure (in a
discrete time, one sex model of population growth) and we
give a new and simple proof of the weak ergodic theorem
of stable populétion theory. The main tool we use to
attain these results is Hilbert's notion of the projective
metric. This metric provides a waf of defining the distance
between positive vectors in R" which has two impor-
tant features: first the distance between any two positive
vectors depends only on the rays on which the vectors lie;
second, positive matrices act as contractions in this metric.

These ideas will be made pfecise in §1.

§1. The Proijective Metric

n

Let x and y be vectors in R~ with x==(xl,...,x )

and y = (yl,...,yn). We shall adopt the following conven-

tions for vector inequalities:

i) x>y iff (if and only if) x; > vy, for all i ;

ii) x>y iff x>y and x f y:



o

!

iii) x>>vy iff x; >y, for all 1i;

The vector x 1is positive if x > O (where O 1is the
vector all of whose components are O). The positive
orthant is the set in R® which consists of all the posi-

tive vectors. A vector x is strictly positive if

X>> 0. The same terminology applies to matrices. In this

paper the set of all strictly positive vectors in R® will

be denoted ¢

We define a distance between two vectors in the
positive orthant of R" and then show that this distance
depends only on which rays the given vectors lie. (A ray
in R" is a half line starting at the origin.) Let x

and y be positive vectors in R" . Define p(x,y) as

follows:

(1) Suppose there exist scalars a and b such

that x < ay and ay < bx, then define

p(x,y) = min 4dn(b)

where this minimum is taken over all pairs
(a,b) satisfying the above inequalities.

This figure shows how the choice of a and b

can be made.



(2) 1If no such scalars a and b exist, then define

p(x,y) = = .

A way of computing p(x,y) when x and y are

. X,
strictly positive, is as follows: Let r = max (=%)
1<i<n Yi

X,
and s = min (=%). Then p(x,y) - {n(g). Note this
i<i<n ‘i :

method will not work when x = (1,0) = y .

As an example of (1), let x = (1,1,2) and
y = (3,2,1); then p(x,y) = dn6. BAs an example of (2)
let x = (1,0). and y = (1,1).

Definition: p 1is called the projective metric and the

number p(x,y) is the projective distance from x to y.

The following lemma which states some basic facts

about p , justifies this terminology.



LEMMA 1.1: Let x, y, and z be positive vectors

in Efl . Then

(i) p(x,y) = p(rx,sy) where r and s are
positive scalars. Thus p only depends on
the rays generated by x and y in the

positive orthant.

(ii) p(x,y) 2 0.

(iii) p(x,y) =0 iff x = ay for some positive
scalar a .

p(y,x) .

(iv) p(x,y)

(v) »p(x,y) < p(x,z) + p(z,y) (the triangle in equality).

PROOF: (i) Suppose x < ay < bx , then rx < r(ay) -

2;(sy) . Let a' = i? . Now a'(sy) = r(ay) < r(bx) = b(rx).

So rx < a'(sy) and a'(sy) < b(rx). Thus a "b" which
works to compute p(x,y) also works to compute p(rx,sy).

The process is reversible, so p(rx,sy) = p(x,y).

(ii) If x < ay < bx, then x < bx , which implies b >1.

Sso dnb >0.

(iii) Since x < x, p(x,x) = 4n(1) = 0 . By (i) p(x,ax)=0 .



Conversely suppose that p(x,y) = O . Then we can take

b=1 . So that x< ay < x and X = ay .
(iv) If x <ay < bx, then y< 3 ¥ < ;(ayﬁ =by . So a
"b" which works to compute p(x,y) also works to compute

ply,x) and p(x,y) = p(y,x) .

(v) If either p(x,z) or p(x,y) =«, the inequality

holds trivially. So let p(x,z) = 4dnb and p(z,y) = Inb'.
Then x < a8z < bx and z < a'y < b'z, for constants a

and a' ., So

x < az < ala'y) < a(b'z) = b'(az) < b'(bx)

or

x < (aa')y < (bb')x .

Hence p(x,y) < 4n(bb') = dnb+ £nb' = p(x,z) + p(z,y) .
Note that the projective distance between any two

vectors in o , that is, between any two strictly positive

vectors, is finite.

LEMMA 1.2: Fix y in Q. Then the real-valued
function £ defined on o by £(x) = p(x,y) is

continuous.

PROOF: As long as x and y are in 0, there exist

constants a and b such that x < ay < bx. It should



be clear that the choice of a and b can be made

continuously as x varies. (Look at the previous figure).

Proposition 1.3: Let x and y belong to the positive

orthant of Ifl

and let S be a non-negative nxn

matrix. Then p(Sx,Sy) < p(x,y). If S > ¢ (all the
entries of S are positive) then S is a strict contrac-
tion relative to p; i.e., p(S x » Sy )< Kg p(x,y)

for all positive vectors x and y where K is a con-
stant < 1. The contraction constant K varies continuously

S
with the entries of §s.

PROOF : The complete proof is too complicated to present
here. It is given in Chapter 16 of Birkho ff [1]. The first
part however, is easy. If p(x,y) = » then p(Sx,sy) < plx,y).

If p(x%,y) <w then for some a and b,

x <ay < bx .,

Since S 1is a positive matrix,

Sx < asSy < bsx

so that if p(x,y) = dnb, p(sx,Sy) < 4nb .l/

lsee [1, Chap. 16] and [4] for other discussions and
applications of the projective metric.



§2. The_Weak_ Erqodic Theorem

The discrete, one sex model of population growth

may be sketched as follows: break the population into n

equally spaced age groups and let Vs be the vector whose
ith component is the number of people in the ith age
group ; v, 1is a vector in the positive orthant of
n
R . If we let |v| = |v1|+...+|vn| where v = (vl,...,vn),

then ;o = v/ v |l gives the vector of percentages of people in

each age group; ;o is the age structure vector at time o .

Suppose that each age group has the birth rates (bl’ ...,bn)
and survival rates (sl,...,sn_l). The survival rate for

the oldest age group, s is necessarily equal to ¢

n’
In the discrete time model, birth rates necessarily include
some component of survival, only in continuous models is
fertility completely separated frommortality. This is an

inconvenient, although not unimportant fact, which we shall

henceforth ignore.

Let
b2 . . L ] bn-l
o [ ] L ] L] o
T =
52 . . L] o
O [ ] ] [ ] s

n-1




Then the population and age structure vectors next period

are given by v, = T v, and ;l = vl/nvl . Of course,

o
we must measure time so that it takes exactly one period
to move from one age category to the next. Thus, if the
data in T represent birth and survival rates for 5 year

intervals, a single time period is 5 years long. T is

called a population matrix and is a positive nx n matrix.

The Perron-Frobenius Theoreﬁystates that a positive matrix like
T has a unique positive eigenvalue = » whose modulus is
exceeded by no other eigenvalue and a unique positive eigen-

vector e with Te = X and |e|| =1 . Such a matrix

AN . A sufficient condition for a population matrix T to be
primitive is that the survival rates S: the last birthrate,
bn » and birth-rates in the middle age groups are non-zero (i.e.,
two successive age groups -- not including the first -- have

£

positive birth rates).2 With these conditions T~ >> 0 for
some integer 4 .
If the birth and survival rates are constant, then

after k time periods the age structure is %k = Tkvo/”Tkvo

These conditions are sufficient to ensure the .
convergence of the age structure, Vi to the vector e
independent of the initial population. This result is the

Strong Ergodic Theorem of stable population theory.

lSee [8] for a proof. We assume that T is indecomposable.
2If b,=0 and b is the last non-zero birth rate, it is
common to consider oﬁly the kx k matrix composed of the
first k rows and columns of T . This essentially determines
all facts of demographic interest. See [7], [8] and [9].



THEOREM 2,1: (The Strong Ergodic Theorem). = Under

the conditions stated Lim vk = e
k-)oo

PROOF 2 This is a simple consequence of the Perron-Frobenius
Theorem. We present a different proof here -- one based

on Proposition 1.3 -- which is almost identical to the proof

of the weak ergodic theorem which we give below. Since both

e and ;k are of unit length, it will suffice to prove

that Lim P(;rk, e) = Lim p(Tkvo’ e) = O. Let S = T‘£>>O
k-—)::o k—)oo
then K Tk'{[k/£] S[k/£] U, S[k/&]

where [k/{] is the greatest integer in k/£ and
U = Thtlk/A) g k/ 1is an integer U, 1is the identity
matrix: in any event, Uk is positive and, by Proposition 1.3,
p(ka,Uky) < p(x,y) for all positive x and vy .

Since e 1is an eigenvector of T, e 1is an

eigenvector of Tk . Thus,

) |
p(TFvy, e) = p(Thv_, ™) -

p(Uk S[k/uvO > Uy S[k/£]e) < p(S[k/£]vo s S[k/£]e)

< Kék/£]-1 p(Svo,Se) R

where KS < 1 1is the contraction constant whose existence
is guaranteed by Proposition 1.3. Since S>> o, Svo and

Se are in o so that p(Svo,Se) is finite. Clearly

lim p(Tkv , &) = 0,
o
k—)oo



It is unrealistic to assume that the birth and
survival rates do not change with time. However, if £hese
rates are constant over a single time period, then ergodic

.analysis is still possible., Let Tk be the matrix of
birth and survival rates during the kth  time period.

Then after k periods population and age structure vectors
are v =T, Ty ' T;vg and v = v /v | . It

is no longer true that the Gk's converge but under

rather modest assumptions on the Tk's , it is still

true that for large k's , the vectors v are independent

k
of v, . This is the Weak Ergodic Theorem which we now
prove.
THEOREM 2.2: (The Weak Ergodic Theorem). Let

Tl’T2"" be a sequence of primitive population

matrices satisfying M < Tk <N for all k , where M and

1

N are fixed positive matricesand M >> O . Let

S

Kk = Tk 'kal oo T1 . Then if Ve and w, are

any strictly positive vectors Lim p(Skv ,Skw ) = 0.
k—)oo ° ©

Remark: Since the projective distance depends only on rays,

this theorem states that p(Gk,&k) —=> 0. It is possible to

use these techniques to prove a slightly stronger result -- that

p(vi,w) < c glk/21-1 s K <1
where the constants C and Kand4 depend on M and not on
vo,wO or the Tk's. Thus the speed of convergence can be

bounded independent of v, and W,. See [5] for details.

10



As in the proof of the strong ergodic theorem, the key
is to apply proposition 1.3 to products of the Tk’s taken

{ at a time. The following Lemma states that this can be done.

LEMMA 2.3E There exists a constant K<1 such that

— e et S et et s e S .

is S is any A4-fold product of the T, 's i i.e.,

S = Tkl,...,Tk£', then S contracts projective dis-
tance by at least K .

PROOF OF LEMMA 2.,3: The boundedness assumption in the

2 2

Tk's implies that M~ < S < N ., By Proposition 1.3,

S contracts distance in the projective metric by a factor

2
Kg - Recall that a set in R" is compact if it is

closed and bounded and that any continuous function on a

compact set achieves its minimum and maximum. Now the set

£ 2

of matrices S satisfying M < S <N is closed and

n2

bounded in 1R and therefore compact. Since K varies

S

continuously with S (Proposition 1.3 again) there is a

K>0 such that Ky < K < 1 for all such S .

PROOF OF THEOREM 2.1: Again, let [k/4]

be the greatest integer in k/4 . Then

*k 7 U Viksey Tt Vi

where v, = Ti%’Tiﬁ-l s T(i—l){~+l and Uk is the

identity matrix if k /4 is an integer and otherwise

Uk = Tk... T[k/£]4-l . In either case Uk is

11



12
a positive (but not necessarily stric¢tly positive) matrix
so that by Proposition 1.3, p(ka, Uky) < p(x,y) for all

positive x and y . Then

P(Syvs Spwg) = POV gge e UV s UV py" "V W)

IN

PV 21" "Viver Vig/e1® V1¥e)

xk/21-1

IN

p(Vlvo, Vlwo) .
where K < 1 1is the contraction constant whose existence is

guaranteed by Lemma 2.3. Since V; >>0, p(Vlvo, Vlwo) is
[k/21-1

L ' 1
finite and K (Vlvo’ Vlwo) converges to 0 Y

§3. Nécessarv and_Sufficient Conditions for Convergence of
Age Structure

The strong ergodic theorem states that if the
population matrices T,  are constant in time (Tk = T
for all k ) and primitive then the age structure converges.
The weak ergodic theorem allows Tk to vary (with some
boundedness assumptions) and concludes that the age structure --
in the long run -- does not depend on the initial population
distribution. 1In general, it is not true that
the age structure must converge. We now present
conditions which are both necessary and sufficient for
the convergence of the age structure.

We make the boundedness assumption of section §2 on

the sequence Tk, namely, M < T, <N for all k where

k

-lFor other discussions of the basic results of stable

population theory see, e.g. (2], [61, [7] and [9].
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2

M~ >0 for some 4 . This implies that the survival rates
and the middle and last birth rates of each .Tk are bounded
away from zero; Thus each Tk is primitive, has a unique
positive eigenvalue Xk which dominates all other
eigenvalues of T\ (in modulus) and has a unique positive

engenvector with e f =1 .

€k

THEOREM 3.1: With the assumptions and notation

just given, the age structure vector converges to

a vector e iff Lim € = € .
k-—)co

Remark: Recall that in a compact set any sequence has a
convergent subsequence. Moreover a sequence in a compact

set converges if every convergent subsequence converges

to the same point.

PROOF: Given an initial age structure vector ;o = Vg s
define, as usual, v, = T vk_l/HTk Vk-l” . The problem

is not changed if we multiply each Tk by some positive
1

scalar. So we may assume that A = for all k .

k

Necessity: Assume Lim ;k = e . We must show that
k—)oo .



Lim e, = e . Since the ek’s are all unit length vectors,
k= :

they vary within a compact set. Let ekl,eke,... be a
subsequence converging to £ ., By the remark above it

is sufficient to show that e = £, Since the Tk 's
i

vary within a compact subset, there is a convergent sub-
sequence. So, by passing to a subsequence if necessary,

we may assume that Lim Ty
o i

=T, with M<T . The

assumptions on M guarantee that T has a unique posi-

tive eigenvector with eigenvalue 1 . (Note the modulus

of the largest eigenvalue depends continuously on the matrix.

Since that eigenvalue is 1 for each Tk it must be 1
i
for T.) In fact T£ = Lim Tk (ek ) = Lim e, =£ ,
foe i i 1= i

so £ must be that positive eigenvector. On the other

hand Lim v, =e = Lim T, (v, _1)/ T, (3. _i)| = Te/|Te] .
iow Ki iow K KTk TR 7L
Since T%>>0 , Te £ 0 for any positive vector e . So

e 1is also an eigenvector for T with positive entries and

unit length. By the uniqueness of such a vector e = f .

Sufficiency: We assume that Lim e, = e and show that
k—)oo

Lim v, = e .

k= k

1k



15

Recall that £ is the integer for which M{ﬁ>> o .

Part I: It is clearly sufficient to show that Lim v =e
—————— k-w a +k£

for a = 1,2,...,4-1 . Moreover, since the v all

1
k'S
have unit length, all we need do is show that any convergent

~

subsequence of the uence v .ee converges to e .
bsequenc f the sequenc Vards Vaiods n g

(Recall the remark above.)

Since T£>>>O for all k , each e 'is strictly
.y N
positive. Furthermore T% > M for all k implies that

all the entries of e are bounded away from zero so all

the ek's and any limit point of the ek's are in @

Part II: For any € >0, there is an integer K>0 such
that p(ek,e)<:e for all k>K. (Use Lemma 1.2 and the

fact that e, —e in Q. ) For such a k we claim that

(%) p($k+g,e) < C p(vk,e) + 24¢
where C 1is a constant <1 independent of k .
Let § =T T . Then

K+4 Tk+z-l T Tkl
p(Vy, €)= B(s v /lls v ]I, e) = p(s ¥ ,e)

by Lemma 1.1 (i). Now p(S Gk,e) < p(S v, ,Se) + p(Se, Se

k? k+1) *
p(Sek+l,e) by Lemma 1.1(v). By Proposition 1.3, there is

a C< 1 so that p(sx,sy) <C p(x,vy) for all x, y, and S.
So

p(:fk_*_,&)e) <C p(vk)e) + € + p(s ek_l_l}e)
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So we need only show that p(S ek+l,e) < (24-1) ¢ . Let

S' =T s so that 8 = s8' . T + Then

k+4- k+2 k+1l °

since Ty,1 Ski1 = Sk412 P(S e 158) = P(STey,  e)

S p(8" e ps8te) + p(S'e,S'ey ) + p(Sley ,e)

IN

p(ek+l’e) + P(e)ek+2) + P(S'ek+gae)

since any non-negative matrix is a contraction in the pro-

jective metric. (See the proof of Propositicn 1.3). So

p(s ek+1:e) S 2¢ + P(S'ek+2,e) .

A simple induction shows that

IN

p(s ek+l,e) 2(4-1)e + p(Tk+£ek+£,e)

IN

(22-1) e

Part III: From (*) we see that when k > K,

p(va+(k+1)ﬂ’e) S c p(va+k,@’e) + 2 ZLe

?

Repeated applications of this formula show that

p(;"'a+(k+t)‘ﬂ’e) < cf p(;;a+k"=") +2de (L+c® . acth)

t
t ,~ -
= C p(va+k, e)+ 24 %%?57



Since c < 1 and ¢ may be arbitrarily small, it follows

that Lim p(v,,. s, e) = 0. Thus if v

k—bco

a+klz ’

is a convergent subsequence of the V

~

va+k2£"" a+ki's

we have that p(Lim §a+k‘2,e) = 0. By Lemma 1.1 (iii),
i i

Lim ;a+k P is a scalar multiple of e . Since both

i i

are positive and of unit length, they must be equal.

Q.E.D.

Corollary 3.2: Suppose the sequence Tk converges to T
where T£>:>O . Then the age structure vectors always
converge to the unique unit length positive eigenvector

of T ,

Finally we make some remarks on the demographic

interest of these results.

Corollary 3.3: Suppose that the sequence of age structure

vectors ;k converge to e = (el,...,en) and that T
and T' are limit points of the sequence of population
matrices T, . Let (bl,...,bn, Sl""’sn-l) and
(bi,...,bﬁ, Si,...,sﬁ_l) be the birth and survival rates
of T and T respectively. Then there exist positive

constants a and a' such that

17
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n n
— 1 !
(1) a iElbiei = a ii:lbiei ,
and
(2) a.sj = a'55 for 1<3j<n-1 .
PROOF: Let a = L and a' = L . In proving
ITe ] IT*e]

the necessity part of Proposition 3.1, we showed that

Te
e—m—aTe
'
= H%Tgﬂ = a' T'e .
Writing the equation aTe = a'fT'e component by component

yields the desired conclusion.
The demographic meaning of these results is clear:

An age structure will approach a constant only if the crude

n
birth rates ( = biei) and each age specific survival
i=1

rate approach constants or if, in the limit, these rates
vary proportionally and simultanebusly. The fact that the
age structure converges imposes no other restrictions on
the asymptotic behavior of the entries of Tk . The
"sufficiency" part of Theorem 3.1 guarantees that this
asymptotic behavior for the crude birth rates and the age
specific survival rates is sufficient to guarantee conver-

gence of the age structure.
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