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Introduction

The problem of integrating uncertainty into general
equilibrium theory has been the subject of a considerable
amount of research in the last twenty years. Most of this
research uses as a starting point the pioneering contribu-
tion of Arrow [1] and Debreu [3], who recognised that
environmental uncertainty can be incorporated in the same
way as time or geographical location - by enlarging the
commodity space. Arrow and Debreu redefine a commodity so
that it is characterised not only by its physical properties
and the date and location at which it is available, but
also by the state of the world in which it is available.
They then show that if markets for all such narrowly defined
"contingent" commodities exist, the standard theorems about
the existence and optimality of a competitive equilibrium
under certainty generalise without modification to the case
of uncertainty.

The Arrow-Debreu approach is ingenious, but its appli-
cability as a theory is questionable since so few contingent
commodity markets actually exist in the real world. Arrow
[1] has shown that the conclusions of the theory continue
to hold in the absence of contingent commodity markets, as

long as economic agents have correct forecasts of future



prices and there are as many linearly independent securi-
ties as states of the world. In most realistic situations,
however, the number of states of the world is likely to be
very large, so that the assumption that there are as many
securities as states is rather a stringent one.

Economists have been led, therefore, to analyse
equilibria in situations where contingent commodity markets
do not exist and where there may be only a limited number
of securities. The main difficulty which must be faced in
such an analysis is the specification of the behaviour of
economic agents. The consumer side of the market has been
studied extensively (see, for example, Lintner [14], Sharpe
[21], Mossin [18] and Hart [10]) and poses no real concep-
tual problems. The analysis of firms' behaviour, however,
is considerably more complex since the usual assumption
that firms maximise profits is no longer meaningful when
profits are a random variable rather than a single number.

Three main approaches have been taken towards speci-
fying firms' behaviour. The first, adopted by Diamond [51,
Stiglitz [24], Jensen and Long [11], Fama [9], Merton and
Subrahmanyam [16], and Mossin [19], is to assume that firms
maximise the market value of their shares. The second,

which Dreze [7], Ekern and Wilson [8] and Leland [13] have



followed, is to assume that firms' stockholders get togeth-
er and make production decisions on a collective basis.
Finally, Radner [20] assumes that firms use von Neumann -
Morgenstern utility functions to select optimal production
plans.

Although quite different specifications of firms'
behaviour are assumed in these various approaches, the
conclusions derived are relatively uniform. In most cases,
equilibria turn out not to be Pareto-optimal. 1In fact,
only Diamond [5], under the assumption that production un-
_certainty is multiplicative in nature, Leland [13], under a
variant of the multiplicative uncertainty assumption, and
Ekern and Wilson [8] and Merton and Subrahmanyam [16],
under the assumption that consumers have mean-variance
utility functions, conclude that egquilibria are Pareto-
optimal.

The different approaches have another feature in
common. With the exception of Radner's work, they all
assume that the economy contains a single good and lasts
for a single period. The purpose of this paper is to
investigate the consequences of relaxing the single good
assumption. This will be done using the framework of the

Diamond model. That is, it will be assumed that production



uncertainty is multiplicative, and that firms, acting as
price takers, maximise their market value. Our main con-
clusion is that Diamond's result that an equilibrium is
Pareto-optimal fails to generalise to the many good case.
The reason for this is not the existence of many inputs in
the production process, but rather the existence of many
outputs and the opportunity to trade in these outputs after
the completion of production;;J

At first sight, it may not seem surprising that an
equilibrium fails to be Pareto-optimal in the many good
case. After all, if there are several goods in the economy,
a2 new element is introduced: price uncertainty. And, if
economic agents have incorrect price eéxpectations, an equi-
librium will not be optimal even if there is no uncertainty
at all about the environment (see, for example, Dorfman,
Samuelson and Solow [6, Chapter 12]).

The results we obtain, however, are much stronger than
this. We show that the case of environmental uncertainty
differs crucially from the case of environmental certainty
in that an equilibrium is not generally optimal even if
economic agents have identical self-fulfilling point expec-~
tations about prices. In Section 4, examples are given

where there are two equilibria, both of which are based on



correct forecasts of future prices, but where one is pre-—
ferred by everybody in the economy to the other. 1In other
words, everybody can be made better off simply by changing
price expectations.

The reason that this sort of situation can arise may
be given intuitively as follows. When there are many goods
and fewer securities than states of the world, the oppor-
tunities for trading depend to some extent on the prices
of goods after the completion of production. One equilib-
rium may be better for everybody than another because, with
different goods prices, there is a greater opportunity for
all consumers to buy the goods they want to consume, and
hence greater gains from trade can be realised. It should
be noted that this situation can arise even if each firm
produces a single product. What is important is that there
are many goods in the econoﬁy, not that each firm produces
many goods.

The analysis presented in this paper depends crucially
on the assumption that firms face multiplicative uncertainty.
Our conclusions, however, have wider applicability. If
eguilibria fail to be Pareto-optimal under the assumption
of multiplicative uncertainty and price taking, value

maximising behaviour by firms, then it seems highly unlikely



that equilibria will be Pareto-optimal under any other
assumptions about firms' behaviour. Hence, our results would
appear to implythat,withinreason,ru:s&nknmrketequilibrium,
however defined, will be Pareto-optimal in the many good

case.

The paper is organised as follows. 1In Section 2, the
Diamond model with a single good is reviewed. 1In Section 3,
the model is extended to the case of many goods, and,
corresponding to three different restrictions on short-
selling behaviour, three self~fulfilling price expectations
equilibria of the type investigated by Radner in [20] are
defined and discussed. TIn Section 4, Diamond's notion of
constrained Pareto-optimality is extended to the many good
case and it is shown that the Section 3 equilibria are not
generally optimal in this sense. In Section 5, one of the
Section 3 equilibria is shown to be optimal in a weaker
sense: it is impossible to make some people better off in
some states of the world without making other people worse
off in other states of the world. It is shown also that
two of the Section 3 equilibria are technologically
efficient. Finally, in the appendix, the proofs of some

of the more technical results are presented.



2. The Diamoncé Model with a Single Good

This section consists of a review of the basic Diamond
model. Our presentation of the model differs slightly from
Diamond's own in [5], but it shouuld he clear that the two
are eguivalent.

We consider a single period economy with F firms,

I consumers and S states of the world; F, I, S are all
assumed to be finite. There is a single good in the econ-
omy, which appears as an input of the production process at
the beginning of the period and as an output of the produc-
tion process at the end of the period. Consumers have
initial endowments of this gcod and supply these endowments
inelastically to firms at the beginning of the period; con-
sumption takes place only at the end of the period.gJ
Uncertainty is introduced into the model by assuming that
the guantity of output a firm produces depends not only on
the guantity of input it uses, but also on which state of
the world occurs.é“ The state of the world is assumed to
be known by everyonc at the end of the period, but to be

unknown at the beginning of the period.

Firms

Firm £f's production function may be written as



S . .
(hfl(L),...,hfS(L)), where hf (L) 1is the quantity of
output produced in state s and L is the guantity of

input. We assume that production uncertainty .is multiplica-

S

. 1 S 1
tive, so that (hf (L),...,hf (L)) = gf(L)(af TERFL)

fl,...,afs) € Ri and for some function Ie mapping

) for
some (a
: 4! .
R, into R+ (£ =1,...,F)~. 1In other words, each firm
produces a single pattern of recturns across states of the

world. The assumption that production uncertainty is multi-

plicative is a crucial part of the Diamond model.

Consumers
Consumer i (i = 1,...,I) has an initial endowment of

the gocad Lt € R+ and initial proportionate shareholdings

. . . - i
in firm £ given by ef 20 (£=1,...,F), where
- i 5] . .
z ef =1 for each f£f. Consumer 1i's tastes in state s
i .
(s =1,...,8) arc represented by a utility function Us1

defined on R+ and consumer 1i's probability beliefs by

a vector & PS = {nm € Ril Lrn.o=1) (i=1,...,I); =

S S
S

1s consumer i's assessment of the probability of state s

occurring.

Eguilibrium

We define a competitive equilibrium under the assump-

tion that, at the beginning of the period, there are markets
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for firms' shares and for the good as an input in production,
andvthag at the end of the period, consumers consume their
shares of firms' outputs. Given the special form of firms'
production functions, the existence of a markét for firm £f's

shares is ecguivalent to the existence of a market for units

1

PR S), which yields

of the random variable a_ = (a ,a

£ f

S
ag units of output at the end of the period if state s

occurs (s = 1,...,8). It turns out to be easier to discuss
equilibrium in terms of the markets for these random varia-
bles rather than in tcrms of the markets for shares.

Let w be the price of one unit of the good as input,
r the price of the randcom variable a and

£ £

r = (r r_.). Consider the production decision of firm

17 Tp
£f. If firm f wuses L units of input, its ocutput in

state s 1is given by gf(L)a s (s =1,...,8). 1In other

£
words, it is supplying gf(L) units of the random variable

A Its market value is thercfore re9e

(L), and, under the
assumption that the only method of financing the purchasc of
input is by issuing new shares,éJ the markct valuc of its
initial shareholdings is rfgf(L) - wL. We assume that

firms maximise the market value of initial shareholdings,

so that firm f chooses L to maximise

rfgf(L) - wL . (1)
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A second justificaticn of (1) as firm f's objective
function may alsc be given. Suppose that a complete set cf
contingent commodity markets existed. Then firm £ would
maximise

T qsgf(L)afs - wL , (2)
s

where I is the price of one unit of the good contin-
gent on state s occurring. (2) cannot be used directly as

an cbjective function in the situaticn we are considering

because the firms do not know the qs. However, firm f
does know the cost of the random variable ac and we suppose
that it argues that, whatever the o are, the cost of

ac, evaluated using the dg> must equal rf. In other words,

S S

g agae = Te It follows that § qsgf(L)af - wL =
rfgf(L) - wL and that maximising (1) is the same as

maximising (2).

The argument that firms do not need to know the ag
in order to maximise profits or market value depends, of
course, crucially on the assumption that producticn un-
certainty is multiplicative. 1IF this assumption does nct
heold, there is in general no simple objective function for
firms like (1), and the problem of specifying firms' behav-

iour becomes considerably more difficult.ﬂ



Consider now the consumers. A consumer's wealth derives
from two sources: his initial endowment of the good and
his initial shareholdings in firms. Since

max {rfgf(L) - wL} is the market value of the aggregate
LR
+

initial sharehcldings of consumers in firm f, consumer 1i's

‘wealth is given by wh© + - P max {r_.g9.(L) - wL}. Con-
£ £°F
£ LER+

sumers use their wealth to buy shares in firms since this is
the only way of obtaining output for consumption purposes at
the end of the period. Each consumer is assumed to select a
portfolio which maximises expected utility of consumption
subject to a budget constraint.

Let zf be the number df units of the random variable

,Z_) .

ag that consumer 1 purchases and let z = (zl,... F

Define
. ] - - . i 8
B (w,r) = {z € RFI rz < wit + ¢ 8.0 max {r_g_(L) - wL}}.—J
+ = £ £-f
£ LER+

11

Then, assuming that short-sales are not permitted,gJ consumer i

s , S 3
maximises T w_"U (L z_a_" ) subject to =z ¢ Bl(w,r).
s 5 s £ f £

Definition of Egquilibrium

is an equilibrium price vector if

1 I
there exist Ll""’LF’ 2,0 0.,2 such that

P
(w,r) € R, x R
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(1) Lf € R+ and rfgf(Lf) - wa 2 rfgf(L) - wL for all
L €R, (£ =1,...,F);
(11) 2* € B (w,r) and & n U (% za/®) >
s s f °f =
s £
£ tu (s zfafs) for all z €B (w,r) (i=1,...,1);
s £
(III) £ L _=c%i;
£ -
£ i
i
(1IV) ? 2z = (gl(Ll),...,gF(LF)).

(I) is the condition that firms maximise profit or
market value; (II) is the condition that consumers maximise
expected utility; (;II) is the condition that there is
equilibrium in the input market. Finally, (IV) is the
condition that there is equilibrium in the share markets;

consumer 1i's proportionate shareholding in firm f is
zfi 1
given by» ;;rz;y if gf(Lf) > 0 and by I if gf(Lf)==0.
We now make some assumptions which guarantee the

existence of eguilibrium.

Al. Ie is continuous and concave (f = 1,...,F).

A2. I¢ is increasing, that is, gf(L') > gf(L) if L € R,
‘and L' >L (f=1,...,F).

A3, USi is continuous and concave (s = 1,...,S;
i=1,...,1I).

A4. Usi is increasing (s =1,...,8; i =1,...,I).



AS. L” >0 (i=1,...,1).

Theorem 2.1. Under assumptions Al-A5, an equilibrium

exists.l'-QJ

The proof of Theorem 2.1 will not be given since it
consists of a straightforward application of the technigues

presented in the proof of Theorem 3.2 in Section 3.

Optimality

Having given sufficient conditions for the existence
of equilibrium, we turn next to the definition of optimality
and the relationship between equilibria and optima in the
. . . ll[
Diamond model. We define an allocation to be a vector

1 . . .
(Ll,...,LF,x ,...,xI) which satisfies

(V) L, € R, (f =1, LF)
(vi) x' € RS (i=1,...,1);
(VII) Y L. =% L;
£ 72
f i

i s
(VIII) £ x~ = T gulla. (s =1,...,8).

. \ . i . .
Lf is firm £'s 1input and xS i8 consumer i's con-

sumption in state s. (VII) is the condition that the

amount of the good used as input equals the total amount

13



of the good available and (VIII) is the condition that
aggregate consumption equals aggregate output in every state
of the world.

An allocation is defined to be Pareto-optimal if there
is no other allocation which makes some people better off

-and ncobody worse off. That is, the allocation

1 . . . .
(Ll,...,LF,x ,...,xI) 1s Pareto-optimal if there is no
. g = ~ ~I : .
allocation (Ll,..., F,xl,...,x ) satisfying
ioi, i i i
T Mg U (R, > 2 MU (%, 7) (i=1,...,1),
S

with inequality for some 1i.

If an all-knowing central planner toock over the economy,
he would be able to achieve any allocation. Suppose, how-
ever, that the central élanner were constrained to allécate
consumption at the end of the period by allocating shares
in firms to consumers at the beginning at the period. There
would then be many allocations which the central planner
could not achieve. We call those allocations which could
still be achieved SM allocations (short for stock market
allocations). More formally, the allocation
(Ll,...,LF,xl,...,xI) is an SM allocation if there exist

zl,...,zI such that
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(1X) = ERF+ (i=1,...,I);

(X) x - v oz s’ (s =1,...,8;i=1,...,1I);
£

S

i —
(k1) 22" = (gy(n), . gp(ig)

I . .
z ,...,2 are the portfolios corresponding to the alloca-

Definition of Constrained Pareto-Optimality

The SM allocation (L .,LF,xl,...,xI) is defined

10"
to be constrained Pareto-optimal if there is no SM alloca-

\ > ~ ~1 ~I . .
tion (Ll,...,LF,x yeee,X ) satisfying

i i~ i i i
T U (x_ )
8 S S
s S

) (i =1,...,1) ,

with inequality for some i. In other words, an SM alloca-
tion is constrained Pareto-optimal if there is no SM alloca-
tion making some people better off and nobody worse off.
The word constrained is used because SM allocations are
being compared with other EM allocations rather than with
arbitrary allocations.

It is clear that an equilibrium allocation is an
SM allocation. Diamond's main ressult is that an
equilibrium allocation is constrained Pareto-optimal.

In order to prove this result, we introduce
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another assumption, which says that every consumer
believes that some firm is capable of producing a positive

amount of output with non-zero probability.

A6. FPFor each i: there exist f and s such that
nt>0 and a.° > 0.
s £

Theorem 2.2: An equilibrium allocation is constrained

Pareto-optimal if assumptions A4 and 26 are satisfied.

1 I A .
Proof: Let (Ll,...,LF,x s+++3X ) be an equilibrium

allocation at prices (w,r) and let the portfolios asso-

ciated with this allocation be zl,...,zI. Suppose
~ ~ .1 ~I . . . .
(Ll,...,LF,x »+++,% ) 1is an SM allocation with associated
. 1 ~I : L e
portfolios 27,...,Z7, which satisfies
i_oi, i i i i .
»E TS USRS 2 5 m UL T (%) (i =1,...,1) ,

with ineqguality for some i; Using A4, A6 and the fact that
consumer i choosaes z- instead of the at least as desir-
. ~1 . ‘
able portfolio Z at prices (w,r), we may deduce that
i - i .
rz” > wLo + E ef (rfgf(Lf) - wa) (i=1,...,1) ,
with inequality for those i for which 2 is strictly

preferred to z*. Summing over i and using the facts that
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X éfl = 1 and (il,...,i
i ,

(X1), we cbtain

Trg (L) -w IZL
£ £f°f °f £

- which contradicts (Lf) - wL_ = max {r

g (L) - wL}
£ LER, £

Te9¢ £

(£ =1,...,F). Q.E.D.

The follewing example shows that an ecuilibrium is not

generally an (unconstrained) Pareto-optimum.

Example 1. There are two states of the world and two
consumers, each owning % unit of the good. There is a single
firm, which transforms L wunits of input into L units of
output whichever state of the world occurs. The situation

can be represented by means of an Edgeworth box, with the

single equilibrium allocation at the centre of the box C.

Consumer
AN 2
!
c Output in
1 State 2
L
Conirmer < 1 —

Output in State 1

Figure 1



However, there is no reason why the consumers' in-
difference curves should touch at C, and so this allocation
will not generally be Pareto-optimal although it is, of

course, constrained Pareto-optimal.

We have shown that any equilibrium allocation is
constrained Pareto-optimal. We complete this review of the
basic Diamond model by showing that any constrained Pareto-
optimum can be achieved as an equilibrium allocation with
an appropriate redistribution of initial endowments and
shareholdings, thus making complete the formal analogy
between the Diamond theory and the Arrow-Debreu theory.

First, we make two more assumptions.

A7. Given i and £, there exists s such that ﬂpl >0

and .af > 0. \

A8. T L™ > 0.
i

capable of producing something with positive probability.
A8 says that there is a positive amount of the good available
as input at the beginning of the period.
1 I.1 I . .
Let E(L7,...,L7,8,...,8") be the economy in which

. . i
consumer i's initial endowment of the good is given by L



and consumer i's initial proportionate shareholdings in

firms by the F-vector 67 (i =1,...,1).

Theorem 2.3: Under assumptions Al, A2, A3, A4, A7 and AB;

1 , . .
if (Ll,...,LF,x ,...,xI) 1S a constrained Pareto-optimal

, . 1 . .
allocation, there exist L seee,L,0 ,...,GI satisfying

L™ €RrR, (i=1,...,1),
et er’ (1=1,...,1),

+
I A i
i i

i
Tel =1 (f=1,...,F),
i
1 I . o .
such that (Ll,...,LF,x s+++,X") is an eguilibrium alloca-

. 1 1
tion for the economy E(L ,;..,LI,e ,...,eI).
Proocf: Since the proof is very similar to the usual Arrow-

Debreu proof, only a sketch will be given. Let zl,...,zI

be the portfolics associated with the SM allocation

1 I .
(Ll,...,LF,x y+++,%X ). Define

~ ~ 1 I
vV = {(Ll,...,LF,z v 2 ) L R, (£ =1,...,F),

for each i}



~1 ~ ~
Yy 2 ? 27 - (gl(Ll),---,gF(LF))

1

c,L,2Y, ..., 2T) € v} .

1 F

Al and A3 imply that W is convex, and, since

1 I

(L .,LF,x 5+-+,X) is a constrained Pareto-optimum,

17

O ¢ int W by A4 and a7. Therefore, we can construct a
hyperplane through 0 such that W 1lies on one side of the

hyperplane. That is, there exists (w,r) # 0 such that
wv + ry >0 (3)

for all (v,y) € w.

From (3) it may be deduced that

rfgf(L) - wL § rfgf(Lf) - wa for all L ¢ R+ (4)

(£=1,...,F)

and

(5)

20
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(4), (5), A2, nd, A7 and N8 now establish that (w,xr) >0

an<d that

F i i s i i ]
z € R+ and I g Us (T zfaf ) > % ﬂs Us (zz_"2a.")

s £ S £
i .
=> rz > rz (i=1,...,1)

It follows that (Ll,...,LF,zl,...,zI) is an equilib-~

rium allocation at prices (w,r) with initial shareholdings

and endowments given by

;i

\ zf

} if gf(Lf) >0 .
. i / gf(Lf) (£ =1,...,F;
£ ) i=1,...,1)

{ 1 .

| T if g (L)) =0

L I £f £

Lt = i Lfefl (i =1,...,1)



3. The Extension of the Diamond Model to _the Many Good Case

We now generalise the Diamond model to the case where
there are M inputs at the beginning of the period and N

outputs at the end of the period.

Firms
The assumption that procduction uncertainty is multi-
plicative is retained, so that firm £'s production function
may be written as g.(L)(a ! cee,a S) where g_(L)a "~ is
f £’ R f £
now the vector of outputs firm f pProduces in state s and
L. is its vector of inputs (f = 1,...,F). It is assumed that

. . . i, .
gf 1s a function mapping Ri into R+ and that, for each

s N
S, ag € R, (f =1, yF) .
Consumers
Consumer i (i = l,...,1I) has an initial endowment of

inputs Lt € Rﬁ and initial, Proportiocnate shareholdings

in firm £ given by 8 20 (f= 1,...,F), where

£
z Efl = 1 for each £. Consumer 1i's tastes in state s
i
g . i
(s =1,...,8) are represented by g utility function Us
defined on RE and consumer i's probability beliefs by
i S S .
avector nm €P = (7 eRr’ ¢ m, =1} (i = 1,...,1).

+ s
s

22
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Egquilibrium

We define an eguilibrium under the assumption that

there are markets for firms' shares and for inéuts at the
beginning of the period and markets for outputs at the end

of the period when production is compieted. The existence

éf end of period markets is a new feature of the model. It
should be clear that without such markets the many good case
differs in no significant way from the single good case of
Section 2. In the many good case, however, unlike the single
good case, there will in general be incentives to trade at
the end of the period, and it therefore seems desirable to

consider the case where such trading actually takes place.

As in Section 2, we may regard firm f as a producer of

units of the (vector-valued) random variable a= (afl, . ,'afs) , which
yields the vector afS of outputs at the end of the period
if state s occurs (s = 1,...,8). It will again be easier

to discuss ecuilibrium in terms of the markets for these
random variables rather than in terms of the markcts for
firms' shares.

Let w be the M-vector of input prices, r the price

bl

,r_ ). It is

of the random variable a and r = (rl,... P

£

assumed, as in the basic Diamond model, that firm f chooses
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L to maximise rfgf(L) - wL. Exactly the same arguments as
before may be used to justify this particular objective func-
tion. It should be noted that firms do not require any
knowledge of output prices at the end of the period to make
their production decisions.

Consumer behaviour is a little more complicated than
in the basic Diamond modcl. As before, consumers are
assumed to supply their endowments of inputs inelastically
at the beginning of the period and to use their wealth to
buy shares in firms. However, since consumers are assumed
to be aware of the fact that trading takes place at the end
of the period, consumer investment behaviour depends not
only on consumer tastes and probability beliefs about states
of the world, but also on eXpectations about end of period
Prices.

The equilibria we will be considering in this paper are
of a very special type. We confine ourselves to cases where,
first, each consumer has a point forecast of end of period
output prices; secondly, the forecasts of different con-
sumers are the same (this does not mean that a consumer has
the same price forecasts in different states of the world) ;
and, thirdly, these forecasts are correct. Equilibria of

this kind have been investigated by Radner in [20].




The assumption that consumers' forecasts are correct
is, of course, very unrealistic. However, if consumers'
forecasts are allowed to be incorrect, it is well-known
that an equilibrium will be sub-optimal even if there is
no uncertainty at all about the state of the world ( see
Dorfman, Samuelson and Solow [6, Chapter 12]). Our purpose
is to show that in the case of environmental uncertainty,
there is a more fundamental source of sub-optimality; an
equilibrium will be sub-optimal even if consumers' fore-
casts are correct.

Let the N-vector P represent the price forecasts
of consumers in state s (s = l,...,8). If consumer i
holds =z ﬁnits of the random variable a (£=1,...,F),

£ £

consumer i will have claim to the vector of outputs

= zfafs in state s before trading re-opens, and consumer
£

i's income in this state at prices P will be given by
ps(Z zfafs). If price forecasts are correct, con-

£
sumer i's utility in state s will therefore be

S
v_. (p_, pS(Z zea. ))
f

i N
= max {Usl(x)| X € R, and p_X <p (% z_a S)} s

where Vsl, which is an indirect utility function, is

2k



s

well-defined only if pS(E zfaf ) > 0. Hence, consumer i's
£ =

expected utility at' the beginning of the period is given by

T o v l(p » Py (Z z_a )). Consumer i is assumed to
s S s s £ £°f :

choose z so as to maximise T m iV i(p s Py (Z z_a ))
s S s s g £ £
subject to a budget constraint.

We consider three different regimes for consumers. In
the first regime, short-selling is prohibited as in the
basic Diamond model. In the second regime, short-selling
is permitted, but the vector of outputs which each consumer
owns at the end of the period before trading re-opens is
constrained to be non-negativebin every state of the world.
In the third regime, the only requirement is that each
consumer's income be non-negative in each state of the
world at the forecasted prices. The first regime is more
restrictive than the second regime, which in turn is more
restrictive than the third regime. In all three regimes,
bankruptey in any state of the world, even in those states
which are believed to occur with zero probability, is ruled
out.12]

The reason for considering these three regimes is
that, as we will see in Section 5, their equilibria have

somewhat different optimality properties. Equilibria in
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the second and third regimes, for example, are technologi-
cally efficient, whereas equilibria in the first regime
may not be. Another reason for distinguishing between the
three regimes is that whereas equilibria exist under
standard assumptions in the first and second regimes, quite
stringent assumptions are required to insure the existence

of equilibria in the third regime.

Let
i
Bl (w)erli e Jps)
= (z € RF| rz < wil + T 0 * max {r _g_(L) - wL}l s
1 + = £ f y Ef J
LER+
i
B2 (w,r,pl,...,ps)
=7 € RF| by zfafs >0 (s=1,...,8) and
c =
rz < wit + 58" max {(r_g_(L) - wL}} 5
= £ f M £f°f
L€R+
i
B3 (w)r)le e )ps)

- F
= {z € R | ps<§ zfafs> >0 (s=1,...,8) and

-1 i y
rz < who + T 8 max{rfgf(L) - wL]j s
L€R+
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for each 1. Bkl is consumer 1i's budget set at the

beginning of the period in regime k (k = 1,2,3). Let

i N s
G, (ps,z) = [(x € R+l PX ps(g z;a.))

for each i and s. Gsi is consumer i's budget set at
the end of the period in state s if consumer i's port-
folio is =z.

We are now ready to define equilibria corresponding to

each of the three different regimes.

Definition of E~uilibrium

M

F N
(w,r,pl,...,ps), where w € R+, ; € R+ and P € R

+
(8 =1,...,8), is a type k eouilibrium (k = 1,2,3) if

. 1
there exist Ll""’LF’z ,...,zI,xl,...,xI such that

(X11) Lf € dﬁ and rfgf(Lf) - wa > rfgf(L) - wL for
M

all L ¢ R+ (f 1,...,r;

(x111) 2% € Bkl(w,r,pl,...,ps) and
i i i_ s i i S

1AV}

for all z € Bkl (W,-rypl;---;PS) (l = l)"';I)7

i i i i i i
(XIv)  x E.Gs (ps,z ) and U (x ™) >U (xs) for all

S s
x E G i(p zi) (S = l ¢ . . S' i = l LI Y I)‘
s s Vs’ ’ s ’ r =t



(Xv) ¢ Lf =3 L
f i
(xvI) T 2" = (g(L)),. ., 9,(L))
i
i s
(XVII) f X~ = i gf(Lf)af (s =1,...,8)

(XII) is the condition that L is a profit-maximising

f
input for firm f£; (XIII) is the condition that z' is an

optimal portfolio for consumer 1i; (XIV) is the condition

i . . .
that X is an optimal consumption vector for consumer 1

i

in state s at prices Pg > given the portfolio z7; (XV) is.

the condition that the demand for inputs eguals the supply
of inputs; (XVI) is the condition that the demand for shares
equals the supply of shares. Finally, (XviI) is the condi-
tion that P is an equilibrium price vector at the end of
the period if state s occurs, thus guaranteeing that
consumers' price forecasts are actually fulfilled.

It should be noted that, as long as nsi >0 for all
s, conditions (XIII) and (X1V) for consumer i are equiva-

lent to the following condition:

i

1 0 l) is a solution of the problem:

(xvIII) (z',x X

S
. i, i
maximise > 1m Ty
s s s

(xs)

.28



subject to

s
P X < ps(g z.a. ) (s =1,...,8) ,

i
z E Bk (w}r)pl)"'JpS)

‘However, if ﬂsl = 0 for some s, (XIII) and (XIV) are

stronger than (XVIII). For suppose that ﬂll = 0. Then

£
11 = 0, satisfies (XVIII). Yet, xll = 0 may well not

i i i1 . .
any X, such that Pi%;" £ pl(g zza, ), in particular
X
satisfy (XIV). The point is that, at the beginning of the
period, consumer i will be content with zero consumption
in state 1 if he believes that the probability of state 1
occurring is zero, but, at the end of the period, if state 1
does occur, consumer i will desire positive consumption if
pl(Z‘ zflafl) > 0.
£
Having defined an equilibrium, we now make some

assumptions which guarantee its existence.

Bl. gf is continuous and concave (f = 1,..,F).

. . M
B2. For cach f: given L € Rﬂ, there exists L' ¢ R+

such that gf(L') > gf(L).

. i
B3. Given i and £, there exists s such that ns >0

s
and ag Pl Q-

29.



B4. Given m = l,...,M, there exists f such that Ie is

increasing in Lm

i . '
B5. US 1S continuous and concave (s = 1l,...,8;

i=1,...,1),
i, . . i, ., i .
B6. U 18 1lncreasing, that is, Us (x') > US (x) if

N .
x € R+ and x' > x (s = Lyeee,8; i=1,...,1).

B7. L" >0 (i=1,...,1).

B8. * L' >o.
1

B9. Given n = 1,...,N and S, there exists f such
s
that a > 0.
£fn
B1l0. Given S, therce exists i such that ﬂsl > 0.

Bl, B5, B6, B7 and B8 are standard assumptions. B2
says that there is no maximum to the amount of the random
Variable éf that firm £ can produce. B3 says that each
consumer believes that ecach firm is capable of producing
something with positive probability. B4 says that each
input can be used by some firm to produce more output. B9
says that cvery good can be produced in every &tate of the

world. Finally, B1lO says that no state of the world is

believed by everybody to occur with zero probability.

,30
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Theorem 3.1: Under assumptions Bl - B10, a type 1 equilib-

rium and a type 2 equilibrium exist.

The proof of this theorem is given in the appendix.

Unfortunately, assumptions Bl - B10 are not sufficient
to insure the existence of =a type 3 ecuilibrium. We require
a further assumption.

Let
= {nl = N
Y = {p p = (pl,...,ps), where p, € R, P >0

and

P.. = 1 for each s} ,
n

sn

h~M=

1

. 1 S
= ( i
and define Rf(p) (plaf,...,psaf) for pevy. R:(p) is the vector
of monetary returns in different states of the world yielded

by the random variable ag at prices p. Fix P and con-

sider the subset of Euclidean S-space, {Rl(p),...,RF(p)}. We may

choose fl,..,f¢)€{l,..,F} such that the vectors R (p),..,Rf (p)
1l

®
are a basis of this subset. In general, the numbers

fl,...,fcp will vary with p. Assumption Bll restricts us
to cases where fl,...,fCP may be chosen_independently of p.
Bll. We may choose fl,...,fCp € {1,...,F} such that, for
each p in Y, Rf (p),...,Rf (p) are linearly inde-
1 P

pendent vectors which span {Rl(p),...,RF(p)}.
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It should be cmphasiscd that assuming that

Re (p),...,Rf (p) are linearly independent for all p is
1 P

far stronger than assuming that

ag yeeesag are linearly independent vectors. The
1 P .
linear indcpendence of ag e A is
1 P
a4 necessary condition for the lincar independence of
Rf (p),...,Rf (p), but by no means a sufficient condition.
1 ®

Theorem 3.2: Under assumptions Bl -Bll, a typc 3 equilibrium

exists.

The proof of this thcorem is given in the appendix.

The need for assumption Bll may not be obvious to the
readcr, particularly since Radner does not reguire it in
(20]. Radner, however, assumes that the vector of outputs
which cach consumer holds at the cnd of the pericd before
trading re-opens must be greater than some fixed vector, thus
making a Radner ecuilibrium closcir to our type 2 equilibrium
than to our type 3 eruilibrium.

The following example, in which assumptions Bl - B10
hold, Bll does not, and a typc 3 equilibrium fails to exist,

should give some indication of the importance of Bl1l.
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Example 2

There are two consumers, two firms, two inputs, two
outputs and two states of the world. The first firm trans-
forms the first input into the first output and the second
firm transforms the Second input into the second output.

There is no production uncertainty. We assume gl(L) = L

1 2 1
22 8 =a; =1(1,0) ang a,” = a22 = (0,1).

1)
L) =1L

9,(L)
Each consumer owns % unit of each input. Consumer 1

believes that state 1 occurs with certainty; consumer 2

1 1 2

believes that state 2 occurs with certainty. Ul s U2 s U1 s
2 .
02 are assumed to satisfy B5 and B6. We assume also
1 1 2 2 . .
that Ul , U2 s Ul , U2 are differentiable and that
aUll . aU22
x (1,1) T (1,1)
1 1
- - > : (6)
U AUZ :
—<-—(1,1) ~ (1,1)
s X2 PX2 |
aUl aUl
(;;I(l,l) is S;I(xl,xz) evaluated at (xl,xz) = (l,l).)

Assumptions Bl - B10 are Clearly satisfied in this
example, but we will now show that a type 3 equilibrium does

not generally exist.



Suppose (G,f;ﬁl,ﬁé) is a type 3 equilibrium price
vector. It is clear from our assumptions that
(G,?,Sl,ﬁz) > 0 and, because of the constant returns to
Scale technology and the fact that both firms produce in
equilibrium, w o= P

We may describe the situation by means of an
‘Edgeworth box. 1In equilibrium, the first firm uses all of
the first input and the second firm uses all of the second

input, so that one unit of each output is produced in

each state of the world.

D
o —
N T L
»\ \\ L - ..\\\\
\ \\\,\_\ o "~~__ B Consumer 2
\\ \\_\\ - VAN
\\\\ \?k'* '
) t ™~ .
G L3 \\ \\\ : . ‘\‘\\ ' l
T \i G Output 2
\.\ ;'x . L
1/2 N3
J/ \ ’ \\ ! J
A N PoW
N, \\
Consumer 1 <— 1 —_—
— —_—>
< 1 Output 1
Figure 2

Consumption is represented in this diagram in the
usual way; two points are required since there are two

states of the world. Investment can also be represented
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in the diagram. Suppose? for example, consumer 1 holds -1

1 ) .
unit of random variable al and 5 unit of random variable

a2. Then consumer 1 has contracted to supply 1 unit of

output 1 and to receive % unit of output 2 in each state
of the world. This portfolio is therefore represented by
the point aG.

Since w = f, each consumer can afford the portfolio

represented by C, the centre of the box. 1In fact, the

portfolio budget line for consumers is given by the line
A

r
Ll through C with slope - §i We establish first that
11 2 1 . . g i
A = R"T =% is a necessary condition for equilibrium,
P12 Py 1T, -

where 512 is the price of the second output in the first
state and 521 is the price of the first output in the

second state.

| lg11 é\1
Suppose that S——'# § - Let L, be the line through
r 2
12 2
B B 3
B with slope - 11. Since - wi;'# - ;l s L2 and L1
12 P12 2
intersect at D, say. Let L3 be the line through D
L)
Pa1
with slope - . Clearly consumer 2's equilibrium con-
22
sumption in state 2 must lie on L and hence L must

3 3

have at least one point in common with the Edgeworth box.



However, if L3 has more than one point in common with the

Edgeworth box (see L3' in Figure 2), consumer 1 will choose

a portfolio to the North-west of D on L., and consumer

1
1's consumption in state 1 will be given by a point outside
the Edgeworth box. This is impossible in equilibrium and
so L3 must pass through A.

It follows that the equilibrium portfolios of con-
sumers 1 and 2 are represented by D and that equilibrium

consumption in state 1 is given by B and equilibrium

consumption in state 2 by A. Hence the slope of consumer

o>

11
12

l's state 1 indifference curve at B must equal -

o)

and the slope of consumer 2's state 2 indifference curve
N

p
1
at A must equal - wz—. By (6), however, the slopes of
P A
22 A
P11 Pa1
these indifference curves are equal and so - == = - = s
‘ B.2 P2
which is impossible since L2 and L3 intersect.
A A
Pin 5
This proves that #— = ;—' A similar argument shows
P12 %2
A A A A A
P r p p r
21 1
that 5—— =5 and therefore 11 = Azl = Tl. If this
22 2 12 Py B

is the case, however, it is clear that there is no need
for markets to re-open at the end of the period. This
means that there are only two prices ry, I, to bring

four markets, the market for each output in each state of
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the world, into equilibrium. In other words, as is shown
in Figure 3, there must be a line through C such that

the Ull and U12 indifference curves touch at some point

on the line and the U2l and U22 indifference curves
touch at another pointlon the line (unless there is a corner

solution). The utility functions can obviously be chosen
Sso that this is impossible. For example, let

9} l(x »X,)) = U 2(x X)=1U 2(x x,) = log(x,+1) + log(x. +1)
171’72 1 71772 2 *71°72 1 2

1
and let U2 (xl,xz) = log(xl+l) + 2 log(x2+l). Hence a

type 3 equilibrium does not necessarily exist.

Consumer 2

Consumer 1

Figure 3

The basic reason for the failure of a type 3 equilib-
rium to exist in this example is that there is a discon-

tinuity in consumer demand. Consider again Figure 2 and



P
let

Pyo
r

slope of L_,
3 2

[a]

1
s

Consumer l's optimal portfolio is given by D.

let D move along L1

adjusting accordingly.

- =i be given by the slope of L

- —— Dby the

b
2 Pra

and - ;i' by the slope of Ll, where

aUll
—E;__(l’l)

1 : (7)

1
aul

ax2

(1,1)

Now
away from C with the p's
p p r
As CD > o, il and _Zl__> ;l,
P12 P22 2

and consumer l's consumption demand in state 1 tends to B

by (7). However, when

Py
P1p Py 2

is not even an

attainable consumption for consumer 1 in state 1.

This discontinuity results from the fact that Bll is

not satisfied:

P11 , Paa
are linearly independent when —=  —=  but are linearly
o o P12 Py
.
dependent when —ll'= ~2:.
P12 Po

In this examnple,

allowed to be different in different states.

are the same in both states, a typs 3 edquilibrium obviously

A N
P
exists with ﬁ;l = T;l =

consumers' utility functions are

If tastes

= . It should be clear that

38
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Tmore complicated examples can be constructed where
assumptions Bl - B10 are insufficient to insure the
existence of a type 3 equilibrium even if t;stes are the
same in all states.

Bll, then, does scem to have an important role to
play. Unfortunately, it}is very easy to construct
examples, like Example 2, where Bl1l is violated. More-
over, there is no reason to believe that these examples
are in any sense pathological. 1In fact, if the number of
firms, the number of outputs and the number of states of
the world are all large, it seems probable that, for any
fl""’fm’Rfl(p)""’Rf (p) are linearly dependent for
some p € Y, thus 1eadi$g us to believe that Bll will
fail to holqd.

One important special case in which Bll is satis-
fied is when there is a single output. Then, Y contains
the single element (1,1,...,1). This, of course, is the
basic Diamond model of Section 2 (except that we now allow
many inputs) in which type 2 and type 3 equilibria coin-

cide.



4. Constrained Pareto-Optimality.

In the basic Diamond model of Section 2, the concept
of constrained Pareto-optimality was defined. ‘The reason
for our interest in such a concept is that it seems un-
reasonable to judge the efficiency of a competitive system
where complete markets do not exist in terms of what can
be achieved by a central planner who is subject to no
restrictions at all. A better approach is to compare
competitive outcomes with outcomes which the central
planner can achieve under the existing market structure.

In the single good case and also in the many input-
single output case, it is easy to characterise in purely
physical terms those allocations which can be achieved
through the stock market. 1In the many output case,
however, this is much more difficult because of the exist-
ence of trading at the end of the period. The problem can
best be understood as follows. A central planner, if he
is to be subject to the samne constraints as the market
mechanism, must be allcwed to make certain exchanges of
outputs at the end of the period. 1If he iz allowed to

make arbitrary exchanges, however, he can achieve any

4o

allocation at all and therefore is subject to no constraints.

It follows that the central planner's exchanges at the end
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of the period must be restricted in some way. The
difficulty is finding a suitable restriction.

Because of this Froblem, we proceed somewhat dif-
ferently in the many good case. Instead of trying to
characterise allécations which can be achieved through
the existing market structure in physical terms, we charac-
terise them in terms of competitive equilibria.

Specifically, we say that an allocation can be
achieved through the existing market structure if and only
if it is an equilibrium allocation with respect to some
initial distribution of endowments and shareholdings. wWe
then define an allocation to be a constrained Pareto-
optimum if it can be achieved through the existing market
structure and if it is Pareto-optimal relative to all other
allocations which can be achieved through the existing
market structure. That is, an allocation is a constrained
Pareto-optimum if it is an equilibrium allocation with
respect to some initial distribution of endowments and
shareholdings, and if there is no other equilibrium alloca-
tion, with respect to a possibly different initial distri-
bution of endowments and shareholdings, which makes some
people better off and nobody worse off.

This definition of constrained Pareto-optimality can

be justified in two ways. First, Theorems 2.2 and 2.3 tell



Lo

us that, under weak assumptions, the definition is equiva-
lent to the Section 2 definition in the single good case.
Secondly, the definition seams to be the weakest possible
one which makes any sense. For however we define a con-
strained Pareto-optimum, we surely do not want to call an
equilibrium allocation constrained Pareto-optimal if there
exists another equilibrium allocation which makes some
people better off and nobody worse off. Since we will see
that even under the above definition an equilibrium is not
necessarily constrained Pareto-optimal, our approach seems
to be a reasonable cne.

In order to formalise wha:t we have been saying, we
first extend the definition of an allocaticn to the many

good case. We define an allocation to be a vector

1 I,
(Ll,...,LF,x »+++,X ) which satisfies
Lf € R (£ =1, SF) ;
. . S
N .
= oxgh e n B (i=1,...,0

s=1

SL.o =z it

£ i

r XS =z gf(Lf)af (s = 1, :S) ;
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. . . - i,
Lf is firm f's vector of inputs and xs 1s consumer

i's consumption of outputs in state s.

We define next E(Ll,...,LI,el,...,eI) to be the

economy in which consumer i's initial endowment of

. . . i . i

inputs is given by L and consumer i's initial propor-
tionate shareholdings in firms by the F-vector ot

(i=1,...,1).

Definition of Constrained Pareto-Optimality
===n1tion or Constraij

A vector (Ll,..., F,xl,...,xl) is defined to be a

constrained Pareto-optimal allocation in regime k

(k = 1,2,3) if

(a) it is a type X equilibrium allocation for the

1
econony E(Ll,...,LI,e ,...,eI), where

LleR?(i=l,".,D , st - gft , (8)
i i
. F .
916R+ (i =1,...,1) , (9)
i
z Gf =} (£ =1,...,F) 3 (10)
i
. =1 ~1 ~1 ~I .
(b) there do not exist I yeeeL7,87,...,8 satisfying
~1 ~I ~1 ~T
(8), (S) and (12) such that E{L",...,L7,8,...,8%)

has a type k equilibrium allocation



Lk

~ ~ 1 o -
(Ll,...,LF,R yre X)), vhere
i i~ i i i i
T U X > m
5 s s ( 5 ) = 5 s Us (xs )

for all i, with inequality for some i.

The next two theorems establish the existence of a

 constrained Pareto-optimum.

Theorem 4.1: Under assumptions Bl - B10, a constrained

Pareto-optimal allocation exists in regimes 1 and 2.

 Theorem 4.2: Under assumptions Bl -Bll, a constrained

Pareto-optimel allocation exists in regime 3.

The proofs of these theorems are given iﬁ the
appendix.

We turn now to the relationship between constrained
Pareto-optima and equilibria. It is evident from the
definition of a constrained Pareto-optimum that any con-
strained Pareto-optimum can be achieved as an equilibrium
(with an appropriate redistribution of initial wealth).
The following examples show that the converse of this
proposition is false: an equilibrium is not necessarily

constrained Pareto-optimal.
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Example 3

There are two consumers, one firm, one input, two

outputs and two states of the world. We assume that
gl(L) = L, al1 = al2 = (1,1), so that there is no produc-

vtion uncertainty. . Each consumer owns '21- unit of the input
and consumers' tastes are the same in both states of the
.world. Assumptions Bl, B2, B4, B7, B8, B9 and Bll clearly
hold and consumers' utility functions and probability

beliefs may be chosen so that B3, B5, B6 and

Bl0 also hold.

v

Consumer 2

A1

1 Output 2

Consumer 1 < 1 —_

Output 1
Figure 3
The situation can be represented by means of an

Edgeworth box, as in Example 2. Since there is only one

firm, type 1, 2 and 3 equilibria coincide. In equilibrium, -



each consumer owns —;— of the firm and, hence, at the end

of the period, each consumer has claim to % unit of each
output in both states of the world. Consumers' equilibrium
portfolios are therefore represented by the centre of the
box, C.

Since there is no production uncertainty and tastes
are the same in both states, there is an equilibrium with
output prices at the end of the period the same in both
states. The price line corresponding to this equilibrium

is represented by L in the diagram. However, we can

1
evidently choose the utility functions so that there is
another equilibrium with output prices represented by the
line L2 in state 1 and the line L2' in state 2. 1In

this second equilibrium, consumer 1 is»better off in state 1
and worse off in state 2 and the opposite is true for con-
sumer 2. It is clear, therefore, that if consumer 1
believe# that state 1 occurs with a high enough probabil-
ity and consumer 2 believes that state 1 occurs with a

low enough probability, both consumers will be better off
ex-ante in the second eGuilibrium than in the first equi-
librium. Hence, the first equilibrium is not constrained
Pareto-optimal.

This example can be modified very simply to show that

the same problem can arise if consumers' probability beliefs

L6



are the same. Assune that cdnsumers agree that the
pProbability of each state occurring is %. In the first
equilibrium (El)’ each consumer has the same utility in
€ach state. In the second equilibrium (Ez,Ez'), each
consumer has 3 higher utility in one state and a lower
utility in the other state. Cléarly, if consumers are
sufficiently risk-averse, they will prefer the first
equilibrium in which there is no risk to the second
equilibrium in which there isg risk, and so now the second
equilibrium is not constrained Pareto-optimal.

The reéder may wonder where the usual proof of the optimality
of equilibrium breaks down. The usual proof may be summarised
as follows. 1If feasible situation A is preferred to the
equilibrium situation by everybody, each consumer's bundle
in situation a must be more expensive at the equilibrium
prices than his equilibrium bundle. 1f we sumiover con-
sumers, it follows that profits are higher in situation A
than in equilibrium,which contradicts the assumption that
firms maximise Profits.

Let us apply this pProof to Example 3. Consider the

equilibrium represented by 1. ang El in Figure 4. 1

1
order to obtain the consumption given by E2 in state 1
and E,' in state 2 when output prices are given by L

2 1



in both states, consumer 1 must hold the portfolio repre-
sented by the point N. In other words he must own more
than 507 of the firm nct 50%. of course, he will

then be able to obtain a better consumption that E2' in
state 2, but this is beside the point. Similarly, consumer
2 must hold more than 507 of the firm in order to obtain the
consumption given by E2 in state 1 and E2' in state 2.

The first part of the usual proof is therefore still

")

correct. The more desirable consumption bundle (E2,E2
does cost more at the equilibrium prices than the less
desirable bundle (El,El) since more than 50% of the firm
is more expensive than 50% of the firm. If we now

sum over consumers, however, all we may deduce is that more
than 100% ofthe firm is more expensive than 1004 .

This evidently contradicts nothing!

In this example, starting off from the less desirable
equilibrium, we can make both consumers better off simply
by changing their price expectations. No change in the
initial distribution of wealth is required. The example
ralies, of course, on the existence of multiple equilibria.
If utility functions obey the gross substitutes assumption

(see Arrow and Hahn [2]), eguilibria of the (E2,E2') type,

in which relative output prices differ in the two states

L8
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of the world, are ruleg cut, and any equilibrium of the
El type will therefore be constrained Pareto;optimal.
The following example also depends on the existence of
multiple equilibria, but these multiple equilibria are not
ruled out by the gross substitutes condition or by any other
simple condition. This example also shows that the assumption
in Example 3 that firms produce multiple products is un-—
important; an equilibrium may be sub—optimal‘even if each
fifm Produces a single product.
Example 4

The example is almost identical to Example 2. There
are two consumers, two firms, two inputs, two outputs and
two states of the world. gl(L) = Ll, g2(L) = LZ’
a, = a, = (1,0), azl = a22 = (0,1). Each consumer owﬁs
% unit of each input. Consumer 1 believes that state 1
occurs with Certainty: consumer 2 believes that state 2
occurs with certainty. Consumers'’ utility functions
satisfy B5 and B6 and are differentiable. The only change
from Example 2 is that we assume that tastes are the same

in both states of the world and that

1 2
QU =198
axl(l’l) X (1,1)
1 - A 5 . (11)
18] euU
<. (1,1) o (1,1)
axz th

(Assumptions Bl - B10 are clearly satisfied; assumption Bl1l

is not.)
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- N Ve E_ Consumer 2
\ - -2

2 . f " Sl Output 2

\ ; L
- | 4

Consumer 1

< 1 >
E ]
2 Output 1

Figure 5

Type 1, 2 and 3 equilibria do not coincide in this
example. We will concentrate 02 type 3 equilibria, but
the same problems may arise with type 1 and 2 equilibria.

Because there is no production uncertainty and tastes
are the same in both states, there exiéts an equilibrium
in which w=r = P, =P, (see Example 2). This is
represented by Ll' Equilibrium portfolios are given by

C and equilibrium consumption by E in both states of

1

the world. As a result of (11), however, there is another

equilibrium in which

w r
.v;.l.=}-—l-=-slopeof M;
2 2



|
L (1,1
P X
11 1
—— = = slope of L2 = 1 ’
P12 U
{1,1)
X
2
and
2
A 1,1)
P ax
21 1
——— = - slope of L' = .
Py2 2 au>
3 (1s1)
*2

Equilibrium portfolios are given by D, equilibrium con-

sumption in state 1 by E and equilibrium consumption

2
in state 2 by E_'.

2

Clearly the second equilibrium is preferred ex-ante
by both consumers to the first since both consumers get
more in the state they believe will occur. Hence, the
first equilibrium is ﬁot constrained Pareto-optimal.
Furthermore, both equilibria exist whether or not the
gross substitutes condition holds. The gross substitutes
condition fails to rule out multiple equilibria in this
sort of situation basically because of the existence of
budget constraints at the end of the period as well as a
budget constraint at the beginning of the period.

An interesting feature of both Examples 3 and 4 is

that, at the prices which rule in the less desirable
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equilibrium, there does not exist a portfolio which pro-
vides exactly the income in each state required for the
purchase of the consumption corresponding to the more
desirable equilibrium. That is, at the prices represented
by Ll’ if consumer 1 wants enough income in state 1 to
buy consumption E2, he must hold a portfolio which provides
him with more than enough income to buy Ez' in state 2.
Theorem 4.3 tells us that it is this feature of the
many output case which explains why an equilibrium fails

to be constrained Pareto-optimal. Before stating Theorem

4.3, we make another assumptiocn.

Bl2. For each i: there exist f and s such that

m * > 0 and S

s ag 2 0.

Bl2 says that each consumer believes that some firm
is capable of producing something with non-zero probabil-

ity.

Theorem 4.3: Let (Ll,...,LF,xl,...,xI) be a type 3

equilibrium allocation for the economy

I
E(Ll,...,LI,el,...,e ) at equilibrium prices

1 I 1 I .
(w,r,pl,...,ps), where L ,...,L ,8 ,...,8 satisfy (8),

(3) and (10). Under assumptions B6 and B1l2, there does

~1

e X s .,§I) such that

not exist an allocation (ﬁl,...,ﬁ
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) 225 U N(x. ") for all i, with

inequality for soms i:

(b) for each i: the equations p x e Ly l(p a S)
8"'s £ £ s f
. i F
(s =1,...,8) have a solution y~ € R,
. ~ ~ =1 ~I
In other words, the allocation (Ll,...,LF,x yee e, X )
cannot be Pareto-superior to the equilibrium allocation

1
(Ll,...,LF,x ,...,xI) if, at the equilibrium prices, there

exist portfolios which yield in each state exactly the

‘. o i ~ i
ilncome required to purchase the & .

Proof of Theorem 4.3: Let

Z =y (i=l’~uc,I"l)
and
‘ ~ ~ I-l N
z' = (g.(L),...,q (L)) - ¢ 2zt .
1't1 F T o1

Since the allocation (ﬁl,...,"F;il,...,ﬁI) is feasible,
I i s

T X" ==2g.(f)a_®, and hence by (b),

j=1 S £ £ £ 7F



5L

for each i. 1In other words, the consumption bundle %t
can be purchased with the portfolio z'  at the equilibrium

prices. By B6, B12 and the fact that X  is at least as

. i .
desirable as x for consumer i,

i i i
rz. > + -
> WL T ef (rfgf(Lf) wa)
f
for each i, with inequality if consumer i prefers x-
to x . If we sum over i, the assumption that firms
maximise market value is contradicted. Q.E.D.

Theorem 4.3 tells us that any allocation which does
not involve exchanges at the end of the period (in which
case xsi = % zfiafs and (b) is satisfied with yi = zi)
cannot be Pareto—superior to an equilibrium allocation.
It is clear, therefore, that a type 3 equilibrium is con-
strained Pareto-optimal in the many input - single output
case since no equilibrium allocations involve exchanges at
the end of the period.

Theorem 4.3 also tells us that if there are at least
as many firms as states of the world and the monetary
returns vectors of S of th» firms are linearly inde-

pendent for all Pys---sPgs @ type 3 equilibrium allocation

is unconstrained Pareteo--optimal since (b) is satisfied for

\
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all allocations.
Similar results to Theorem 4.3 can be proved for type
1 and 2 equilibria. 1In particular, these equilibria are
constrained Pareto-optimal in the many input - single
output case. A more stringent condition than
B ! s
| P1%1 - Pg?y
rank . . = 5, however, is required to
I | ; S |
;plaF ...pSFJ
insure the unconstrained Pareto-optimality of type 1 and

2 equilibria.



5. Weak Pareto-Optimality and Technological Efficiency.

In Section 4, we saw that an equilibrium is not gen-

erally constrained Pareto-optimal in the many output case.

In this section, we show that a type 3 equilibrium is
optimal in a somewhat weaker sense and that both a type 2

‘and a type 3 equilibrium are technologically efficient.

Definition of Weak Pareto-Optimality

.,LF,xl,...,xS) is said to be

An allocation (Ll,..

weak Pareto-optimal if there is no allocation

(f-l ,""f-' ’;{l,ltu,;{S) SU.Ch that
1 F
i~ i i i
U, (xs ) 2 U, (xs ) (s =1, ,8r i=1,...,I) ,

with inequality for some s and 1i.

That is, an allocation is weak Pareto-optimal if
there is no allocation which makes some people better off
in some states of the world without making other people
worse off in other states of the world. This type of
optimality has been discussed by Malinvaud in [15].

Weak Pareto-optimality differs from constrained
Pareto-optimality in that our concern is with consumers’
utilities at the end of the period when the state of the

world has been determined rather than with their ex-ante
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utility at the beginning of the period. 1In Particular, no
probability beliefs enter into the definition of weak
Pareto-optimality. It should also be noted that weak
Pareto—optimality is an unconstrained concept: an alloca-
tion is being compared with all other allocations, not just
with those which can be achieved under the existing market

structure.

Theorem 5.1: A type 3 equilibrium is weak Pareto-optimal

under assumptions B6, B10 and B1l2.

Proof: Let (w,r,pl,...,ps) be an equilibrium price
vector and (Ll,...,LF,xl,..',xS) a corresponding equilib-

rium allocation. Suppose the allocation

- ~ .1 ~S . i~ i i, i
(Ll""’LF’X sy-++,X ) satisfies Us(xs ) > Us(xs ) for
each s andg i, with inequality for some s and i.

Then, clearly, by B6 and equilibrium condition (XIV) of

Section 3,

2 p.x for each s and i R

. . i~ i
with inequality for those s and i for which Us (xSl) >

Usl(xsl). Summing over i angd using the facts that
Tx " =%Yg.(L)a.® and I X I Zgf)a_®, we obtain
. S A A . S £ 7F
i £ i £
(L) ®>rg.(L)pa.’ (12)
Z9elledpag” 2 T g (L.)pa,
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for each s, with inequality for some s.

We now apply a result which follows from a theorem
proved in Kuhn [12, Theorem II, Section 3].
Proposition: Let B be a k x 4 matrix and c a k-vector.
Then, either
(a) Bg = ¢ has a solution q > 0,
or

(b) there exists a k-vector y such that yc < 0 and

yB 2 0, with yB =0 => yc < 0.

1l S
P18 - Pg?y
Putting B = . . and c = r, we may
. - 5|
P13 * Pg¥p |
deduce that
1 s |
P13, ... Pga,
(a) o : d = r has a solution q > 0,

1
} plaF et pSaF
i
or

(b) there exists y such that yr < 0 and



B 1 s
- P Ps2y
yi . . =
; ~ 1 -8
{ P1%F - Pgp |

— —

0 => yr < 0.

In equilibrium (b) is impossible by assumptions B6,

B10 and Bl1l2. For, (b) says
portfolio with non-positive
income in each state of the

some states or there exists

which yields zero income in

that either there exists a
cost which yields non-negative
world and positive income in

a portfolio with negative cost

each state of the world.

Hence (a) holds. Multiplying (12) by qg and summing

over s, we obtain

£

and, hence, by (a),

~ s
)X gf(Lf) )X ap.ags > X
s

s
gf(Lf) 2 qspsaf ?

T \
z gf(Lf)rf > T gf(Lf,rf .
£ £
Since £ L_ =Y L , it follows that
£ £
£ £
rglLl)r.,-wIL. > gL )r, ~wZ L.,
£ s S A £ f £ NS S £ b 4
which contradicts rfgf(Lf) - wa = max {rfgf(L) - wL}

(£ =1,...,F).

M
LER
+ Q.E.D.
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A type 1 or type 2 equilibrium may not be weak Pareto-
optimal since we cannot use the same argument to rule out
alternative (b). The above argument does however show that a
type 1 equilibrium is weak Pareto-optimal if there exists i

such that .
zt >0 (13)

and consumer i believes that each state of the world
occurs with positive probability. In the case of a type 2

equilibrium, the condition

may be substituted for (13).
We turn now to a consideration of technological

efficiency.

Definition of Technological Efficiency

An allocation (Ll,...,L xl,...,xS) is said to be

F)
technologically efficient if there is no allocation

(il,...,iF,il,...,is) such that

li
=
.
2]
~

~ S
(1)
E gf(Lf)af > ? gelllag (s

with > replacing > for some s.

That is, an allocation is efficient if there is no
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allocaticn such that more of some outputs are produced in
some states of the world without less of other outputs
being produced in other states of the world.

In view of Theorem 5.1, it should be no surprise that,
under assumptions B6, B10 and Bl2, a type 3 equilibrium is
technologically efficient. Theorem 5.2 says that in addi-

tion a type 2 equilibrium is efficient.

Theorem 5.2: Under assumptions B6, Bl0 and Bl2, a type 2
equilibrium and a type 3 equilibrium are technologically

efficient.

Proof: Since the proof is almost the same as that of

Theorem 5.1, only a sketch will be given. Let

(L, sloux, .. ,x%)  be an equilibrium allocation and
~ ~ ~1 ~
(Ll,. ,LF,x ,...,xS) an allocation satisfying
~ s S
> = ..
E gellpla” > § ge(lela, (s =1,...,8)

with > for some s.

We apply Kuhn's result with B =

(b) can be shown to



be impossible, so that

-has a solution g > 0. A contradiction of the fact that

firms are market value maximisers is obtained as before.

Q.E.D.

A type 1 equilibrium may not be technologically
efficient. Such an equilibrium is efficient, however, if
some consumer who believes that all states occur with LO3i-
tive probability holds positive shareholdings of all firms.

The proof of Theorem 5.2 is interesting because it
tells us that in a stoék market model, in contrast to the
usual Arrow-Debreu model, technological efficiency depends
in a crucial way on utility maximising behaviour by con-
sumers as well as on market value maximising behaviour by
firms. It should also be noted that, since it is assumed
nowhere in the proof that pPrice expectations are correct,
Theorem 5.2 generalises tu situations where there is price

uncertainty.
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Conclusion

We have shown in this paper that Diamond's result that
a stock market equilibrium is constrained Pareto-optimal
does not generalise to the many good case even if consumers
have correct forecasts of future prices. The reason for
this is not the existence of many inputs at the beginning
of the period, but rather the existence of many outputs at
the end of the period. When there are many outputs, the
opportunities that exist for trading are not fixed, but
depend to some extent on prices at the end of the period.
One equilibrium may be better for everybody than

another simply because it enables consumers to realise
greater gains from trade.

Although an equilibrium is not necessarily constrained
Pareto-optimal in the many good case, we have shown that,
if consumers are subject only to a solvency constraint, an
equilibrium is optimal in the weaker sense that some people
cannot be made better off in some states of the world with-
out other people being made worse off in other states of
the world. This result cannot be regarded as all that
comforting, however, since a rather restrictive assumption
appears to be required to insure the existence of this

sort of equilibrium.



FOOTNOTES

Diamond's optimality result may also be shown to
break down in the many period-single good case. We

will not consider this case here.

All our results can be generalised to the case where
consumption takes place at the beginning of the period
as well as at the end of the period.

States of the world are assumed to be determined

independently of economic activity.

The following notation will be used. If x ¢ RK,
x > 0 means X 20 (k=1,...,K); x>0 means

X220 and x # 0; x >0 means X, >0 (k =1,...,K).

R, is defined tobe (x ¢ &S| x » 0).

I F.
L, £, T are used as a short-hand for Z, =z and
i £ s i=1l £=1

S
X respectively. Similarly for all i, for all f,
s=1

and for all s are used to mean for i = 1,...,1,

for £ =1,...,F, and for s = l,...,S.

The case where firms can raise funds by issuing bonds
as well as by issuing shares creates no additional
complications as long as firms do not go bankrupt.

For a proof of the irrelevance of firms' financial

0
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policy in this situation, see Modigliani and Miller
[17] and Stiglitz [23]. For a discussion of the

problems caused by bankruptcy, see Smith [22].

For a slight weakening of the multiplicative un-
certainty assumption, see Ekern and Wilson [8] and

Leland [13].

¥z denotes the inner product ¥ rfzf.
£

This assumption is relaxed in Section 3.

Assumptions A2 and A4 are required in the absence of
the free disposal assumption. The free disposal
assumption is inconsistent with the assumption that
firms produce a single pattern of returns across

states of the world.

No distinction is made between a feasible allocation

and an allocation.

Once we allow short-selling, a slightly strange
situation can arise in which some consumers hold non-
Zero amounts of the random variable ac, but firm f
does not produce because the negative holdings cancel
out the positive holdings. What we are implicitly
assuming in regimes 2 znd 3 is that markets for the

a exist even when firms do not produce.

£
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APPENDIX

In this appendix, we prove Theorems 3.1, 3.2, 4.1

and 4.2. Theorem 3.2 is proved first.

Theorem 3.2: Under assumptions Bl - Bll, a type 3

equilibrium exists.

Proof: The proof is basically the szme as the proof of
existence of an Arrow-Debreu equilibrium (see Debreu [3]).
Modifications are required because of the existence of
several budget constraints, the unboundedness of portfolios
in regime 3, and the fact that demand correspondences are
not always upper-semicontinuous.

Thé existence of several budget constraints creates no
problems if we use a different normalisation of priees from
the usual one. Let PK be the (K-1) dimensional unit

simplex, that is,
K
K K
P—{XER+l _);lxk—l},

and let

We will consider prices in T. This normalisation has

been used by Radner in [20].
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We prove the theorem in thfee steps. The first step
is to establish the exicsteace of equilibrium when an
artificial lower bound on portfblios is imposed and under
the assumption that all the nsi are positive. The
second step is to show that the assumption that the nsi
are positive can be dropped. Finally, the third step is
to show that the bound on portfolios can be removed.

Let E be the regime 3 economy defined in Section 3
and let bE denote the economy in which there is an
additional constraint that consurmier i can purchase only
portfolios =z 2-=b (i=1,...,1); b is defined to be the

F-vector which has each component equal to b, and b is

chosen to be non-negative.

Step 1l: We prove that bE has an equilibrium if all the

nsi are positive.
Define

1 I 1 I M

H = {(Ll,.. ,LF,z s e,2T % ,...,x)' Lf €R+ (£=1,...,F)
2t e & (i=1,...,1), 2" > b (i=1,...,1),
. . s
xi=(xll, -,xsl) € 1 RN (i=1,...,1),
s=1 +

i
;,;‘Lf < 'f L, izz < (gl(Ll),-~-,9F(LF)),

i s
Zxg ST glLla, (s-1,...,s)} .

70
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H may be regarded as the teasible set for bE (if free
disposal is allowed). Lf is firm £'s input vector, zi
is consumer ji's portfolio and xsi is consumer i‘s
consumption of outputs in state s.

Clearly H is bounded, so that we may choose ¢

(depending on b) such that

1l
(Ll""’LF’Z ,...,zI,xl,...,xI) € H
=> Hle <c (i=1,...,1)
I <e (1=1,...,p
where || || is the Euclidean norm. We use the bound ¢ +to

define restricted demand and supply correspondence for bE.
For Yy = ((er) )ply"-;ps) € T, define
M
a.(y) = {Lf € R, [ ”Lf” S c and
rfgf(Lf) - wa > rfgf(L) - wL
M . .
for all 1 ¢ R+ satisfying
Ll < e}
and
i

i - - i o
Wiy) =wlL + ¥ 9¢ (rfgf\Lf) -~ wL

)
£
£
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where Lf [ af(y). @, is firm f's (restricted) demand

i, . .
correspondence and W 1s consumer i's (restrlcted)

wealth at prices y. Define also

Bt = {(z,xl,...,xs)l z € RF, z > -b, |z| e, rz < Wl(y),
N
X, €R, (s =1,...,5), |!xSH§c (s =1,...,8),
s
Pgx, < ps(z zfaf ) (s = 1,...,8)},

£

gt is consumer i's budget set at the beginning of the

period. We may regard a as a correspondence from T

£

M i

to R+ and B as a correspondence from T to
S
F N
R x 1 R,.
+
s=1

Proposition l: « Bt are upper-semicontinuous and af(y),

f)

i

B (y) are convex.
For a definition of upper semi-continuity (and lower

semi-continuity), the reader is referred to Debreu [3].

The proof of Proposition 1 is straightforward and will not

be given.

. i, . . ,
Proposition 2: B8 is lower-semicontinuous at y if

wl(y) > 0.
Proof: Suppose (z,xl,...,xs) € Bl(y) and yt > y. We

t i, t
construct (zt,xlt,...,xs ) € Bl(y ) such that




t ‘ .
"y Xg ) — (z,xl,...,xs). Define
2_=2_ + ¢ (f = 1,...,Fr) ,

t .
where ¢ 18 a non-negative real number chosen so that

t t s t
Py X <z zf(ps a. ) (s = 1,...,8) and ¢~ — ¢ as

£ £

. t .
t > «. There exXists such an ¢ Since

s . . t s
PXx. < ? zf(psaf ) and B9 implies that ? P, a; > 0.
Now let
t,
t £
Zf = . n Py (£=1, sF),
t r z
max |1, Izl xmax |1, £ __ £
i, t
£ Wiy
x
t s
¥s = T  (s=1,...,5).
e, |l ?rf “g
max | 1, —=— | x max l, -
c i, t
Wiy

Then (zt,xlt,...,xst) € Bl(yt) and

t t t . ‘i
(z %y e Xg ) — (z,xl,...,xs) if Wi(y) >0. Q.E.p.

o i
We now define a demand correspondence vy corre-

sponding to thelbudget correspondence BT, Let
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A A A "~ i
(\ {(f’z\,;:\l,...,xs)[ (Z’Xl""’xS) € B (y)
} and X 7 U 1(2 ) > om 1y l(x ) for all
s s’ = S s s

i J s s
voly) =5 i i

\ (2,%),...,%) € B (y)} if Wi(y) > o,

|

/

/i . i -

L B7(y) if wi(y) = o0.
We define Yl to be equal to Bl when Wl = 0 in order

to make yl upper~semicontinuous. This technique is due
to Debreu [4]. It will turn out that, for the y we are

interested in, Wl(y) > 0 for all 1.

. i . .
Proposition 3: vy is upper-semicontinuous.

t t t i, t t
Proof: Suppose (z ZOREEERPS ) € yl(y ), vy — vy, and
t t t
(z Xy e Xg ) —> (z,xl,...,xS). We show that

(z,xl,---,xs) € viy).

Ccase 1: W(y) > 0.

By Proposition 1, (z,xl,...,xs) € Bl(y). Therefore,

if (z,xl,...,xs) £ yl(y), there must exist
(z,x %) € BY(y) h that T 7 U N(%) >
ZyRyse s Xy y) suct a ; s Ug (xg

rm Usl(xs). By Proposition 2, we may construct

,...,ist) € Bl(yt) such that

~ £ ~ o~ ~
1 0o %g ) —> (z,xl,...,xs). But, for large t,




i i t i i t
T b > m i i
3 s US (xs ) 5 s Us (xS ), which contradicts

t  t t it
(z ES BERERFE N € vi(y).

Case 2: Wl(y) = 0.

. t t t i, t
Since (Z',Xl yee s Xg ) € Bl(y ),

(Z,xl,...,xs) € Bl(y) by Proposition l, and, therefore,

(z,xl,...,xs) € yl(y). Q.E.D.

We are now in a position to define the excess demand

correspondence for the economy bE. For y € T, let

_ _ =i i _ '
Wy) = {(E Lf f L, f z (ul,...,uF)),

¥ 1is not quite the éxcess demsnd correspondence of the

. - i i s |
economy, actually, since T x -2z 2 ag 1s the excess
i if

s
demand for outputs in state s only if the stock market is
in equilibrium. It turns out to be more convenient to work
with § than with the true excess demand correspondence.

¥ is a correspondence from T to a compact subset of
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M+F N . s e Cae

R x 1T R . It may easily be verified that Propositions
s=1

1 and 3 imply that 4 is upper-semicontinuous and that

Wy) is convex for all y € T. Also, Wy) # 8 and, for

-3 i \
every yET,((ZLf~'2_3L, ;Z _(ul’”"uF))’
£ i i
i 1 i S
; X" - ; z zfaf s e, ; Xg' = ; z Zfaf‘D € Wy) =>
i i £ i i¢f

l,...,uF)> <0 (15)

and

[N
(@)
—~
8]
]
-
2]

pl(ext-zr zflafs> (16)
Vi if

Hence, the following proposition may be proved.

Proposition 4: There exists y € T such that v € ¥ y)

and v § 0.

This proposition is proved in Radner [20]. The proof
is almost identical to the proof of the usual excess demand
theorem (see Debreu [3]). The only difference is that,
because | is defined on a product of simplices rather
than a simplex, the fact that several Walras' laws ((15)
and (16)) are satisfied is used in the proof.

Proposition 4 tells us that there exists y €T

such that
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Lféa’f(Y) (le}"‘;F) b (17)
(zl,xll,'--,xsl) € vl(y) (i=1,...,1) , (18)
TL <z it | (19)
f i
i
i):»z ___<-_ (gl(Ll);"';gF(LF)) P) (20)
and

5 xsl <1z zflafs (s =1,...,s) . (21)

i i £ :

It follows from (20) and (21) that

i . 8
f x,~ < E gf(Lf)af (s =1,...,8) , (22)

1 I 1
so that (Ll""’ F,z yeee,20 % ,...,xI) € H, the feasible

set of bE. Hence, by (14),

HLfH < c (f = l,...,F) (23)
2l <c  (i=1,....1), (24)
) < o (1 =1,...,1) . (25)

Since the bounds HIEH <e, llz'l < ¢ ang Ix']] < ¢
are not binding, it follews that, if we can show that
W(y) >0 for all i ang that (19), (20) and (22) hold

with equality, we will have proved the existence of gz
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-

type 3 equilibrium for DE.

We show first that Wi(y) > 0 for all i. Suppose
w = 0. Then, since (w,r) € PM+F, r > 0 and so B2 implies
that P will not satisfy (23) for all £. Therefore
w >0 and Wi(y) > 0 for some i by B8. It follows
from B3 and B6 that r > 0 since otherwise consumer i's
demanded portfolio zi and consumption vector xi will
not satisfy (24), (25). But, if r > 0, B4 and (23) imply
that w > 0, and, hence, by B7, Wi(y) >0 for all .

This argument establishes that Wi(y)’> 0 for all i
and also that w > 0, r > 0. 1In addition, 128 > 0, since
otherwise B6 implies that the xi cannot satisfy (25).
Hence, since B3 and B6 imply that the budget constraints
(15), (16) must hold with equality, (19), (20) and (22)
must also hold with eqﬁality.

We have thus proved that bE has an equilibrium if
all the nsi are positive, and Step 1 is completed.

The assumption that the nsi are positive was
used implicitly in the last part of the proof when we
argued that zi is an equilibrium portfolio and xi is
an equilibrium consumption vector for consumer i at
prices y if (zi,xli,...,xsi) € Yi(y) and Wi(y) > 0.

We saw in Section 3, however, that this may not be true if




i
some of the ns are zero.

In Step 2, we show that bE' will still have an

co e . i
equilibrium if some of the ns are ZzZero.

b e i
Step 2: E has an equilibrium when the ﬁs are

non-negative.

c . t_ i
Choose 3 Sequence of positive numbers { ns } such

that (tnll,...,tnsl) € P° for each i and ¢ and

i

ﬂs - ﬂs for each s ang i as t~> e, Step 1

establishes that the economy bEt, in which the tnsl

replace the nsl, has an equilibrium. Let ty €ET be

the equilibrium Price vector of bEt

t t t1 t I
[P X

J

( Ll’ “oy LF’ s+, X) tha equilibrium allocation and
t 1 t I 0 . . .
(z7,...,"2%)  the equilibrium portfolios. Since the

t t : t t1 t I t 1 t I
sequences { vy}, { Ll,..., LF’ Xy, X}, (T2 seeey 27}

are bounded, we may assume without loss of generality that

they have limits. Let

Yy >y,
t t t 1 t I 1 I
( Ll’ s LF, X yje0e, x) —> (Ll,.. ,LF,X yeee,X ),
t 1 t I, 1 I
(z7,...,727) — (z7,...,27)

It is now a relatively €asy matter to show that Y is an

, 1
equilibrium price vector, and that (Ll,...,LF,x ,...,xI) and
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(zl,...,zI) are the corresponding equilibrium allocation

and equilibrium portfolios, for bE. This follows from the
upper-semicontinuity of af(y), the lower semi-continuity
of Bi(y) when Wi(y) > 0, the fact that B2, B3, B4, BG,
B7, B8 and B10 => y > 0 and Wi(y) > 0 for all i, and

the fact that

txsi maximises Usi(x) subject to tpsx < tps(g tzfiafs)
and

tps -> P > 0, txSi - xsi, tzfi - zfi
imply that
xsi maximises U i(x) subject to p x < p (T z ia °)

s s = %s £ £f °f

This proves Step 2. Q.E.D.

We now remove the bounds zi 2 -b.
Step 3: E has an equilibrium.

Let by = ((bw,br),bpl,...,bps) be an equilibrium
price vector for bE and let (bLl,...,bLF,bxl,...,be),

b1 b I
2, .., 2 )bethecorresponding equilibrium allocation

(

and portfolios. Consider the szequence of equilibrig of

b .
E as b => . If, for scme b, “zi > b for all i,




by is clearly an equilibrium price vector for E ang

- Step 3 is completed. we May cenfine ourselves therefore

to the case where, for each b,

b iy = (26)

for some i. we show that, in this Case, for large b, we

may replace (bzl,...,bzI) by alternative equilibrium
portfolios (bgl,...,bgl) which do satisfy bgl > =hb,

~

thus broving again that by is an equilibrium for E. 7o

do this, we use a technique from Hart [10].

i
. . Z
Consider, for each i, the sejuence {fg”}, where

‘ b i
b = 1,2,... . This sequence is bounded since z

-
~

il
c,V

‘ . b_i _ b b
for all i, f zZ = (gl( Ll),...,gF( LF)L and the Lf
are bounded. Therefore, without loss of generality, we

May assume that the Sequence has a limit, 6" say.

Since

b i b b
f Z = (gl( Ll)"")gF( LF)) )

it follows that

and, therefore, taking limits, we obtain
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I§ =0, (27)

We may assume also that the sequence (bps} has a
limit, P, say (s =1,...,8). B6 and B1lO imply that
Pg >0 (s=1,...,8) since equilibrium demands are

bounded. For each b,

b b b i b s

Py X, = g Ze ( P 2, ) (s =1,...,8) ,

since budget constraints hold with equality in equilibrium,

and so, dividing each side by b and taking limits,

0=735s.pa (s =1,...,s) . (28)
£

That is, at the limit prices (pl,...,ps), the portfolio
i .
] provides 2zero income in each state of the world.
We show next that, as a consequence of Bll, there

exists, for each b, a portfolio ’bsl which provides zero

income in each state at prices (bpl,...,bps), that is,
i b
0=1%: " a.% (s =1,...,8) , / (29)
£ £ s £
and which satisfies
r Pst = o (30)

and




8L

Pt st as b= o . (31)
‘b1 b S |
PPy "t Pg?y
]
Let bR be the matrix ; . and
'b 1 b s |
;P Pl |
r- a 1 a S -:
P P1% -
! i
R the matrix | : . {. Consider the
| : .
i 1 S ‘
L P18 P |
equation
b .
i bR - _51 bR ) (32)
If we can show that this equation has a solution bel
satisfying
s Pelog (33)
i
and
bsl > 0 as b~ e« , (34)
b i i b i . .
then, by (27), 87 = 8§ + "¢ satisfies (29), (30) ang (31),

and is what we are looking for. Now, (32) has a solution

bel = -51. Since P > 0 we may choose b large enough

so that bps >0 (s = 1,...,8). For such b, the rows

£ ., £ span the rows of bR by assumption Bll, and so

10 ©



85

(32) has a solution “&' satisfying Pf ¥ = 0 for
f # fl,...,fw.
We show that bﬁl satisfies (33) and (34). Since

beib, _ _ib

b
(3 Pp)Pr = = 5 1 Dpd
i i
= 0 ,
by (27). 1t follows that ¥ b€1 = 0 since the rows
i
fl,...,fcp of bR are linearly independent by assumption

Bll. In order to show that bél —> 0, we show first that

the sequence (bei} is bounded. 1If not, we may assume
bai

that Ub€i|

tends to a limit, n; say,and that | = =.

1Peh
Clearly, [ln'|| = 1, and, dividing (32) by [P¢%| ana taking

limits as b ~—> «, we obtain

which contradicts the fact that the rows fl,...,fcp of R

are linearly independent.

Hence the sequence {bel} is bounded. Let &I be

any limit point of the sequernce. By (32) and (28),
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Therefore ¢* = O since the rows fl""’fm of R are

linearly independent, ang (34) is established.
We have proved the existence of 3z portfolio

satisfying (29), (30) ang (31). consumer j is

indifferent between the portfolio bzi and the portfolio

(bzl - bal). We show next that

bi_bi -b (36)

~

for large enough b.

Suppose not. Then wWe may assume that

< -b (37)

for some f ang all b. Dividing by b, taking limits

and using the definition of 51, we cobtain

i
b i , b i | e e .
However, zf > -b since -4 1S an equilibrium portfolio,
and so (38) implies that bzfl - bafl > -b  for large b,

contradicting (37).

bi .
If we can show that the cost of el is Zero at

prices Oy, that is, PPt 2 o for all i, it will follow
b1l bl bI br
from (30) and (31) that (727 -7 Z - 7§") are

3 LI I Y

b .
equilibrium portfolios for E for large b. Since, by

(36), the boundedness constraints on the portfolios are
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not binding, this establishes that by is an equilibrium

price vector for E for large b.

In order to show that brbél = 0, we suppose the

contrary. Since ; bsi = 0, this implies that brbai >0
i
for some i=i,. Therefore
br(bzio - bsio) < brbzio < Wio(by)
Consider the portfolio 2z which is greater than (bziq-béio)

by a small amount in evary component. 2 satisfies i)s
budget constraint, and, by B3 and B6, is preferred to
b o blo . . .
(7z = 78 )by iy+ This, however, contradicts the fact that
b ‘o

z , which yields the szme inccme in every state as

bl blo | , b
( 2% - § ), is optimal for i, at prices Y-
This shows that _brbsl = 0 for each i, and completes

the proof of Step 3 and Theorem 3.2. Q.E.D.

The argument given in Steps 1 and 2 of the proof of
Theorem 3.2 also proves the existence of a type 1 equilib-
rium if we put b = 0. 1In order to prove the existence of
a type 2 equilibrium, we redefine the feasible set of the

economy to be
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1 I 1 I M
{(Ll, ,LF,z , ;27 ,%, ¥ ) | Lf € R, (f =1, SF),
o X
2" e R (i=1, 1), szlafsio
* i Sy
(s =1,...,8; i = 1, ,I), x e 1 R, (i=1,...,1),
s=1
TL, <y il zzi<( (r.) (L))
. f=i s : S 91 l"“.’gF )

i s

; x <2 gf(Lf)af (s = 1,...,5)}
i £

This set can be shown to be bounded, restricted demand and

Supply correspondences can be defined in terms of it, and

the argument of Steps 1 and 2 can again be applied.

Assumption Bll is no longer required.

Theorem 4.2: Under assumptions Bl - Bll, a constrained

Pareto-optimum exists in regime 3.
Proof: Consider the following maximisation problem:

i

)

i i
Max £ I m U “(x
. S 8 S
is

subject to the constraint that, for some

1 I 1 I C e
(L7, .., 07, ..., 8 ) saotisfying

, (39)
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8 £ R+ (i=1,...,1) , (40)
Te =1 (f£=1,...,F) , (41)

1
(Ll,...,LF,xl,...,xI) is a type 3 equilibrium allocation

for the economy E(Ll,...,LI,el,...,eI).

If we can prove that this maximisation problem has a
solution,we will have proved the existence of a constrained

Pareto-optimum. Let

i i 1 I .
A = sup {; by Us (xs ) | (Ll,...,LF,x se+05,X ) is a type 3

is
equilibrium allocation for some

I
E(L7,...,L5,87,...,0 ), where

L ,...,L,s ,...,BI satisfy (39),

(40) and (41)} .

By Theorem 3.2, this supremum is well-defined.

t t
Choose ( Ll,,..,tLF, xl,...,th) and
t. 1 t.I t 1 t I
(L,.--,L,e,---,e) SOthat
t
(tLl,..., LF,txl,...,th) is an equilibrium allocation

It 1 I
for E(tLl,...,tL , 0 ,...,te ) at prices ty € T and

i it i
m U — -
f 5 s Ug ( X ) >\ as t ©
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Since the sequence {ty] is bounded, we may assume without
loss of generality that it has a limit, y say. It is not
difficult to see that y > 0 since equilibrium alloca-
tions are bounded. Hence, ty > 0 for large t. 1t

follows from assumption Bl1l that, for large t, there exist unique

nunbers tulf,...,tumf such that
t e £ ¢
R.Ap) = = 5..7r ( p) (f=1,...,F) ,
£ . 5
J=1 J
t t t ¢ t t t t
where y=(w, r, Pyseen, pS) and p = ( Piseens ps).
. oy iq . t 1 t I
Consider the €quilibrium portfolios (27,...,727) at

t 1 t I
z

t
Prices Y. The sequence { y+++5 27} may be unbounded.

We use the u's to define new equilibrium portfolios which

are bounded. Let




tai . . , t i
2" yields the same income in every state as z

and therefore costs the same, since otherwise there would

be a possibility for arbitrage. Furthermore, by con-

struction,
tal t t
ZUE = gy 0Ty) g )
and, therefore, (t21 ...,tQI) rare equilibrium portfolios
. t
at prices y.
Consider now the sequences {(tLl,...,tLF,txl,...,th)},

tal 1
{( 2 ,...,tﬁl)} and 1( tlL R tel ... % )}

t t t 1 t t I t 1 t I
{( Ll,..., LF’ X ,..., % )} and {( L e ,..., 8 )}
are obviously bound=d and it is straightforward to show that

tal .
((27,...,727))} is also bounded as a consequence of the
linear independence of Rf ,...,Rf ‘(see Step 3 of the
. 1 o

proof of Theorem 3.2). Without loss of generality, then,

weé may assume that these sequences have limits. Let

t t t 1 t I 1 I
. X jeee,y, X ) —> (Ll,...,LF,x seee K )

)

t 1 t It t I 1 I 1 I,
(L7, ..., L7, 707 ,...,787) —> (L7, ...,L7,87,...,07)

t
(F2h, Lt — (8t sY)

It can now be shown as in Gtep 2 of the proof of

Theorem 3.2 that y is an equilibrium price vector for

91
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1 o . i
E(Ll,...,LI,e ,...,eI), with the corresponding equilibrium
. . , 1 I
allocations and portfolios given by (Ll,...,LF,x yeee,X )
1 I .
and (2 y e, 27). Therefore, since

Cie s L
>\=1imzznlul(xl)=z>:nlU1(xl) ,
. S s S R s s S
t~o i g 1 s

the maximisation problem has a solution and a constrained

Pareto~-cptimum exists, Q.E.D.

Theorem 4.1 is proved in a similar way.




