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1. Introduction

In this paper we shall use an optimal control framework to
examine the relative effectiveness of monetary and fiscal policies
for the purpose of controlling the major Macroeconomic aggregates.,

In section 2, we shall present a very simple linear macroeconomic
model with additive Gaussian disturbances. After briefly describing
three control algorithms in section 3, we shall, in section L4, apply
these three control algorithms to our simple model. Monetary policy
will be represented by the money supply and fiscal policy will be
represented by government expenditures. In evaluating the effec-
‘tiveness of a given instrument, we shall designate that instrument
as a discretionary instrument and the other instrument as a passive
instrument, and then solve an optimal control problem. The values
of the discretionary instrument are determined subject to feedback
control, but the values of the passive instrument are constrained

to change at a constant rate over the planning horizon. In addition,
we solve the control problem with both instruments assumed to be
discretionary. Comparison of the expected welfare costs in the
three situations serves to evaluate the effectiveness of each
discretionary instrument,

Three different algorithms will be used to perform our

analysis of the relative effectiveness of monetary and fiscal policies
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in order to determine whether our results are sensitive to the choice
of control algorithm employed. The three algorithms presented in
this paper differ in their treatments of learning. Method I is a
certainty equivalence control algorithm formulated by Chow (1972).
The assumptions of certainty equivalence preclude the possibility

of learning by assuming that the parameters of the. linear model are
known with certainty. Method II, which is presented by Chow (1973a),
recognizes the uncertainties in the parameters of the model but
ignores the possibility of learning., Method III, which is a dual
adaptive control algorithm presented by Chow (1973c), anticipates
that learning will occur through the re-estimation of the unknown
parameters of the linear model as additional observations are ob-
tained with the passage of time. Method III is closest to being

optimal and ccatains method I and method II as special cases.,

2. A Simple Macroeconomic Model

For the policy analysis of this paper, we shall employ a
very simple aggregative model. It is based on real quarterly data
covering the period from 1954-I to 1963-IV, which corresponds roughly
to the period between the end of the Korean War and the beginning of
cavy United States involvement in Vietnam. It consists of only two

endogenous target variables, consumption (Ct) and investment (It);
and two instruments, government expenditures (Et) and the money
supply (Mt). We assume that in the short-~run, government authorities

can control Et and Mt in real terms since prices do not change



rapidly enough to seriously offset their actions. Over the time
period covered by our data, the rate of inflation was low enough to
make this assumption plausible.

Our model is based on a clogsed economy. Desired consumption
is a linear function of GNP, and the realized period~to-period

adjustment in consumption is subjeéct to a partial adjustment factor:

(2.1) C. = aC

& t_l+bIt+bEt+d .

The structural equation for investment is based upon a modification
cf Samuelson's private consumption acceleratcr. We posit that the
desired level of the capital stock is a linear function of consump-
tion and that the realized adjustment of the capital stock is subject
to a2 partial adjustment factor. Since gross investment, I is
defined as Kt--(l—-D)Kt_l ; where D 1is the depreciation rate of

the capital stock, we have

(2.2) I, =eC, "(l-D)eCt_l+fIt_l+g.

In addition, we assume that the level of gross investment is
linearly related to the money supply in order to capture some of the

effects of interest rates upon investment:

(2.3) I, = e'C =(l-D)e'c, , +£'I_+hM_+g' .

t-1

The estimated reduced form equations corresponding to the structural

equations are



(2.4) ¢, = 0.9266C,_; = 0.0203I, , +0.3190E, + 0.42G6M, - 63.2386;
t (0.053h)t 1 (o.o916)t'l (0.1389)t (o.1865)t (25.7719)
R® = 0.9958

D-W = 1,708k

(2.5) I, = 0.1527C + 0.38061 - 0.0735E, + 1.,5389M_ - 210.899k;
Y (0.0781)t"1 (0.1339)t"1 (0.2031)% {0.272k)% (37.6899)

R2 = 0.87k9

D-W = 1.7582

Note that each of these estimated equations has a high value of RE.
In addition, the Durbin-~Watson statistic, although biased toward
2.0 because of the lagged endogenous variable, does not suggest
significant serial correlation in either equation.

A criticism that may be raised against the above model is

that it includes only the current values of M, and Et among the

t
explanatory variables. However, concerning the lagged or delayed
effects of Mt and Et » our model implicitly assumés a lag struc-
ture with geometrically declining weights for M, and Et because
the lagged endogenous variable appears as an explanatory variable in
each equation. 1In this paper, we do not explore more complicated
lag structures.

3« The Alqorithmsl

The three algorithms presented in this paper are applicable
to linear stochastic discrete-time econometric models with unknown

parameters and additive Gaussian errors. We shall write the model




as a first-order linear difference equation

( l) * A *
3. Yo =By, +Cx_ +Db +e

t t’

where A, C, and bt are random parameters whose values will be
estimeted using the Bayesian technigues presented by Chow (1973a).
The vector yﬁ is a stacked vector containing values of the endo-
gencus variables .and the instruments, X, is » vector of instru-
mencs, bt is a vector which models the effects of the noncontrol-
lable exogenous variables, and e, 1is & vector of random variables
such thut etfvu(o,z) . The e, are assumed to be serially un-
correlated and uncorrelated with the random parameters A, C, and b

The objective of each of our three control algorithms is to
minimize the expected value of the following quadratic welfare cost
function

T

(5.2) W= %tfl(Yi-atl'KdY’é-at)’

where T 1is the length of the planning horizon, a, is the target

value of y§{ , and K, 1is a weighting matrix. Observe that (3.2} .

may be rewritten as

T T
Y ' h) " .
(3.3) W o= = Dyi'RKy* 4+ § yirk, + constant,
[ t=1 T t*t t=1 t t
wheve kt = ~K+at » We solve this problem using the method of

dynamic programming. Let Et-lwt denote the expected welfare cost
from period t up to ard including period T, with the subscript

€L indicating that the expectation is conditional on information
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available at the end of period t=~1. We first minimize ET—le

with respect to x Letting HT==KT and hT==kT, we obtain

T L)
1 *
(3.4) Ep_ Wy = ET_l(Ey;'HTy; + yT’hT) + constant!' .

Substituting (3.1) into (3.4) and partiaslly differentiating with
respect to Xp» Wwe obtain the following feedback control equation,

which yields the optimal value of x

T 3
A *
where o ' -1 '
Gp = =(Eqp_4C'HC) (Ep_4C'HB)
and

o -1
Ip = (ET_lC’HTC) [(ET_lC'HTbT) + (ET_1C')hT] .

Note that the feedback control equation is not linear in y;_l

since the parameters GT and gp 3re functions of the posterior

density of A,C, and bT at the end of period T-1, which is a
¥*
T-g’.l. .

to obtain the optimal expected welfare cost w

function of Y;-l’y After substituting X. into (3.4)

T

P for the last

period, we then approximate the function w by a modified second-

T
order Taylor series expansion to obtain

T
(3.6) W o~ % )

% T
T t

*
V.0 Y, +
g=1 T EE

L

Using Bellman's principle of optimality, we minimize ET-2WT—1

with respect to Epoq under the assumption that the optimal value




Fal
of X s i.e., X 5 will be selected in period T . Hence, we

seek to minimize

f

- 1 o * - :
(3.7) EBp_pwp.y = e (5Ypa1Rpay Yoy + Yaljkooy Wp) +constant'' .

A
Substituting the Taylor series approximation for w and combining

T
like terms in Y;-l within the expectation operator, we obtain

= 1 ot 11
(3.8) By pWp_y = ET_2(~yT 1 B lyT 1 * YT iPp_y) + constant )
where H = + Q h = Kk + qT and constant ''!
r-1 = Kpo 1 T-1’ "T~1 T-1 T-1 "~

absorbs those terms in (3.6) which are not dependent upon x and

T=1
Y;-l « It should be observed that (3.8) is identical in form to

A
*p-1
solved for Xp oo This backward induction procedure is repeated

(3.4). Hence, we may solve for in the same manner that we

until we obtain values for §l and Gl .

shall call method III, is a dual adaptive control algorithm. It

This algorithm, which we

gives only approximate solutions since it involves a guadratic
approximation about a somewhat arbitrary tentative path.3

In the certainty equivalence zlgorithm (method I), it is
assumed that the values of the random parameters, A, C, and bt
are equal, with certainty, to their respective conditional expec-
tations at time O, i.e., A, C, and Bt + Hence, the parameters
of the feedback control equations are Gp = -(E'HTE)-l(é'HTﬁ)
and gg = -(E'HTé)-l [(E’HTB) + é'hT]. The feedback control equa-

tion is strictly linear in Y;-l and the function w is truly

T




quadratic in yé_l « Therefore, there is no need to approximate
GT by a second-order Taylor series expansion and thus the certainty
equivalence solution to the control problem is exact.

Method 1I, which is another special case of method IT1I, takes
acccunt of uncertainty in the parameters but does not anticipate
future learning. In method II, all conditional expectations are
evaluated at time O so that the coefficients of the feedback
control equation are Gy = -(EOC'HTC)-l(EOC'HTA) and
Ip = —(EOC'HTc)'l[(EOc'HTbT)+(Eoc')hT] « As in method I, the
parameters of the feedback control equation are independent of
Y;~l » and hence QT is a linear function of y;_l . Thus GT

is truly quadratic in y;_l and method II yields an exact solu-

tion to the modified control problem.

Y. Policy Analysis Using_the Simple Model

Studies of the relative effectiveness of monetary and fiscal
polizy often focus on the size of long-run and short-run multipliers
Oof the monetary and fiscal instruments, €.9., Kmenta and Smith
(1973). However, Brainard (1967) argues that an examination of the
minimum expected welfare cost attainable with 3 given set of instru-
ments is a more meaningful approach to the dquestion of the effec-
tiveness of the instruments than is an examination of the multipliers
of these instruments. Indeed, from the point of view of maximizing
social welfare, any relevant features of the multipliers will be
reflected in the minimum expected value of the welfare cost function

and hence multiplier analysis is unnecessary, if not migleading. In hhis




paper we shall compare the minimum expected welfare cost attainable
using only a discretionary monetary instrument with the minimum
expected welfare cost attainable using only a discretionary fiscal
instrument, However, before solving the control problem using only
one discretionary instrument at a time, we solve the: control problem
using both M, and Et as discretionary instruments subject to

feedback control. We rewrite the reduced form equations (3.4) and

* *
(3.5) as Ye = By{_q + Cx, + b, + e , where
(4.1) e = (CLIE ,m)
hd yt - CtJ t, t)M't 2
Birg . .
A = (2;}};) is a UxLk matrix containing the 2x2 nmatrix Ay,
t
Co
C = (3;) is a Lx2 matrix containing the 2x2 matrix C, s
- b
>1 = iy 3 Yy — ‘_E 1 ~
XL o= (Et,Mt) 1s the vector of instruments, bt = ( O) is a L
~ e
vector containing the 2-vector by, and e = (7§) is a b-vector

containing the 2-vector €
Before proceeding with the application of the control

slgorithms, we must specify the following parameters of the welfare

function: (1) T, the : number of periods in the planning horizon;

(2) 3., the target values of yz ; and (3) K., the weighting

matrices. We shall solve the control for a 6-period planning horizon

i.e., T=6. 1In order to select appropriate target growth rates for

Ct and It s We examine the historical percentage growth rates shown

t
the 11 quarters ending with 1963~IV is much higher than the growth

in table h.l.h It should be noted that the growth rate for I, for
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rate for the 4O quarters ending with 1963-IV because investment was
near a cyclical low in 1961-II. With these historical growth rates
in mind, we somewhat arbitrarily choose target growth rates of 1,25%
per quarter for Ct and It .

TABLE 4.1  QUARTERLY GROWTH RATES ( %)

"~ Period ct It
1954-1 to 1963~IV 0,91 1.1h
1961-1I to 1963-IV 1,10 2.61

For the weighting matrices in the welfare function, we set

1
Kt = (%ﬁ{}), t=l,...,T, where I is the 2x2 identity matrix.
Hote that since the instruments are assigned zero weight in each Ky
they do not explicitly appear as arguments of the welfare function,
Since the ultimate objective of our analysis is to compare the rela-
tive effectiveness of monetary and fiscal policy in reaching given
targets over time, we shall examine the welfare cost net of the costs
directly associated with the instruments. We will, however, examine
the stability of the instruments in each solution to make sure that
they do not fluctuate excessively.

Method I is applied to the two-instrument, two-target control
preblem, with

0.9266  ~-0.0203 X -63.2386

By = (0.1527 0.3806)’ Re (~210.899h) .

. 0.3%90 0.4206

and Co = (-0.0735 1.5389) ‘
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Then metﬂod II and method III are applied to the same problem, For
the quadratic approximation of method I1I, & deterministically
generated tentative path derived from the solution of method T is
used. The solutions to this problem by the three algorithms are
presented in Tsble L.hL,

In order to investigate the effectiveness of one instrument
alone, we shall assume that the instrument under: consideration is
a discretionary instrument the values of which are chosen by the
policy maker subject to a feedback control. It is assumed that the
values of the other instrument are determined by a passive policy of
a constant percentage change per quarter. In the notation of (3.1),

the discretionary instrument is represented by the scalar x and

t J
the passive instrument is modeled as a noncontrollable exogenous

variable which is absorbed in the value of b The solution to

e
the control problem will be sensitive to the values of bt 5
t=l,...,T, and hgnce the values of the psssive instrument must be
chosen judiciously. To determine the values of the passive policy
variable, we solve the six-period, two-instrument control problem

in which each of the instruments is constrained to change at a
constant rate throughout the planning horizon. The solution to this
problem, calculated under the assumption of certainty equivalence,
is shown in table 4.2, There is no a_pziori reason to believe that
the growth rate obtained in this manner for each instrument will be

optimal when the values of the other instrument are chosen subject

to feedback control. A better approach to selecting an optimal
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TABLE 4.2 CERTAINTY EQUIVALENCE SOLUTION TO CONTROL
PROBLEM WHEN BOTH INSTRUMENTS ARE PASSIVE

N\ rate of change
Instrument™Period 1 2 3 L 5 6 per period
E,(billiong) 110.91112.4115.9/115.4|116.9|118.4] + 1.313%
Mtaaillions) 143.6|143. 1145 ,35) 143,1] 142, 9 ib2,7] - 0.122%

NOTE: This solution was obtained using the OPTCDIAG option
of the certainty equivalence program described in .
Douglas R. Chapman and Gregory C. Chow, "Optimal
Control Programs: User's Guide," Econometric Research
Program, Princeton University, Research Memorandum No,
141, May, 1972, Slight inconsistencies may appear above
a@s a result of rounding since the program used a per=-
centage growth rate with 6 decimsl places. Also note
that Wy, = 68,307k,
growth rate for the passive instrument would be to solve the
control problem repeatedly with one discretionary instrument and one
passive instrument, allowing the growth rate for the passive
instrument to vary in successive computations of the solution,
The cptimal growth rate for the passive instrument is the growth
rate fcr which the optimal expected welfare cost is minimized. In
lieu of performing an extensive search to determine the optimal
growth rate for each instrument when the other instrument is dis-
cretionary, we merely examine two other growth rates for each
instrument to check whether the growth rates shown in table k4.2
appear to be approximately optimal. The optimal welfare costs
shown in table k.3 were obtained from the solution, by method I, to

the control problem in which the passive instrument grows at the

given rate and the discretionary instrument is determined by
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TABLE 4,3  OPTIMAL EXPECTED WELFARE COSTS (by Method I)
WHEN ONE INSTRUMENT IS PASSIVE AND ONE
INSTRUMENT IS DISCRETIONARY

E, is passive M, is passive
Growth rate of B &1 Growth rate of M, Wy
+1,213% 48,7176 ~0.0227 48.8780
+1.313 % 48,0508 -0.122% LL,1556
+1.,413% 48,1178 ~0.222% 48.6696

feedback control, Note that for each instrument, the value of
Gl Obtained using the growth rate from table L.2 is smaller than
the values of ﬁl obtained using growth rates 0.1% 1larger and
0.1% smaller than the growth rate in table K.2, This result lends
someé credence to the assertion that, for each instrument, the
growth rate in table 4.2 reasonably approximates the optimal rate
when the other instrument is determined by feedback control.

The control problem is now solved using methods I, II, and
ITI under the assumption that Et is a discreti onary instrument
and M, is a passive instrument exogenously set equal to the
values given in table L4.2. This procedure is then repeated with
M. as the discretionary instrument and E, as the passive
instrument., The results of the control computations for period 1
are presented in table L.Lk., Let wi(P) be the optimal expected
welfare cost function from period 1 to period T where

ie {I,II,III} refers to the algorithm employed and P(:P*=={E M, }
4 = t’t




1h

refers to the set of discretionary policy variables used in the
application of the algorithm. Note that for each ie {1,1I,II1),
g%?P*wi(P) = wi([Et,Mt}), which is an illustration of the well-
kiown fact that in s control problem with two targets, a lower
optimal expected welfare cost is attainable using two instruments
subject to feedback control than by using only one of these instru-
ments subject to feedback control. More significant for our
economic analysis, however, is the result that for each i s
wi({Et}) < wi([Mt]) » Therefore, assuming that the economy of the
United States is appropriately modeled by (2.4) and (2.5), fiscal
policy as represented by Et is somewhat more effective with
respect to the given welfare .function than is monetary policy
represented by M, . We note, however, that this difference is
small, especially when we allow for uncertainty in method II.

To study our solution more closely, the value of WI(P)
can be decomposed into a deterministic welfare cost and a stochastic
welfare cost, To compute the deterministic welfare cost, we first
generate a deterministic time path for each of the endogenous
variables by assuming that each parameter of the linear model (3.1)

is equal to its point estimate at time O, and that e_ = 0, for

t
t=1l,+4.,T. The deterministic welfare cost is weighted sum of
sguared deviations of the deterministic time paths of the endogenous
variables from their respective targets. The stochastic welfare
cost is due to the randomness in yi @and results from the additive

stochastic disturbance e Substituting the optimal value of

t L]
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X, from (3.5) into (L.1), we obtain

* *
(b.2) Ve = (A +CGt)_{t_1+Cgt +b, e .

Assuming that the covariance matrix of e is = for t > 0, it

t e
can be shown that the covariance matrix of yi is given by the

recursive formula

(k.3) Zyaé = (A +cG,) z:yé(A +CG)' + I .

The stochastic welfare cost is equal to

(k) w, = %

< tr(Kt vt) ,

n M3

t=1

where Vt is the estimate of X based on the estimate of Ze

vE
t
at the current time.

In figure 4,1 we present the target time path for Ct and

the deterministic time paths for C, using the instrument sets

t
{Et] and [MtB « In addition to the deterministic time path for

each instrument set, we present the values of Ct one standaxd

deviation above and below the deterministic time path of C, . For

t
each time period, the vertical distance between the deterministic

time path of C, for a given instrument set and the target time

path of C essentially measures the square root of the determin-

t
istic cost attributable to Cta5 Similarly, for each period, the

standard deviation of C around its deterministic time path re-

t

flects the stochastic cost attributable to C in that period,

t

Note that the deterministic time path of C for the instrument

t
set {Et] is generally above the target time path
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. —-— Target //
———~-— Instrument set {Ep) ,’

i Instrument set {Mt}

] 1 | | 1 ] ‘

1 2 3 L 5 6 Time t
Figure 4.1, Expected Time Paths of C. with

Standard Deviation Bands ~(Obtained

from Certainty Equivalence Solutions)
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—--— Target
““““ Instrument set (B}
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Fiqure 4.2 Expected time paths of I, with
standard deviation bands “(obtained
from certainty equivalence solutions)
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whereas for the instrument set {Mt} it is generally below the
target time path. If the deterministic cost comprised a major
portion of the expected welfare cost, we might have to consider
the given quadratic welfare cust function to be inappropriate

because it assigns costs to the overachievement of the targets for
Ct through the use of the instrument set [Et} as well as to the
underachievement of the targets for C through the use of (M

t
However, we note that for each instrument set, the standard de-

e -

viation of the stochastic variation around the deterministic time
path of Ce far outweighs the deterministic "standard deviation"
of the deterministic time path around the target time path. Hence,
the adverse effects of assigning deterministic costs to expected
positive deviations from the target values may be neglected since
they appear to be unimportant. We also note that the standard
deviation band around the deterministic time path obtained using
{Et] lies within the standard deviation band around the determin-
istic time path obtained using {Mt}, except for period 1. Hence,
the stochastic cost attributable to C. 1is smaller for {Et} than
for {Mt} . Figure k.2 is analogous to 4.l except that the endo-

genous target variable is I As in Figure h,l, we observe that

t* i
the stochastic welfare cost is much larger than the deterministic

welfare cost.

Table k.5 summarizes the results bresented in Figures
4,1 and 4.2, 1In this table, the deterministic welfare cost is

expressed as an average over the six-period planning horizon. The
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stochastic welfare cost for esch target variable is the average
variance of that variable around its deterministic time path. The
last two columns of table k4,5 present the square roots of the
corresponding values in the first two columns of the table and
represent deviations in terms of 1958 dollars. It is clear from
Table 4.5 that the total cost attributable to I is greater than

t

the total cost attributable to C and the stochastic cost is

t)
much greater than the deterministic cost for each instrument set.
Since the instruments receive zero weights in the welfare
function, we shall briefly examine the dynamic characteristics of
the time paths of the instruments (derived from method I) to de-
termine whether they are highly volatile. We note that for the
instrument set {Et,Mt], the period~to-period fluctuations of Et
along its deterministic time path are all less than 1.3 billion
1958 dollars, and for {Et} 2ll of the deterministic changes are
less than 2.5 billion 1958 dollars. Furthermore for each instru-
ment set, the standard deviation of Et around its deterministic
time path remains fairly stable and is less than 5.3 billion 1958
dollars in each period. For each of the instrument sets {Et,Mt}
and {Mt}, the deterministic period-to-periocd fluctuations of Mt
are all less than 0,1 billion 1958 dollars. The standard deviation
of Mt remains fairly stable at sbout 0.9 billion 1958 dollars for
{Et,Mt} and about 1,1 billion 1958 dollars for [Mt}. Hence, it

appears that for each instrument, neither the deterministic period-~

to-period fluctuations nor the stoshastic variatioh'arOund the
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TABLE h.5.. AVERAGE WELFARE COSTS PER PERIOD
f Variance ( Welfare Cost) Standard Deviations
Instrument|Target|_((billions of 1958 dollars)? [billions of 1958 dollars |
Set .Deterministic{Stochastic| Total |Deterministic Stochastic
[Et} Ce 0.028 3.816 | 3.84k 0.167 1.953
I, 0.696 10.178 [10.87L 0.83L 3.190
Total 0.72k 13.994 |1k4.718 -- -
{Mt) Cy 0.072 7.273 7.345 0.268 2.697
I, 0.016 8.656 | 8.672 0.126 2.942
Total 0.088 15.929 |16.017 -- -
: Ce 0 3.775 | 3.775 0 1.943
(E ., M.}
I, 0 8.074 | 8.o07k 0 2.841
Total 0 11.849 |11.849g -- --
)

NOTE: Costs exclude factor of 1/2 which appears in (2.4) and (4.9).

deterministic time path is large enough to present serious
problems of implementation.

We observe in table L.L that for a given instrument set, the
coefficients of the feedback control equation are subject to con-
siderable variation across algorithms with the introduction of

uncertainty and the anticipation of learning. it should .

However,
be noted that the optimal values of the instrument do not appear
to be very sensitive to the presence of uncertainty or to the

anticipation of learning. 1In table 4.6, we present the percentage
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TABLE 4.6, PERCENTAGE VARIATION IN X ACROSS

THE THREE ALGORITHMS »
Instrument Set Instrument % Variation Across
Algorithms
o/
(Eg,M ) E, .09%
\,/o
M £ .03
{Et} Ey » , 6L
(M.} M, .06

NOTE: The percentage variation is the ratio of the range

of xl to the value of xl obtained for method I.

variation across the three algorithms of the optimal first-period
seéttings of the instruments for each of the three control problems.
Note that when the policy maker treats both E_ and M, @as discre-
tionary instruments, there is an extremely small percentage variatio:n
in §l across the three algorithms. This result suggssts that for
the purpose of determining the optimal values of El and Ml’ it
makes little difference whether the effects of uncertainty and

learning are considered.

5. Concluding Remarks

Using the very simple macro-econometric model presented in

Section 2, we found that fiscal policy, represented by Et’ is

more effective than monetary policy, represented by M, , with

t
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respect to the given welfare function. Note, however, that this
result does not imply that the policy maker should treat Mt as a
passive instrument not subject to feedback control. The results
presented in table L,k indicate that the minimum expected welfare
cost is significantly lower when the policy maker selects the values
of both E. and M, subject to feedback control than when E,
is the only discretionary instrument., We also observed that the
values of the instruments required to achieve the minimum expected
welfare cost appear to be free from wild fluctuations over time and
do not thereby present a difficult problem of implementation,

In the evaluation of the relative effectiveness of the mone~
tary and fiscal instruments, we allowed for uncertainty and the
possibility of learning in the computation of the optimal control
solutions and the associated welfare losses. By examining the
effectiveness of policy within the framework of the three different
algorithms and their different assumptions regarding uncertainty
and learning, our analysis has a broader basis than if we had used
only methed I with its restrictive assumptions of certainty
equivalence. We noted that although the introduction of uncertainty
may significontly chenge the coefficients of the feedback control
equation, the optimal first-period policy is father insensitive to
uncertainty in the parsmeters of the linear model. The' implication
of this result for policy formulation is that we may fairly accu-
rately determine the optimal values of El and Ml by any of the

three algorithms discussed in this paper,
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FOOTNOTES
¥
I would like to express my most sincere thanks to Professor

Gregory C. Chow, my thesis advisor, for generously sharing his

time and his ideas with me.

A more complete discussion of these algorithms is presented in

Andrew B, Abel, "A Comparison of Three Optimal Control Algorithms

33 Applied to the Monetarist-~Fiscalist Debate," Senior Thesis,

Princeton University, Department of Economics, 197k,

In the calculations summarized later we employ a standard
Taylor series with cross=partials, and (3.2) includes terms of

¥ 1 K -
the form (yt at) Kt,s(ys as) . However, we let Kt,s o]
for all tis.

In our calculations, we obtain the tentative path by using the
certainty equivalence algorithm to determine §t s and then
apply” the estimated model, without random disturbance, to

Qt, to generate yi, for t=1,...,T-1.

Since Et and Mt have zero weight in the welfare function, it

is not necessary to specify targets for these variables,

This expected welfare cost ignores the factor of % in (3.2).
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