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IDENTIFICATION AND ESTIMATION IN ECONOMETRIC SYSTEMS:
A SURVEY*

Gregory C. Chow

This is an introductory survey of some of theideas and
methods in the identification and estimation of simultaneous
equation systems in econometrics. After pointing out the special
features of econometric systems, it defines the problem of iden-
tification and presents several methods for estimating the para-
meters in such systems. Hopefully sueh a survey will be useful
to research workers in related fields including control engineering
and statistics who are interested in the estimation of dynamic
systems and wish to find out whether the works of econometricians
are relevant to their own research. This is not a substitute for
a treatise in econometrics,l but it may help a researcher in a
related field decide whether the techniques developed for dynamic
econometric systems are useful for his purpose, whether he should
study them in depth, and whether he can contribute to improving
them. Some research topics will be suggested later in our

discussion.

1. Nature of Simultaneous Econometric Systems

Consider a linear system of p equations determining a

vector 'y, of p dependent or endogenous variables at time ¢t :

(1.1) By, =Tz  +¢ (t=1,...,T)



where z, is a vector of q predetermined variables defined

to include lagged endogenous variables ‘(so0 that

Ye-12¥g-p7 "

the system may be dynamic and of a high order) as well as current

and lagged exogenous variables (some exogenous variables being

control variables), and ‘v is 2 random vector with mean zero

and covariance matrix Eeteé =9 > . B and I are matrices

of coefficients, B being nonsingular. The predetermined variables

z, ore assumed to be distributed independently of S with a
T

second-order moment matrix % 7 thé converging in probability
t=1

to a constant matrix as T 1increases. Several features of the

system (1.1) should be noted.

(1) Each equation, or row of (1.1), usually contains
several endogenous variables which are correlated with the

residual vector e

N The system (1.1) is called structural

equations, to be distinguished from the reduced-form equations

(1.2) Yo B "Iz + B e = Iz, + N

each of which contains only one endogenous variable as a func-

tion of the predetermined variables and ¢, , the coefficients

t
T being defined as B_ll". The reduced form (1.2) shows that
all elements of Yy are correlated with ¢ - As an example
of a structural equation (a consumption function), we may have
total consumption expenditures and national income as two of
the endogenous variables and consumption at t-1 as one of the

predetermined variables. For examples of econometric systems,

the reader may refer to Nerlove (1966).



(2) BAlthough the system (1.1) may be fairly large,
sometimes containing over one hundred equations, the number of
variables in each equation is usually small, most often below 10.

The matrices Band T' 3are thus sparse.

(3) The endogenous variables, which correspond to the
state variables of the control engineers, are most frequently

assumed to be directly observed without measurement errors.

(4) It is important to estimate the parameters B, I' and
s of the structural equations (1.1), and not only the para-
meters 1 and Eﬂtﬂé of the reduced-form equations (1.2).
The main reason is that economic hypotheses such as the rela-
tion of consumption expenditures to after-tax income 2are
formulated in the form of structural equations. If there is
any change in economic institutions, technological relations,
or behavioral patterns Qf the economic agents as described by
the structural equations, one is able to assess its impact only
by modifying the structural equatipn affected. For example,
if consumption expenditures Y;. depends on after-tax income
(1-g)y2t s whére Yor ' is before-tax income and g is the tax
rate, knowledge of this structural equation is required to
assess the effects of a change in the tax rate from gy to g,.
Knowledge of the reduced-form equations(l.e) is not sufficient

for this purpose.

(5) Economic hypotheses are mainly qualitative in character.

They help specify the important variables which should appear



in each structural equation and frequently also the éigns of
their coefficients but not the magnitudes. Limited historical
data are employed for the estimation of all the unknown para-

meters in the system (1l.1).

To summarize, by not dealing with possible observation errors
in the variables, the econometrician has made his estimation problem
easier than that of the control scientist. Note,however, that errors
of measurement were considered an important problem in the early
development of the simultaneous equations model in econometrics, as
evidenced in Chapter I of Koopmans, ed. (1950).2 On the other hand,
features (1) and (2) mentioned above make the estimation of B and
r more difficult than the parameters I in the reduced-form equa-
tions (1.2). Even if only one endogenous variable appears in each
equation of a system, different sets of predetermined variables
appearing in different equations will make the method of least squares
applied to each equation separately inefficient, as pointed out by
Zellner (1962), unless the error terms in separate equations
are themselves uncorrelated. 1In addition, with the presence of
several endogenous variables in each equation which are corre-
lated with the residual, the method of least squares yields

inconsistent estimates.

o, The Identification Problem

Before studying methods for estimating the unknown parameters
B, ' and £ 1in (1.1), one needs to impose restrictions on the para-
meters to insure their identifiability. A set of structural para-

meters is said to be identifiable iff there exists no other set




which will give rise to the same probability distribution of the
endogenous variables. For the linear structure (1.1), fhe proba-
bility distribution of the endogenous variables 1is given by the
reduced form (1.2), with mean vector 1Hz, and covariance matrix
Eﬂtﬂ% . If there exist two sets of values for the structural
parameters from which the same reduced-form is deduced, the struc-
‘tural parameters are unidentifiable. In this case, no consistent
estimator for the set of parameters exists. One can estimate the
reduced-form parameters I and Eﬂtﬂé consistently by the method
of least squares, but from these parameters one cannot infer
uniguely the parameters B, T and » of the structure.

To illustrate, consider the identifiability of the coefficients
in the ith structural equation through the absence of certain

variables in that equation. Let the coefficients be elements of the

vector
(2.1) (1L g

where we have normalized the coefficient of Vi to be unity and

rearranged the variables v, and z in the system (1.1) so that

t
yjp °ppears first and those absent from equation 1 appears last.
After the rearrangement (2.1) becomes the first row of (B r), Let
Py endogenous variables and a5 predetermined variables be absent

from this equation, with p=pq +P, and g-=9d9; *9, - Using the

first row of the relation

(2.2) BIl -

il
—



petween the structural and reduced-form parameters and parti-

tioning T accordingly, we have

/ P1*d1  1xq,

\2'53) (l Bl) Hll = ’)’i 7
P1Xd, 1xq,

(2.3b) (1 e.l) ng = 0 .

Given B and Hll , (2.3a) determines 7y, - To determine f;

uniquely from I, using (2.3b), there are (pl-l) unknowns in

d, linear equations. It is therefore necessary that g, 2 pl-l ,

or dq, * P, > Pyt Py 1. Thus the number p,*d, of variables
excluded from the equation must equal or exceed the total number
of endogenous variables (or simultaneous equations) minus one.

1f the number of excluded variables is smaller, the equation is
unidentifiable. If it equals p-1l, the equation is just-identi-
fied. 1If it exceeds p-1, the equation is overidentified. The
identification problem has been studied in a more general setting
covering non-linear econometric systems by Fisher (1966) Wegge

(196%) and Rothenberg (1971).

3, Extensions of the Method of Least Sguares

The method of least sqguares can be applied to the reduced
form (1.2) to obtain a consistent estimate of 1T . If the random

and thus mn = B—l

residual €p & €p

is assumed to be normal,

the least sguares estimate is also the maximum likelihood estimate.



However, it has not incorporated the nonlinear restrictions on
the elements of 1 resulting from linear restrictions on B and
r through the relation (2.2). For example, if equation 1 is
overidentified with g, > pl—l , the rank of H12 in (2.3b) is
restricted to be pl-l

To estimate the parameters of the ith structural equation,

one can first obtain the least-squares estimate ﬁ of the reduced-
form parameters [ and, using these, solve equation (2.3) for £,
and y; . If the equation is just-identified, (2.3b) contains
exactly pl-l linear equations for the same number of unknowns

in Py . The method just described is known as indirect least

squares. If the equation is overidentified, there are more equa-

tions (or columns of ﬁlz) than unknowns. One can arbitrarily

select any pl-l columns of H12 to solve for £, . This method

is still consistent, but it does not utilize efficiently all the

~

information 1in H12 .

An asymptotically more efficient method of estimating the

parameters of one over- identified structural equation is that of

two-stage least sguares proposed by Theil (1953) and Basmann (1957).

By this method one first obtains "estimated" values of the endo-
genous variables §t = ﬁzt from the least squares estimates i
of 1 . In the second stage, least squares is applied to the
structural eqguation using the variables §jt and zjt included
in that equation. The motivation is that, replacing yjt by ;jt’
one avoids the correlations between the explanatory varia bles and

the random residual of that equation. Let the T observations



of the ith structural equation be written as

(3.1) vy, = Y.By * Zi7i *e, = X,04 + €5 -

Note the change of notations from here on to conform to the more
standard notations in the estimation literature, with B8, and 7y,
denoting column vectors of unknown coefficients in equation 1 ,

Yi denoting a Tx 1 vector of observatiops on the first endoge-
nous variable, Y, and 2, respectiVely denoting T><(pi-l) and

T X qy matrices of observations on the remaining endogenous variables
and the predetermined variables included in equation 1 , and e,

denoting a Tx 1l vector of observations on the residual. Letting

7 be the Txgq matrix of all predetermined variables, we have

-1
1 1 -
i z(z'2) "Z2'Y,

<>
1

(3.2)

(¥,

>
fl

zi) = z(r/;'z)’lz'(y:.L Zi) .
The two-stage least squares (2SLS) estimate of oy is
(3%.3) oy - (R )Ty, = (ﬁix.) Ry, .
Ssolving (3.3%) for the two components of @, , we have
(5.4) @ - (zyz) My - viey)

. , -1 -1
—_— - \] t — -
and, letting M =1 7z(z2'2) "2 and M, =1 Zi(ZiZi) z}
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[¥IM,Y - Y:lMY.l]' Y (M, - Mly;
(3.h) and (3.5) will be useful for comparison with other estimation
methods to be presented later on.

The method of 2SLS is 3 "]imited-information" method in
the sense that information on the specificatia of all other struc-
tural equations is not utilized in the estimation of equation 1 ,
except for the list of all predetermined variables 2 appearing
in the system. A "gull-information" method requires specifying

all structural equations, and it is applied to the estimation of

all parameters simultanéously. One such method is three-stage

least squares of Zellner and Theil (1962). Let the p equations

pe set up by the notation of (3.1) as

- - - 1T - -
Y3 X, 0. . .0 aJ €
y2 = o] XE. ¢ O 062 + 62
(3.6 . . . .
. . X
Yp p| |7p p| .
L _ 1o -

By replacing each X; in (3.4) by its least-squares estimated
value ﬁi = Z(Z'Z)'lZ'xi as given by (3.2), and by applying Aitken's
generalized least squares to the resulting system, using the Kro-

necker product = & Ip 28 the covariance matrix of the residuals,

one obtains the estimating equations
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(3) e T
= - 1142 125.5 1p3, 3 112, 122, 1pl2 | |y
ocl'll oTIRIR, KXy e O X{ %, e S SEUPE NS St 1
| 212,20 220, 2 2pl, 2 212 222, 2pd
, - ' i o ' o ' o el O '
Oy oTTXIX, O IS SURER ><2xp X} X} X, 1Y,
(5'7) . o .
‘a Py iz, oP2xix ... oPPX'R oPlg.  oP2R .. oPPR'| |y
_pl L TPl p e p’pl - P p pl | P
where o3 denotes the 1i-j element of g1 . Since % is unknown,

the sample covariance matrix S of the residuals obtained by apply-
ing 2SLS to the structural equations can be used to approximate .,
If sl - (sij) replaces (dij) in the estimating eguations (%3.7)
the resulting estimates are known as three-stage least squares (3SLS)

estimates.

L. Applications_of the Method of Maximum Likelihood

By assuming the residual vector e in (1.1) to be p-viariate

t
normal, one can apply the method of maximum likelihood to estimate

the unknown parameters. The 1imited-information maximum likelihood

(LIML) method of Anderson and Rubin (19L9) estimates the para-
meters pertaining to one structural equation, subject to the identi-
fiability restrictions. The likelihood function is that of a
multivariate normal regression, given by the reduced-form, of the

th

endogenous variables included in the i structural equation to

pe estimated on all predetermined variables, with I, and I,
of equation (2.3%) as coefficients.Thislikelihoodfunctionjj;combined

with the restrictions given by (2.3b) to form 2 Lagrangian
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expression which can be maximized with respect to I

II
11’ 227
and 8, 73 can pe determined by (2.3a). As pointed out by

Hood and Koopmans (1953, P. 168), this constrained maximization

problem is equivalent to that of minimizing the ratio

! 2
(L.1) )\i. = HyiBii -Y.By - Zi'}’i” HM(Yieii - Yiei) I

The numerator of (k.1) is the variance of the residual of (3.1)

prior to the normalization - 1. The denominator is the

Bii

iPii " Y4

variance of the residuals of the linear combinations y &

i
of the endogenous variables in equations i around their estimated
values by the reduced-form equations. Setting to zero the deri-

vatives of (4.1) with respect to 7, Biy and B, , we obtain

| o 1 Llg
(L“E) 7y T (Zizi) Zi(yiBii-YiBi) ’
which should be compared with (3.4), and

. , \ . Pii )
(k.3) [(y; ¥3) M (yy Y. ) - M(yy ¥,) My Y,)] = 0 .

i

-Bi J

The minimization problem is solved by finding Xi as the smallest

root of the determinantal equation
1 - N 1 -
(b.h) \(Yi Yi) Mi(yi Yi) i(yi Yi) M(Yi YiH =0

and obtaining By from equation (4.3) with Bii set equal to 1

)

' 1 -1, - A
(k.5) By = [¥iMY¥;- Niyimri] ¥) My (Mlyg
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1f xi equals 1 , the LIML estimator (L4.5) will be identical

with the 2SLS estimator of (3.5).

Theil (1958, Chapter 6) proposed a k-class estimator

defined by
YV, - k YiMY, YiZy 5;1 (Yi-kYiM)yi
(L.6) -
1 1 t
2i¥3 2i%i) |74 2i¥y

which implies (%.4) and

t 1 -l -

Thus both 2SLS and LIML are members of the k-class, the former
with k=1 and the latter with k equal to the smallest root
of (L.k),

The method of full-information maximum likelihood (FIML)

maximizes the log-likelihood function for the system

(4.8) L - const- 5 log|Z| +T1log|B| - Terk ="M ym+ zr)(vB 2]
on differentiation with respect to Z_l, B and r, one obtains
respectively

oL '
(4.9) 2+ =27 = P2 - (YB+2I) (yB+2f) =0

3%
(k.10) %% = =~ Y'(YB + zv)z‘l + T(B')‘1

1

d . -
(4.11) ST . - z'(YB + ZI)Z
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Equation (L.9) can be used to solve for Z in terms of B and
I . Note that in (4.10) and (4.11), only those derivatives of

L. with respect to the_unknown elements of B and T are set

equal to zero. Thus the derivatives with respect to the unknown
th

coefficients in the 1 equation y, = Y.py + Z,y; +e; ore
(L.12) Lo oy % Ghi<y -Y. 8, -2, 7,.) + T eiﬁj 0
’ BBi iy h h™h h’h

where ol is the h-i element of =1 ang BIOQ denotes a
. . .t

column vector consisting of those elements of the 1 h row of

8"l which correspond to the unknown elements of 5, , and

p .
(haz) L -z oz

! (v, =Y, 8, =27 ) = O .
57i I pheot h "h™h h’h

As reported in Chow (1968), one computationally efficient
method to solve (L.12) and (4.13) for a' = (o ---aé) =

(ei’Vi"°°’5§’7§) is Newton's method

(L.1k) of*t - of +h_ (o)™t glo)

where ar denotes the value of the unknown vector at the rth
iteration, g(a) is the gradient of L as given by (L,12) and

(L.1%3), H(a) is the Hessian matrix given by

(Uhjcnl_kchngji)e,Y

2 ‘4 p
(b.15) LEeo - - odlyiy wlyr 2 ,
1 = 1 n-j

p
p¥
98 565 3T Loy 1€h _

n
1@ 4i6)
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no
-
™Mo
™Mo

3L 3i
(L.16 A 4 - &
) o4 97 i%9 7T i h:leh

with (Uij) denoting [%(YB-&ZF)‘(YB-&ZP)]-l , and h, is a
scaler chosen to promote convergence of the iterative process.

Of course, (Uij) changes from iteration to iteration. If ot3
were replaced by a consistent estimate, 2s in the method of 3SLS,
énd if B—l were also replaced by 2 consistent estimate, equa-
tions (L.12) and (4.1%3) would be a sysﬁem of linear equations 1in
0y similar to the system (3.7) for the method of 3SLS. Rothen-

perg and Leenders (1964 ) has suggested a linearized FIML estimator

obtained by performing only one iteration of Newton's method and
using 2 consistent estimate of o as initial value for the

iteration.

In the special case of a structure with 2 triangular B

and a diagonal Z , known 2s a recursive or causal chain system,

the estimating equations (4.12) and (4,13) will be reduced to those
of the method of least squares applied to each eguation individually,

Wi _ o . and bl _ o for ith. 1If B 1is triangular

since B
(with Bﬁ)i - 0) but I 1is not diagonal, (4.12) and (L.13) are
equivalent to the estimating equations of Aitken's generalized

least sguares applied to the entire system (3.6). The method of
ordinary least squares applied to each eqguation separately will

still be consistent but no longer efficient. The recursive system

has been studied extentively by wold (195hL, 1964 ).



=, Method of Instrumental variables

The method of instrumental variables originally suggested

by Reiersél (194k5) and Geary (1949) employs an estimating equa-

tion of the form

(5.1) 5 < (wx) MWy

where W 1is a matrix of instruments assumed to be uncorrelated
with the residuals of the stochastic equations. For the estima-
tion of B in equation (3.1) by a method belonging to the
k-class, we can interpret the matrix Wi = (M]._--kM)Y.l in equation
(4.7) as a set of instruments. Here the matrix M may be re-
placed by M* = I-Z*(Z*'Z*)-lZ*‘ where Z* is a matrix of

selected major principal components of 7 as suggested by Klock

and Mennes (1960). This method also admits of an instrumental
variables interpretation.

As pointed out by Hausman (1974), the method of full-
information maxirmum l1ikelihood can also be interpreted as 38 method
of instrumental variables. Substituting (YB-+ZF)'(YB-+ZP)Z-1

for T-1I in (4.10) and simplifying, one obtains

(5.2) %% = (B')'lr'z'(YB-+zr)E’1 = (zn)'(YB-+zr)Z'1
where 1II = PB-l is the matrix of reduced-£form coefficients and
ZI‘B_l - ¥ is a matrix of estimated values of the endogenous

variables by the reduced-form. Selecting from (5.2) the deriva-

tives with respect to the unknown vector £, , W€ have



P

(5.3) S~ = - :;{!l(YB vzr)zt - - Qi z Uhi(yh-Yhah-zhyh) =0
i h=1
where §i is @ T><(pi-l) matrix of estimated values of Y,
selected from the matrix Y - Zl"B-l . Denoting (§i Zi) by
ii , we can rewrite (5.3) and (4.13) as
— - -1 .
\ocl—l CIllX'xl Glgi'lxe Ulpiixg Ullx'l 0123'(1' Ulp')'('l
I e SE LA TP SR s S - SR S S o?P%,
\%ap Gpl;a:éxl P2 X, .. crppi'c'xp Gplié cP%‘(E') crpp'>"<£'J

The estimating equation

(3.7) for 3SLS. 1In (5.4), the reduced-form coefficients 1 =T

used to calculate §i

B and I , whereas in (3.7) the reduced-form coefficients

A -1 A
T = (z'z) "2'Y used to calculate Y,

on the predetermined variables 2 . Note that in (3.7) 1 %5
be written as ﬁixj . Both (5.4) and (

methods of instrumental variables. The matrix W'

in (5.4) is the matrix in curly brackets. The matrix X

tory variables for both is given in equation (%3.6).

-1

form coefficients I = I'B

16

(5.4) for FIML is very similar to

B-l

The reduced-

are obtained from the structural coefficients

are obtained by regression
A N

X!X, can
3,7) can be interpreted as
of instruments

of explana-

employed in computing the instruments

for FIML take fully into account the over-identifying restrictions

imposed on the system whereas the coefficients 1= (Z'Z)'lZ'Y
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employed in 3SLS do not. Brundy and Jorgenson (1971), Dhrymes
(1971), and Lyttkens (1970) have suggested using some consistent
estimates of B and T to compute I = I’B_l and g7t (or
simply the identity matrix as £ in the case of Lyttkens) for
use in the estimating equation (5.4). These are known as full-
information instrumentalvvariable estimators (FIVE). 1If one con-
tinues to iterate and the estimates converge, they become the
FIML estimates. However, the convergence properties of using
(5.4) for computing FIML, as compared with the Newton method

described earlier, remain to be investigated.

6. Other Methods of Estimation

We have just surveyed three of the major approaches to the
estimation of econometric systems within the framework of classical
statistics. They are by no means exhaustive even within the
classical framework. Other estimators can be found in the texts
cited in footnote 1. Besides, we should at least mention two other
approaches which have been considered by econometricians.

The first is the application of Bayesian statistical methods.
Through the use of prior information in the form of a prior density
function for the parameters in an econometric model, the Bayesian
approach has provided 2 generalization of the concept of identi-
fiability of the parameters and, when analytical or numerical
integration can be performed, is capable of yielding exact, finite-

sample results on the distribution of the unknown parameters 2as
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expressed in their posterior density functions. However, for
large-scale econometric models, the Bayesian approach has yet to
prcduce computationally feasible method of estimation; its con-
tribution so far has lied mainly in conceptual clarification and
providing an alternative justification 6f some classical methods
such as that of maximum likelihood when the prior density used is
diffuse. The reader may consult Dreze and Morales (1970), Dreze
(1971) and Zellner (1971) concerning the Bayesian approach.

Thé second approach is the use of robust estimation
techniques. Rather than minimizing the sum of squares of the
residuals or, in the case of a multivariate system, perhaps the
determinant of the matrix consisting of sums of squares and cross-
products of the residuals in different equations, a robust method
replaces the square or cross-product terms by some other function
of the residuals which are less sensitive to extreme values. The
objective is to reduce the influence of extreme values on the
estimates and to prevent a few outliers, or possibly erroneous
observations, from seriously affecting . the estimates. One approach
to robust estimation is to replace the residuals in the various
generalizations of least-squares Or maximum likelihood for
simultaneous econometric equations by 2 set of weighted residuals,
with the weight depending on the size of the residual. Modifi-
cationsto the estimating equations based on the method of maximum
1ikelihood have been presented in Chow (1973%) and some results on
comparing several classical and robust estimators have been

presented by Fair (197h).
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7. Properties of the Estimators

Concerning large-sample properties of the estimatofs, the
methods of full-information maximum likelihood, linearized FIML,
three-stage least squares, and full-information instrumental
variables are all asymptotmally efficient, the method of 3SLS
peing less so if there are a_priori restrictions on the covariance
matrix < of the residuals. The asumptotic covariance matrix is
given by the inverse of the matrix in the estimation equations
for 3SLS or the inverse of the Hessian for FIML. The limited-
information estimators including LIML, 2SLS and the k-class (with
Jn(k-1) converges to zero) have the same asymptotic covariance
matrix.

Results on small-sample properties have been obtained by
Monte Carlo studies,'several of which are summarized in Johnston
(1972, pp. 408-420). The studies cited, together with Mikhail
(1973), though somewhat inconclusive and subject to the special
characteristics of the experiments, confirm the asymptotic result
that the full-information methods are more efficient if the model
is correctly specified and if the covariance matrix £ 1is not
very close to being diagonal. If 2= is diagonal, 3SLS reduces
to 2SLS and the latter will be more efficient because it is equi-
valent to the former method combined with correct specification of
the off-diagonal elements of 2 . Numerous analytical studies
have also been made concerning finite-sample distributions of the

1imited-information estimators in the form of approximate or exact
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distribution functions. The latter are mostly confined to special
cases of two to three equations in the system, or only two endo-
genous variables in the equation to be estimated, as exemplified by
the study of Anderson and Sawa (197%).

One interesting Monte Carlo study 1is that of Zellner (1971,
pp. 276-287) in which classical estimators are compared with 3

Bayesian estimator using a very simple 2-equation model

(7'1> ylt= 7y2t +€lt

(t=1,...,T)

I
™
%
+
m

Yor = F *¢ ot

with the reduced-form

(7.2) Yie = T1%e 7 M1t
(t=1,...,T)
Yor = To¥e 7 Mot
where T, = By, W2==B . sSince this model is just-identified, the

classical estimators for 5 1including indirect least squares, 2S5SLS,

3SLS, LIML and FIML are all identical; it is 7 = %1/%2, %l and
ﬁe being ordinary least squares estimates of 7, and 7, in (7.2).To

obtain a Bayesian estimate of 1y , Zellner first finds the joint

posterior density of T and T, s transforms it to a joint
posterior density of » and p, and uses as a point estimate the
modal value of the marginal posterior density of » . For samples
of size 20, the Bayesian estimator turns out to be distinctly

superior to the classical estimator (in the sense of having a

sampling distribution more highly concentrated about the true
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paerameter value). The superiority gradually disappears as the
sample size increases from Lo, 60, to 100.

Zellner (p. 286) concludes that "Bayesian procedures
produced better results than sampling-theory estimation procedures.”
The main lesson from his experiments, however, appears to be con-
cerned with alternative methods of forming sampling-theory esti-
mates rather than the distinction between sampling-theory and
Bayesian estimates. The reason why the classical or sampling-
theory estimator behaves poorly in small samples is that it is a
nonlinear function (in fact 2 ratio) of the least-squares estimates
ﬁl and ﬁz of the reduced-form parameters. If ﬁl and ﬁg are
efficient estimators of T and T, respectively, their ratio
%1/ﬁ2 is not an efficient estimator for o = T,/T, in small
samples. The ratio is biased and does not have the smallest
variance around the true parameter value 3s Zellner's experiment
demonstrates. Therefore, in so far as the classical estimators
for the structural parameters can pe transformed through the rela-
tion I = rB"l to produce nearly efficient estimators of I,
they themselves are not nearly efficient estimators for B and T.
The development of estimators for structural parameters with
optimal small-sample properties requires further research using
both the Bayesian and the classical approaches. Note, however,
that if the ultimate use of econometric model is to predict the

pehavior of the endogenous variables given the predetermined

variables, with or without changes in structure, the main concern
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is with the properties of the reduced—form parameters as they
are obtained by solving the structural equations, rathéf than
the properties of the structural parameters themselves.

The robust estimators mentioned in section 6 are only
proposed procedures of estimation. Their sampling properties

also remain to be fully investigated by analytical of Monte

Carlo methods.

8. Nonlinear Econometric_ Systems

For a nonlinear system with additive random residuals, we

write the tth observation on the ith structural equation as

(8.1) fi(ylt’°"’ypt’ Zygst s Bt Fy)

(i=1,..,p)
- yit+®i(ylt’°'°’yi-l,t’ yi+1,t"";5i) = 5t (t=1,...,T)

Py being a vector of unknown parameters. Various methods for
estimating a nonlinear system have been proposed. For a general
treatment of nonlinear estimation in econometrics, the reader may

refer to Goldfeld and Quandt (1973).

If the residuals e., (i=1,...,p) are multivariate normal
v it 4

with mean zero and covariance matrix I , and are serially uncor-

related, the method of full-information maximum likelihood can be

applied. Let €., denote also the function £, of £, given by

(8.1) evaluated at the g0 observation, and e; denote a Txl1

vector consisting of €iq00 e 2€ip The maximum likelihood estimate
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"of £ is obtained by I = (

- (k ulu.) interpreted as a
T 1737’

g, .
1]

matrix function of the T observations and the parameter vectors

Pl,...,e .  The log-likelihood function is
P
T T
(8.2) I = const - = log|Z| + Z log|dJ,|
2 t
t=1
6fi
where J 1is the matrix of the Jacobian with BT as its 1i-3
J
element and Jt denotes this matrix evaluated at the tth obser-
vation. One can find the gradient vector %g— and the Hessian
2 i
matrix %géj¥;- in terms of the various first and second
i 3 of .
derivatives of f. and -t , as given in Chow (197%). Newton's

1

method can be applied for solving the equations as in the linear case.
Besides the method of maximum likelihood, Bmemiya (1973)

has recently proposed a generalization of the method of two-stage

least squares for non-linear structural equations, and Hausman

(1974) has suggested an application of the method of instrumental

variables to certain type of nonlinear equations. Furthermore,

attempts have been made to approximate each nonlinear function f.l

in (8.1) by a linear function of g, using a first-order Taylor

expansion around a tentative value B?

and to estimate the result-
ing linear system by the methods of 2SLS or 3SLS. One can iterate
by revising the tentative value B? in each iteration. This
approach has been programmed in the Troll System of the National
Bureau of Economic Research (197k).

The methods just mentioned for nonlinear systems have not

been tried extensively, and much more experimentation is required
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to study their computational problems and their sampling properties.
An important special case of nonlinear systems is derived
from a linear system with residuals €, which are serially cor-

related. For example, if ¢ in equation (1.1) follows 2 second-

t

order autoregressive scheme

(8.3) € = Ryep g 7 Ryep o * Ve

where Vv, is serially uncorrelated, one can combine (8.%) and

(1.1) to form a system
(8.k4) By, = Tz * RlByt_l'leth_l-l-REByt_2 + RTZy 5 + Vy

which is nonlinear in the parameters B, T, Rl and R, - In
addition to the methods mentioned above, Sargan (1961), Hendry
(1971), Chow and Fair (197%), Fair (1972), Hannan and Terrell

(197%) have studied the estimation of linear system with serially

correlated residuals.

9. Concluding Remarks

Having reviewed some methods for identification and
estimation of econometric systems and suggested some areas of
further research, the author hopes that scholars in other disci-
plines especially the control scientists will find some of the
econometric problems interesting and appealing. Economists are
prbbably dealing with larger systems than the control engineers.

The number of unknown parameters to be estimated is larger, and
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the data on which statistical estimates can be derived are

limited. Although the simultaneous-equations model is somewhat
different from the models of the control engineer, the concept of
ijdentifiability of a set of parameters 1is applicable to both and
problems of sdentification can provide an area of common interest.
Furthermore, estimation methods and computational techniques in

the two disciplines are pased on similar basic ideas. Therefore
exchanging experience in both topics will be fruitful. 1In this
connection, the setting up of a control model and the proposal to
apply certain econometric techniques for jts estimation by Mehra
(1974) should be mentioned as an attempt in this direction. Mention
should also be made of the recent interest among econometricians

in the estimation of time-varying coefficients in regression models,

a topic sometimes treated by Kalman filtering. This topic has been

surveyed in the October, 1973, issue of the Annals of Economic and

Social Measurement.

Besides the uses of econometric models for testing economic
hypothesis and for forecasting, an important application is in the
setting of economic policies. The subject of estimation and control
of econometric systéms has received much interest among economists
and control scientists, as evidenced by the papers from three joint

conferences sponsored by the National Bureau of Economic Research

in 1972, 1973, and 1974. Some of these papers have appeared in the

October 1972 and January 1974 issues of the Annals_ of Economic_and

Social Measurement and some will appear in the April, 1975, issue

of thatjournal. This certainly is a subject of mutual interest.
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Hopefully, the present survey, by bringing out certain salient

features of the identification and estimation of econometric

systems, will help promote further cooperation between the two

disciplines.

FOOTNOTES -

Research supported by NSF Grant GS 30003X and benefited
by the work of the author as consultant to the NBER
Computer Research Center, and by helpful comments from
Ray C. Fair and Richard E. Quandt.

Text books in econometrics include Christ (1966), Dhrymes
(1970), Goldberger (1964 ), Johnston (1972), Malinvaud (1966),
Theil (1971), among others.

For surveys of recent works on errors in variables in
econometrics, the reader may refer to Goldberger (1974)
and Griliches (1973).
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