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1. Introduction

Preliminary Notions. A number of recent papers has studied the

problem of estimating demand and supply functions for markets that are
in disequilibrium. By disequilibrium we mean a state in which the quantities
demanded (D) and supplied (S) are not equal to one another and in
which the observed quantity @ 1is given by the short side of the market,
i.e. Q = min(D,S) . Such markets prgsent a number of novel problems
of specification as well aé of estimation. These issues were first
raised by Fair and Jaffee in their treatment of the market for housing
starts [ 2] and were subsequently considered, among others, by Fair
and Kelejian [ 3] , Amemiya [ 1] , Hartley [ 6] and Maddala and Nelson
[ 71 . Some theoretical (as contrasted with econometric) issues are
discussed by Grossman [ 5]

Despite this spate of recent articles, the study of disequilibrium

models is still in its infancy, especially with respect to actual computational

*We gratefully acknowledge comments from the membersg of the NBER-NSF
Workshop on Segmented and Switching Regressions held June 3-4, 1974 at
the University of Wisconsin and in particular those of G.S. Maddala. We
are indebted to Rehka Nadkarni for computer programming. Financial
support was received from NSF Grant GS-43747X.



experience. As far as we know, such experience has been exclusively with
the data used by Fair and Jaffee. Furthermore, there are some formulations
which, due to the presence of complex nonlinearities, have not even been
estimated. These reasons alone point up the need for further study of
disequilibrium models. An additional reason for such study is to spell
out more precisely the relationship between the appropriate estimating
technique and the amount of information assumed to be available to the
investigator. Since this relationship may vary from underlying model
to model, it is also desirable to investigate a model with somewhat
different features than the housing market.

In particular, the present paper has several specific objectives.
(1) In the remainder of this section Qe present a brief review of the
basic demand-supply disequilibrium models and also introduce a somewhat
richer model stemming from Suits' work [ 9] on the watermelon market.
(2) In Section 2 we develop maximum likelihood methods for estimating
the coefficients of this model under a variety of assumptions concerning
how much information is available and analyze some theoretical properties
of the resulting likelihood functions. (3) In Section 3 we report the
resultsvof reestimating the Suits model with the new techniques and
also extensively examine the computational as?ects and estimation
properties of the various methods with the aid of Monte Carlo experiments.
(4) In the same section we analyze the value of information in the context
of the Suits model. In particular, we compare in detail two of the
three estimators, introduced in Section 2, wﬁich make use of differing

amounts of information oxr data.
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Supply and Demand Disequilibrium. The simplest form of the Fair-Jaffee

model is as follows:

D(xD,p) + u

»)
Il

1

S(xs,p) + u

n
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2

min(D,S)

L&)
1]

(1-1)

(1-2)

(1-3)

where for simplicity the price p 1is taken to be exogenous (although this is

D .
by no means necessary) and where x and xS represent vectors of other

variables entering the demand and supply functions.

The observed variables

are p and Q , with D and S being latent or unobserved. Diagrammatically

ths situation is as in Figure 1 with the observations clustered around the line

segments AB and BC . More complicated models of this type in which p is

endogenous are also discussed in (2] and [71] .

Since in the present model

Q 1is the only observable random variable among Q , D and S, the

problem is to derive the pdf of Q from the joint pdf of D and S

Denoting by f(Q|D<S) the conditional pdf of Q given D < S , we

have from the specification of the problem

h(Q) = £(Q|D<s) Pr{D<s} + £(g|D>s) (1-Pr{D<s})

But

f(Q|D<S) = J g(Q,SID<S)ds = EET%ZgT J g(Q,8)ds
Q Q

(1-4)

{(1-5)

where g(Q,S) and g(Q,S|D<S) respectively denote the joint and joint con-

ditional pdf of D and S with Q replacing D , and a similar expression



Figure 1

holds for the second part of (1-6) . Hence (1-4) becomes

h(Q) = J g(Q,s)ds + J g(D,0)dD (1-6)
Q Q

where in the two terms either Q = D and we integrate out S over Q<SS
or Q = S and we integrate cut D over <Db.

Indexing observations by i ,

L =1 h(Qi) (1-7)
i

A slightly more complicated model arises if p is made endogenous by

lEquation (1-4) has the general form of the sum of two densities,
each weighted by a certain probability and thus appears to be superficially
similar to the A-weighted densities considered in [ 8] . However, in
the present case, the probabilities are not constant from observation to
observation and furthermore they cancel out altogether when the pdf is
written in the form of joint rather than conditional densities in (1-6).
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the addition to (1-1) , (1-2) , (1-3) of, say, a dynamic adjustment

equation

AP = y(D-S) + BxP + u, (1-8)

where XP is a vector of some additional regressors. We now require

the joint pdf of the observable random variables Q and p which is
derived from the joint pdf g(D,S,p) analogously to the previous case and
is

[+°]

g(Q,S,p)ds + J g(b,Q,p)ab (1-9)
Q

v-]

h(Q,p) = f
Q

In both of the previous formulations it was implicitly assumed that
D and S are unobservable. In the contrary case, and employing the

first and simpler model for purposes of illustration, we let Il denote

the set of indices for which D < S and I, the set for which D > s .

The density function for Q then is

£(Q) |D<S)Pr{D<s} if D < s

h(Q) = (1-10)
f(Q)|D;S)(l-Pr{D<S}) otherwise

The corresponding likelihood function then is

L = I £(Q|D<s)Pr{D<s} 1 £(Q|D>s) (1-Pr{D<s}) =

Il I2



j g(QrS)dS I f g(D,Q)dD (l-ll)
19 Ty 7R

which follows from applying (1-5) .

Computational experience with models of this type and particularly
with the likelihood function arising from (1~9) has been limited;
whatever there exists fo far is based on the Fair-Jaffee data. In view
of these reasons it appears fortunate that we encountered Suits' early
article. This turned out to be even more propitious in the light of
the fact that the Suits model contains some new complexities as well
as a more natural way in which questions about the wlue of information
or data can be introduced.

‘The Suits Model. A particularly interesting disequilibrium model

which presents some new complexities for the derivation of the likelihood

function is Suits' model of the watermelon market. Define the following

variables, measured in terms of natural logarithms:

q, = crop of watermelons

p, = priée of watermelons

X, = amount of watermelons harvested

Ct = price of cotton

Tt = price of commercial truck

Jt = dummy variable representing‘government cotton policy
K, = dummy variable representing World War II
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wt = southern farm wage rate
Yt = disposable income

Nt = population

Ft = freight cost .

The equations of the model are as follows

= + -
qt alpt_1 + a2ct—l + a3Jt a4 £-1 + aSKt + a6 + ult (1-12)

X, = a7pt - a7wt + ant + a9 + u2t : (1-13)

p, =a. Y + a . .x. - (

N 10%¢ 11% IN. + a,. F + a + u (1-14)

310711/ N Foapf tagg tugy

+ -
qt = alpt—l a2ct—l + a3Jt f a4 -1 + a5Kt + a6 + ult (1-15)

Y + a

P, = ;oY + a9, - )N_ +a F_+a . +u (1-16)

+
(a0%a) )N + 3 ,F, + 2y, 3t

if X, = Qg

Equation (1-12) (or(l1-15)) describes the determination of the
crop and states that the intended crop is a function of the lagged own
price and the lagged prices of competing crops and some other variables.
Equation (1-14) is a standérd demand equation in per capita terms
and states that the current price is a function of the amount brought
to the market, income, etc. Equation (1-13) i; the "harvest equation"”
and states that the amount actually harvested is a function of the current

price and wage and of the size of the crop itself. This equation thus

states that under certain circumstances (e.g., low current price and high



current wage) it may not be worthwhile to harvest the entire crop; of
course, it the equation were tq require more to be harvested than had
actually grown, the equation would not be required to hold and the harvest
would equal the crop, i.e. X, =g, -

It is not our intention to analyze in detail whether (1-12) through
(1-16) are a suitable specification of the market for watermelons and
these questions are discussed in [ 9] . It is clear that alternative
specifications are possible and that one might wish to introduce, (a) a
more explicit optimization model for the determination of the harvested
quantity and (b) an adaptive expectations model for the price in the
g-equation. However, we shall concentrate on the model essentially as
stated for two principal reasoné: (1) it presents an interesting extension
of disequilibrium models and (2) by alternately specifying q, to be
observed or unobserved it permits us to estimate econometrically the

value of information. More specifically, a model such as (1-12)

through (1-16) may be thought to hold under one of two polar extreme
.assumptions: (1) that we are given observations on all the variables,
including q (and this is the model adopted by Suits himself) and (2)
that we have no direct observations between the submodel consisting of
(1-12) to (1-14) and the submodel consisting of (1-15) , (1-16) . This
is analogous to having observations on D and S in the simple

models discussed earlier which led to (1-11) as the likelihood function
and to lacking such information which leads to a quite different likelihood

function. We now turn to the derivation of these functions.



2. Derivation of the Likelihood Functions
In order to simplify the derivations it is convenient to rewrite the
equations of the Suits model in somewhat condensed form by letting the scalars, I

z z represent various (sets of) predetermined variables. The basic

2t T3t

equations of the model are

A = PpZpp TPy T U (2-1)
X, = b3pt + b4qt + b5z2t + b6 + u2t (2-2)
pt = b723t + b8xt + b9 + u3t (2-3)
1
In replacing the predetermined variables in (2-1) by =z we are consciously

1t
neglecting the fact that Pt—l is endogenous. The pdf we derive for the
endogepous variables for the tth observation will be conditional on P
and the resulting likelihood function Qill be correct if we assume that Py is
nonstochastic.

According to the original specification the values of the endogenous

variables are generated by (2-1), (2-2) and (2-3) if x, < Qe i if x

t e 9

then (2-2) is ineffective. The nature of this problem is illustrated in
Figure 1.

Quantities are measured on the vertical axis and price on the horizontal
one. According to normal expectations eguation (2-2) 1is positively sloped
and (2-3) negatively. Equation (2-2) depends on 9 and hence the line
representing it would shift as qt changes; we neglect this dependence in
the diagram without losing the essential features of the problem. The
quantity of crop a9 depends on exogenous variables only and represents

farmers' past intentions; hence if its magnitude is given by qa; - the solution
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qt'xt
Equation (2-2)
ql o ——
% A
A
~— B —
47*p
Equation (2-3)
Pa Py Py
Figure 1

to (2-2) and (2-3) vyields a desired harvest or x-value given by x

<
a -4

and thus the price-harvest quantity pair generated by nature is (pA,xA)

corresponding to the intersection A . If, on the other hand, the quantity

of crop a, is less than SN then the amount of the harvest is x

the generated pair is (pB,xB) corresponding to point B .

B 9

An entire sample will

contain a mixture of points corresponding to A and B respectively.

We now turn to deriving the likelihood function under the two alternative

specifications that 9 is or is not observable. In any event we shall

assume that uit ~ N(O,cf) (i =1,2,3) , E(ui u, ) =0 for all i # j and

t js
t#s .

Specification 1 : g, unobserved. It is obvious from Figure 1 that

a=)

the quantity that must be substituted in Equation (2-3)

to find the observed

price is the lesser of q and x_ , i.e., the lesser of the crop and the

t

intended harvest. Defining Ve to be the observed quantity coming to the

market, the model can be rewritten as follows:
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I T PyZip * Byt Uy (2-4)
X, = b3pt + b4qt + b5z2t + 56 + Uoy (2-5)
P, = 1:;723‘t + bgy, + by + ug ' (2-6)
Y, = minaqt,xt) (2~7)

where the quantity variable introduced into the price equation (2-6) is
Ye o which is given by (2—7? . Under the present specification only P, and
y, are observed and our next step will be to deduce the joint pdf of 2 and

r u

Y from that of u,,, u . Since only one quantity variable is

1t 2t 3t

observable in the present case, the specification given by (2-4) to (2-7)

can be transformed into two sets of equations corresponding to the regime in

which x, < g

N and the regime x

For this purpose we introduce v. . ,

t £ 9 - 1t

v to represent the quantity in each regime and w

2t ;W the corresponding

1t 2t

price. Then, since qt is unobserved, we have

Vig T b3wlt + b4(blzlt+b2) + b522t + b6 + (u2t+ b4ult) (2-8)
o 2-9
Ty T PgZap t BgVyp by *ug, (2-9)
if V]t < v2t and
= + M ’ -
Vop T PiZpe TPyt Uy (2-10)
w. = b._z +bv. +b_+u (2-11)

2t 793¢ 8 2t 9 3t

2The reader will note the similarity to Equations (1-1) to (1-3) and
(1-8) , with the exception however, that in the present example the observed
guantity does enter the price equation, thus departing from the recursive nature
of the previous model; i.e. the usual Fair-Jaffee model.
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otherwise. Equation (2-8) is obtained by substituting (2-4) into (2-5)

by w ; (2-9) is the same as (2-6) with

and replacing x, by 1t

t Vie’ Pt

the same substitution of symbols. We in fact observe (yt,p ) either as

t

. < .
(Vlt'wlt) or as (V2t'w2t) depending on whether vlt v2t or not The
random variables Vlt’ wlt’ v2t, w2t have a singular normal distribution and
. > : - = - ; t
it can be verified that wlt w2t b8(vlt V2t) however, the set of
random variables, Vlt' wlt' v2t has a nonsingular normal distribution and so

h ; i i i i

does the set Vigr Worr Voo ‘both induced by the distributions of Uppr Uy s Ugy

*

We derive each distribution in turn. Equations (2-8), (2-9) and (2-10)
are a System of simultaneous equations with a normally distributed error term

vector n' = (n

Y = ] =
t 16/ Mg N3’ = (B + Bygy4r U euy ) with E(n) = 0 and
o
2 2
+
' 02 b4ol 0 b4cl
I, = E(n) = X (2-12)
0 g 0
3
2 2
b40l 0 ol
- R |
Since det(z ) = 020202 the joint pdf of v, , w.  , Vv then is
1 17273 1t 1t

2t
) _ ___I.]_-:_b_.3h18._|—- e .._l_. 'z_l (2_13)
WierVor) T 3/2 *P4 77 "l "] €
(2m) o 0203

1
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where we substitute for the n vector from (2-8), (2-9) and (2-10)

where 1 - b3b8 is the Jacobian of the transformation.

The second distribution is obtained by replacing LA in (2-8) by
- i i h ti
w2t + b8(vlt V2t) and rearranging to yield the three equations
v -t b_w - b.b v + b,b.z + b z + b,b, + b +
1t l-b3b8 372t 37’8 2t 47171t 2t 472 6
BoetPgYye
1-b_b (2-14)
38
= + + I -
War T PP * BgUp * by tug, (2-15)
= + -
V2t _ blzlt b2 + ult (2-16)
u,,+b u
. 2t 471t
h =f <t & 1t _
“ with error term vector Et ( l—b3b8’ r gy ,lﬁj:) and E(Et) o,
2 .22 2
93tP4% . D491
(l"b3b8)2 l-b3b8
' 2 .
1, = E(EkE,) = 0 o5 0 (2-17)
2
494 0 .2
1- b3b8 1
L -
and det().) = 02525 /(1 b.b ) . Hence, g(v is
2 192° ! Yot ’ 2t

|1 b3b8
g(vlt'w2t'v2t) = expy-= [& Z E (2-12)
' (2m
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where we replace the &-vector from (2-14), (2-15), (2-16) and where the

Jacobian of the transformation is unity but the term ll—b b

3 8| reappears
nevertheless as a result of its appearance in det(zz)
The joint density of yt,pt is clearly given by
= - > -
By py) = hy v e v vy el <v o+ By (v, PV 2v, ) A-Prlvy <v) 1) (2-19)
=]
but hy (Y Py vy <vpy) = J £y iRy Vo lv vy ddvy, =
Ye
00
Priv l<v )i ( By Pervpe)dvye
1t 2t Yy
t
and similarly for hz(yt,o lv t_'2t) . Hence (2-19) becomes';3
{oo] 00
= 2-20
hiy, .p.) J £y op vy )dv,, 4 [ g(v ey )avy ( )
Ye Y

We now obtain the first term of (2-20) by integrating (2-13) and the

second term by integrating (2-18)

Consider the exponent part of (2-13) and substitute for the n's from

. -1
(2-8) - (2-10) . We obtain for ntzl n,

2
I R e e R O A LN I S )® . M™% PgYy Ry

eb1 Nt 2 2
2 3

(v -b.z. b )2 (c%4b%2 ) 2b, (v, -b_w “by) (v, ~b 2z, ~b_)

+ 2t 171t 2 2 471 _ 316724171 " 5267040, 171t 72
2.2 2
172 2

3Equation (2-20) 1is analogous to (1-9) but with the additional complication
that unlike '(1-9), the two integrals in (2-20) involve different functions.



Completing thé square on v

; Substituting the observed Y 1Py for v

15.

r W ’

2t 1t Y1t
and rearranging we obtain for the firet term of (2-20)
Y v, )av,, = 150 | B O e i U e I o b)®
LY PV, 2t 2n0 (02 P) 2)1/2 12 B 2, b202
T 20491 4%1
2 2,,221/2 2 2
- - _ - + .
. (P ~b,2,, ~boy, -by) (0,+b,07) . 1 o3 +b, o
o2 y i I o252 2t 171t
3 t vYam o0, 172
( -b b -b_z_. -b b b 2
1¥1¢7P3P"PyP12 P52, b b, - D)
dv (2-21)
2 2 -l 2t
g +b4o1 »

Denoting the term before the integral sign in (2-21) by wl (yt,pt) and the

cumulative integral of N(0,1) from -» to & by @(Rt) , (2-21) can be

t

written as

fy (yt,p ’Vzt)d op = wl(yt,pt)(l-¢(lt))

2.2 2

o+b +b_)- b o - -
Y (050,04 10, (blzlt b)) =040y (¥ =byp, ~boz, ()
/2

919

where zt = - +b ; )l
2 7471

The second term of (2-20) is obtained in analogous fashion.

(2-14) to (2-16) in the exponent part of (2-18) we obtain

(2-22)

(2-23)

Substituting
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o-1 1 | 2 (l-b3b8)2
Sely 6 = | vie - T-b 5, (b3W2t'b3bavzt+b4b121t+b5z2t+b4b2+b§z] 2
. 2
2 2 (0§+bjoi)
* E’zt'b7z3t'b8"2t‘b9] /oy * [VZt-blzlt—bZ 2 2
919,

1
- 2[;1t' 1-b_5_ (b3w2t_b3b8V2t+b4blzlt+b522t+b4b2+€§ [}Et"blzlt bé]
* b, (1-b.b_) /0
4117P30g) 7%,

Completing the square on v we obtain for the second part of (2-20)

1t
o0 |1-b_b_]| (y.~b.z, -b_)° (p.~b.z. -b y.-b )z
(v yav. = 378 expd- L]t 171t 2" FeTP773 e¥e7g
TWV1e Per¥e !9V 2m % o o 2 2 2 _
Ye 192% 1 %3

* 1 1
Jy exp‘{’ 2 [}l—b3b8)(vlt i:Ei;%; (byp ~b boy, +b bz, +
t

’ 2
2
+ + + - - -
P2y tbybytbe) = by ly -biz bz):l /02}dvlt
“b.z.. -b.)%  (p.-b.z. -b.y ~b_)>
S S G Y I e M i i -2 .
2wclo3 p 2 02 02
1 3
) 1 -1l a-bo)v. -b.p +m.b b )y -b.z b |/ ¥av
exp 2 378" V1t P3P P3P TR Y TP5% 5706 19, 1t
Y, vamw 02 :

= wz(ytrpt)(1—¢(2t)) (2-24)
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where wz(yt,pt) is the term before the integral sign and

vl
N LA AR

& n -b_z b (2-25)

3P+™P5%2¢ 0
Hence the likelihood function has the form
]
L= 1 w1<yt,pt)<1-¢<zt>) + wzéyt,pt)(l-¢(lt)) (2-26)

Specification 1-A: q unobserved but sample separation known.

Somewhat more but still incomplete information is available if we assume
that = is itself not generally cobserved, but that we have prior knowledge

as to when X, is less than and when it is equal to qt'4 Let Il denote

the set of indices for which x and I, the set for which X, =4 -

£ 5 9 2

It follows immediately that the likelihood function is multiplicative

as (1-11) but consists of the same parts as (2-26) , hence
]
L= 1 wl(yt,pt)(l-Q(lt)) II wz(yt,pt)(l-¢(2t)) (2-27)
tel, tel,

Specification 2: qp observed. Once it is assumed (as in 1-7A) that

the sample separation is known, it may be more plausible to assume that it

is actually observed. If this is the case we can decide by inspection whether

4Of course, this means that a4, is known when we have the information
that X, = q -
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X, < q Or X =q . This is analogous in the case of the demand-
supply model of (1-1) and (1-2) of observing D and S . In that

case the appropriate likelihood function is of the form (1-11)

Let I1 and I, be the index sets as before. If qyr X

are
2

t' Pe
all observed and x, < q the pdf of the observable variables is simpiy the‘

joint pdf of dyr X s Py given by

2
Vol % p.) = |1-b3bg| exod - L (9 =k 2y 75 .
3\ Qe r ¥ Py 2125 5 o P4~ 3 2
1%2%; 1
(x.~b.p. -b bz -b )2 (p.-b_z. -b_x ~b_)?
t 03P 7049 "05% 5P Py 70923 7Pg% ™
+ + (2-28)
2 2
2 3

When dp = X o the pdf of the observable variables X o Py is simply

'
wz(xt,pt)(l—é(lt)) . Hence the likelihood function in the present case is

L= 1 w3(qt,xt,pt) I lIJZ(xt,pt)(1-<I>(5Lt)) (2-29)

te:I1 teI2

s a9 . < . . . i
The Probability Pr{vlt_ vzt} Although the probability Pr{v1t < V2t}

cancels out in all likelihood functions, it is nevertheless of considerable

interest as a quantity to be computed from estimates of the structural

parameters since it allows us to estimate the probability that X, was

less than 9 for any t . This is, of course, of particular importance for
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Specification 1.

In order to obtain Pr{v1t < V2t} obtain the reduced form for vlt from

(2-8) and (2-9) . This yields

Vit T Tobb. |PaP1Z1ePs% 1 T3P 25 thgbgtb botb b uy  Fu, +bous

and using this together with (2-10) in the probability statement yields

Pr{v1t < V2t} =1 - ¢(2t ) (2-30)

where

o by (by~1+b3bg)z) +b 2, +b bz +b b+ (b,~1)b,+b b b b

t 2 2 2 .2 21/2
v (01(1 b3b8 b4) +02+b303)

where we assumed that l-b3b8 > 0 (which it normally will be)

Maximum Likelihood Estimation. Having obtained the likelihood functions

under three separate specifications, the natural procedure for estimating

the parameters is to maximize the corresponding likelihood function. Although
the various likelihood functions are composed of similar or identical parts,
their behavior is strikingly different. Some aspects of these differences

are contained in the following two propositions.

Proposition 1. Maximum likelihood estimates for Specification 2 produce

OLS estimates for the coefficients b.,, b., 0. .
1l 2 1 2

1 (9g=byzy, b))

Proof: We can factor the term exp{- - Z/olb’m from each

2 02
1
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w3 and each wz in (2-29) . Equation (2-29) can then be written as
n n
1 1 2
expd - —= Z {(g,-b,z. . -b.) X (2-31)
(Vzw g ) 202 t=1 £ olle 2
1 1
where K does not depend on bl' b2 and 01 . OQED.

Proposition 2. The likelihood function for Specification 1 is unbounded

and hence maximizing it produces inconsistent estimates.

Proof: We shall explore the behavior of the likelihood function at a

point in parameter space such that b4 = 0 . Then (2-20) can be written as
1-b,b [y, ~b.p bz b )2 (p -by)
h( y =L 38 pd L]t 37t S2t 6 t P7%3¢ Pa¥t
yt’pt 2T 0203 b 2 dz 02
L 2 3
B 2 2
(1-0(2,)) + o f o TPty PR Rt bg)_] )
t 210 0, P12 2 ) _]
|
(=0 (kD) (2-32)

where now

-b,z. . -b
lt = __i__].'_t_._z (2-3 3)
1
y.-b_p, -b_z
! t 3Pt 5 2t 6
= -34
Zt 5 (2-34)

2
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The likelihood function (2-26) has the same form as before, with

'
appropriate changes made in wl’ wz, 2 and & . Let S denote the set of

217

(yn,pn.z2 )} . Let S be the convex hull of S . S is bounded and there

n points in 3-gpace with coordinates (yt'PtZZt) ; 1.e., s={(yl,pl,z

exists a supporting hyperplane defined by coefficients G3r Oy such

%17 % O3
that al # 0 and

(1) a + o + 0.z +a, =0 for some k

2P T 3%y Oy

(ii) % ¥, + o,p + Az, + 0, 0 for all t
(iii) alyj + azpj + a3zzj +ta, = 0 for j # k occurs with probability zero.
We then have b3 = —a2/0tl , b5 = —a3/al ' b6 = —u4/al . In the present case

all 22 are positive; one example of a supporting hyperplane is given by

b3=0, =max(‘),b6=0.

Now choose and consider the behavior of the likelihood function

as 02 5 0 . Since Ol # 0, lt is finite for all t and l—@(lt) #0, 1

for all t . Since o does not enter wz, th # 0 for all t . As 02 >0

we oObserve that

b., b are so chosen that b)) =

(1) ¥, (yy.p) > = since by, by, by (¥y~P4py ~bgz,, b,

(ii) 1 =~ ®(2;) =1/2

1 1
(iii) lt -+ =o and hence 1 =~ @(Qt) +- 1 for all t # k .
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It follows that in

n

L= tEl{wl(Ytrpt) (1-2(2.)) + ¥, (y, .p,) (l-¢(2t))}

1
the terms wz(yt,pt)(l-Q(Qt)) >0 for all t and wl(yk,pk)(l-Q(lk)) > ® ;

hence L - » ., QED.

The unboundedness of the likelihood function means that any attempt to find

a global maximum will produce the inconsistent estimates b4 =0, 0

close to 0 . This difficulty is similar to the one that occurs in the mixture

distribution models and can be avoided by bounding o

1 arbitrarily

5 away from zero. A
convenient method of doing this in both cases is to require a priori knowledge

. . 2 2 2 2 .
of the ratio of the variances 01 ’ 02 and to set ol = k02 . The computations
reported in Section 3 will employ this restriction and will also examine the
sensitivity of the results to alternative assumptions about k . It should
be mentioned in conclusion that Proposition 2 is of a negative nature in that

we have not proved the consistency of the ML estimates that employ the above

restriction.

3. Empirical Results

The Suits Model. The model was originally estimated as follows.

Equation (1-12) was estimated by ordinary least squares from data for the

years 1919-1951. Equations (1-13) and (1-14) were estimated by limited

information maximum likelihood 5 for the years 1930-1951 (since x, was believed

5This estimation method consequently ignbres the difficult points
raised in [ 2} , [ 3] , [ 6] and [ 7] .
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unavailable prior to 1930) with the harvest equation being estimated
with only those data points for which X, < q, - These original results
are reproduced in the first column of Table 1.

We extended the data series backwards by obtaining the previously

missing observations for x, . There is some question about comparability

t
of the two sets of data, particularly with respect to the variable F .
We first reestimated the equations using OLS for all three equations,
but again estimating the harvest equation only from points for which X, < q -
These results are in the second column of Table 1. The constant terms

and the coefficients of the dummy variables are very different; this

however is simply due to scaling. The other parameter estimates are quite
reasonably similar to those of Suits except for al, which now has the

wrohg sign and appears to be statistically significant. We have no

explanation for this phenomenon except the observation that our extension

of the data series may have produced numbers not fully comparable with

the earlier ones. We also find a higher income elasticity of crop:

/

Byt/aYt = and is 1.37 for Suits and 1.75 for the OLS estimates.

#107%11
We next reestimated the model employing Specifications 1, 1-A and

2. The resulting estimates are in columns 3, 4 and 5 of Table 1. The

results for Specification 1-A and 2 are quite similar to one another and

are in general quite good. In particular, for Specification 2 the results

for the first equation are identical to the OLS estimates, as was shown

in Proposition 1. The reader may note that the standard errors for the

first equation are slightly different; this is due to the fact that in the
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ML method n rather than n-k is employed as a divisor for computing
the residual variance. With this adjustment the standard errors agree
exactly.

In comparing Specification 1-A and 2 we note that the estimated
standard errors are smaller for the second specification for every
coefficient except one where there is a slight difference in the third
place; a result completely in accord with expectations since Specification
2 uses more information. The coefficients agree with one another very

well between the two specifications, except for a_ which is a constant

9
term and which is not significantly different from zerc in either.
Specification 2 suggests that the harvest is somewhat more responsive to
price and legs responsive to the size of the crop than either Suits or

our OLS estimates have found. We now find a much lower incbme elasticity
(.79) than before and also a substantially lower price elasticity (l/all),
namely -.66 rather than -.90 for Suits and -1.37 for our OLS estimates.

These changes appear reasonable although a has a reverse sign for

12
these maximum likelihood estimates as well.
We have had considerable difficulty computing estimates by Specification
1 even though the variances were constrained to their Specification 2 ratio.
The likelihood function appeared to be very flat over extensive ranges of
the parameter space. We did compute suboptimal estimates by fixing the
value of ajy at -1.5, approximately the estimated value by Specification 2.
Although the signs of the remaining coefficients are the same as in

Specification 2 (again with the exception of the constant term a their

o)

values are not plausible and none of the coefficients in the crop and

harvest equations is significant. The poor performance of Specification 1
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may well result from the simultaneous presence of specification error,
inadequate data, and excessive denial of information to the model.

In the light of these results, it appeared desirable to conduct some
Monte Carlo experiments in order to shed some additional light on the
cdmputability of estimates, their sampliﬁg properties and on the effect
of using differing amounts of information in a controlled situation in

which the truth is known to the investigator.

Monte Carlo Experiments. The condensed form of the Suits model as given

by (2-4) to (2-7) was employed for an empirical examination of estimation
under our two specifications of the likelihood function. The exogenous

z zZ were chosen to be the same as the variables F W,

variables zl v Zy 1 Zg '

and X in the actual Suits model. We experimented with two sample sizes
N =30 and 60 . Since the actual data comprise 33 observations, we omitted
the last three for the smaller sampie size and for the larger sample size we

used all 33 and then repeated the first 27. 1In the basic experiments the

i

true values of the parameters were bl =1.0, Db 0.3 , b, =2.0, b, =1.0,

2 3 4
= = - = = - = 2 =
b5 = -1.5, b6 = -4.,5 , b.7 1.1, b8 1.3 , b9 5.2 , o1 0.0132 ,
2 2

o, = 0.0025 , 03 = 0.1277 where the latter three figures were those computed for
the actual Suits model by OLS. The parameter values were chosen so as to
reproduce approximately the levels of the dependent variables observed in

the actwal data. Observations on the endogenous variables were generated

from Equations (2-4) to (2-7) using error terms distributed normally

and independently with the indicated variances. Each experiment consisted

of 50 replications of the process of generating a set of data and estimating
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the parameters by the two basic specifications; since Specification 1-A

is intermediate between these, we performed no large-scale experiments with
. .2 '
it. 1In Specification 1 we have to constrain o and we assumed that

2
2 12 . : .
9, = Eol , where we chose for k in the main set of experiments the true

2,2
value of 01/02 .

In the principal set of experiments we varied the sample size N , the
coefficient b4 and the variance oi . Since Specification 1 uses less
information than Specification 2, in that it employs no explicit g-data ,

we wished to vary b4 , the coefficient of g in Egquation (2-5) and the

variance of the error term in Equation (2-4) , in order to examine the effect
of these variations on the value of additional information. Of course,
changing the parameters of the model may well change the fraction of sample
poinfs over the replication for which X, < g and the fraction for which

t t

X, = qt . We wished to keep this fraction as nearly constant between experi-
ments as possible since these fractions determine in effect how many
observations "belong to each regime" and variation in this fraction has
well-known effects on root mean-square errors of estimates [8 ]. 1In

order to keep these f;actions nearly constant, whenever we varied. b4 for

an experiment we also undertook a "compensating" variation in b6 . The
basic characteristic of the experiment are described in Table 2. It will be
noted that in the six basic experiments the mean fraction of observations
over each set of 50 replications is quite stable, ranging from .65 to .69;

slightly larger changes are observable for the minimum and maximum fractions

over each set of 50 replications.
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Table 2

Characteristics of Experiments

Mean fraction of Maximum fraction of Minimum fraction
Case N b4 b6 91 observations with observations with of observations
X < qp X, < q, with X, < q
1 60 -4.5 0.0132 .67 .77 .50
2 30 1.0 -4.5 0.0132 .67 .80 .53
3 60 1.0 -4.5 0.0033 .66 .73 .52
4 60 0.2 0.9 0.0132 .66 .78 .53
5 60 1.7 =-9.3 0.0132 .69 : .82 .57
6 60 1.0 -4.5 0.0528 .65 .75 .52

Basic Results of Experiments. The overall results are very good and

numerical results are displayed in Tables 3 through 7.

Not one single

computational failure occurred in any of the replications of the experiments.

The mean biases of the estimates for Cases 1 and 2 are displayed in

Table 3 and for N=60 they are very small relative to the true values

of the coefficients for both specifications, with the exception of one

constant term.

for Specification 1 and .01 for Specification 2.

The median value of the ratio of bias to true value is

.02

In general, looking at

either mean biases or at root mean square errors, displayed in Table 4, we

find that both specifications estimate the coefficients with a high degree

of precision with the largest errors occurring invariably for the constant

terms in the equations. .

There are several sets of comparisons that are of particular interest

for shedding light on the value of information. These are (1) a comparison

between Specifications 1 and 2 for any of the Cases; (2) a comparison between
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Cases 1 and 2 for examining the effects of variations in N ; (3) a

comparison among Cases 1, 4 and 5 for variations in b4 and (4) a

comparison among Cases 1, 3 and 6 for variations in oi .
(1) Comparison between Specifications 1 and 2. In Table 5 we

display the ratios of the RMSE's for Specification 2 to the corresponding

RMSE's for Specification 1. A ratio less than 1.0 indicates that using

g~data explicitly has positive value. Of the 66 ratios in Table 5 only

4 are larger than unity; the largest of those is 1.013. The median of

all the ratios is .60; disregarding the ratios for the price equation,

(2-6) , which account for all the ratios in excess of .905 the median is

.58. On the average in this sense having the g-data thus produces a 40

percent improvement. ‘It is not particularly surprising that the improvement

is minor for equation (2-6) which does not contain q ; for (2~6) the

median of the corresponding ratios is .986. From the estimates for each

replication we can compute for each sample point the estimated probability

that that sample point belongs to the regime x {or v <v ) .

<
£ © 9 1t 2t

These probabilities are computed quite accurately and the mean bias in

the probability estimates does not exceed one percent in any Case. We

can then comﬁute the RMSE over the replications of these probabilities for
each sample point. The average of these N RMSE's is displayed in Table 6.
As is to be expected, the RMSE's for Specification 2 are uniformly lower,
their ratios ranging from .746 to .911, thus further confirming the value

of g-data.

(2) Variations in N . The mean biases decline uniformly for Specification
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1l as we go from N=30 to N=60; they decline for a majority of the coefficients
for Specification 2. Even more convincing is the behavior of the root
mean square errors (RMSE) which are uniformly smaller for N=60 than for
N=30 for both specifications. The median of the ratios of the RMSE's is
1.39, a not unreasonable estimate of V2 ;, i.e. square root of the ratio
of the sample sizes. 1In Table 5 a decline in a ratio from one case to
another indicates an increase in the value of information, i.e., it indicates
that explicit use of the g-data has caused the RMSE to decline relative
to Specification 1 which does not use g-data. Variations in N are
ambiguous in‘this regard, as larger N increases the relative value of g for
estimating equation (2-5) , reduces the relative value of g for estimating
equation (2-4) and has no appreciable effect on equation (2-6)

Table 6 shows the same marked decline in the RMSE's for Case 1 as
does Table 4; the ratios average to 1.47, again reasonably close to V2 .

(3) Variations in b4 . If b4 were equal to zero and since x

£ =%
in any event, the absence of information on q would be expected to have an
effect on the efficiency with which (2-5) and (2;65 can be estimated only
to the extent that we are unable to classify the sample points between regimes.
If b4 # 0 we have the additional complication of the unobservable 9
entering (2-5) ; the larger the absolute value of b4 + the more valuable

would appear knowledge of the g-data for estimating (2-5) and obviously also

for estimating (2-4) . The relevant cases are ordered 4, 1 and 5 in order

7If no changes of regimes were present, the model would be formally analogous
to Goldberger's Case 4 [4 ] . '
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of increasing b4 . The RMSE's for Specification 1 for equations (2-4) and

(2-5) uniformly increase with increasing b Equation (2-6) shows

4"
relatively little change in the RMSE, though whatever change there is, is in
the opposite direction. For equations (2-4) and (2-5) the increase in the
RMSE's from Case 4 to Case 5 ranges from a factor of 1.08 for equation (2-4)
to factors up to 6.20 for eguation (2-5) . The Table 5 ratios show unambiguous
results only for ejuation (2-5) ; for that equation it is clearly true that
the superiority of Specification 2 estimates incrgases with the value of b4
The same unambiguous picture emerges from the Table 6 RMSE's.

(4) variations in of . The relevant Cases are ordered 3, 1 and 6 with
increasing values of oi . As should be expected, the RMSE's for equation
(2-4) by Specification 2 change in proportion to the proportionate change in

the square root of the residual variance. For Specification 1 the same RMSE's

increase somewhat less than proportionately. The greater is 02

1! the more

valuable it ought to be for the estimation of (2-5) fo know the value of ¢
as is indicated by the uniform and marked decline of the Table 5 ratios for
the coefficients b4 ' b5 ' b6 . Again, no particular effects are observable
for equation (2-6) and the Table 6 RMSE's further support our conclusion

of the relative deterioration of Specification 2 estimates as oi increases.

Additional Results. Several other aspects of the experiments help to

characterize the success of the two estimating methods. These aspects are (1)
the ratio of the average asymptotic standard deviation to the RMSE; (2) the
sensitivity of the experiments to the ratio Gi/og assumed to be true for
estimating purposes, and (3) the distribution of the estimates.

(1) Ratio of the average asymptotic standard deviztion to the RMSE. 1If
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the estimated parameters are jointly sufficient statistics then the diagonal
elements of the negative inverse of the matrix of second partial derivatives
of the loglikelihood function are consistent estimates of the asymptotic
variances. Hence under these circumstances the avergée over the replication
of their square roots divided by the corresponding RMSE converges to 1 as

N + «» . These ratios are displayed in Table 7. Although there is no rigorous

test of when the ratios are "close enough" to unity, the results appear
satisfactory on the whole. The ratios pertaining to equation (2-6) again
tend to show no systematic behavior although in comparing Case 1 with Case 2
the ratios behave perversely. Otherwise increasing sample size causes the
ratios to become very much closer to unity. The ratios for Specification 1
tend to deteriorate as we move from Case 4 to 1 to 5 and also as we move
from 3 to 1 to 6, suggesting in conformity with previously observed behavior
that as the characteristics of the experiment change in the direction of

an increased role of 9 in the model, the quality of the estimates

by the method that does not make use of -q deteriorates.

(2) Variations in the assumed ci/cg ratio. In the six principal
experiments we had employed for estimating purposes the constraint koz = oi
where the value of k ' was set at the true value of oi/og . Since this is
prior information that needs to be supplied by the investigator we examined
the sensitivity of the results to inaccurate assumptions about k . 1In fact,
we repeated Case 1 (for Specification 1) assuming alternately a value of k
equal to twice and to one half the true value. There was a slight increase on

the average in the RMSE's, but no increase exceeded 6 percent and some actually
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declined. The mean biases changed relatively little when k was one
half its true value. Although they increased quite substantially in some
instances for k double its true value (up to a factor of 10), they
still resulted in an acceptable median ratio of mean bias to true value
of coefficient of .04. Thus the estimation process seems relatively

insensitive to the actual k~value assumed.

(3) Distribution of the Estimates. Since maximum likelihood estimates are,
under general conditions, asymptotically normally distributed, we investigated
whether in our finite sample the normal distribution provides an adequate
description of the estimates. For each experiment and each estimated coefficient
we tested the hypothesis that the quantity (est.coeff - true coeff)/est. RMSE
is distributed as N(0,1) . The sampling distributions were compared to the
thedretical one by the Kolmogorov-Smirnov test.

Out of the 138 estimated coefficients (6 Cases x(1l + 12))only 13 exceeded
the critical value of the Kolmogorov-Smirnov statistic at the .10 level. The
median value of this statistic was .0989 for Specification 1 coefficient estimates
and .1088 for Specification 2. We conclude‘in general that we cannot reject
the hypothesis that the estimates are normally distributed. It is also note-
worthy that massive improvement occurs in the fit of N(0,l) as we go from
Case 2 (N = 30) to Case 1 (N=60) and that nine of the 13 rejections of the

null hypothesis pertain to estimates of residual variances.
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4. Conclusions

We have succeeded in formulating the stochastic specification of a
disequilibrium model in several alternative ways and in computing maximum
likelihood estimates for the alternatives, both in a realistic economic
e#ample and in some Monte Carlo experiments. These computations establish
the computability of models of this type and shed considerable light on‘
both the finite sampling properties of the estimates and on the value of
information as measured by the impact upon these properties of using more
or less information or data. Several open questions remain, of course,
such as (1) are the maximum likelihood estimates proposed here consistent;
(2) what are appropriate ways of testing hypotheses about the existence
of disequilibrium; (3) are unbounded likelihood functions likely to
occur frequently in practice in models of this type; and (4) what
properties do estimates have from likelihood functions that are theoretically

unbounded but for which an interior maximum also exists.
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Table 3

Mean Biases for Cases 1 and 2

Specification 1

" Case 1 Case 2

.0029 .0568

.0141  -.3491

.0461 .0601

-.0051 -.0578
-.0420 -,0465
—.6311 .2720

.0121 .0431
-.0288 -,0824

.1043 .2322

.0039 .0064

.0005

.0010

Specification 2

Case 1 Case 2

~-.0233 -,0188

.1542 .1282

.0010 -.0116

.0055 .0015

.0004 .0098

-.0446 .0314
.0091 .0382
-.0197 -.0753
.0663 .2203
-.0049 -.0073
.0000 ~.0006

35,
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Table 4

Root Mean Square Errors
Specification 1

Coefficient Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
_ bl .1318 .2775 .0752 .1310 .1411 .2002
b2 .8409 1.7179 .4806 .8354 .9107 1.2884
b3 .2317 .3326 .1452 .1120 .3554 .4675
b4 .1596 .2205 .1028 .0672 .3246 .2239
b5 .1664 .2563 .0966 .0732 .2607 .3555
b6 1.2624 1.7687 .7784 .4142 2.5668 2.0549
b7 .2140 .2952 .2151 . .2167 .2001 .2090
b8 .3168 .4172 .3401 .3283 .2752 .2462
b9 1.8878 2.5232 1.9602 1.9394 1.7309 1.6530
°§ .0323 .0420 .0335 .0330 .0312 .0281
0% .0026 .0059 .0006 .0026 .0031 .0136

Specification 2

Coefficient Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
by .0867 .1202 .0434 .0867 .0874 .1734
b, .5628 .7820 .2814 .5628 .5674  1.1256
b3 .0920 .1471 .0907 .0897 .0890 .0849
b, .0419 .0677 .0484 .0413 .0558 .0335
by .0582  .0977 .0585 .0575 .0585 .0545
b, .4464 .7077 .4502 .3011 .5813 .4110
b, .2114 .2851 .2080 .2149 .1948 .2061
by .3086 .4031 .3254 .3233 .2675 .2357
by 1.8676  2.5091  1.9700  1.9410  1.7445  1.5862
og .0309 .0425 .0319 .0327 .0300 .0268
oi .0023 .0032 .0006 .0023 .0024 .0091
og .0006 .0010 .0007 .0007 .0006 .0007
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Table 5

Ratios of RMSE's: (Specification 2 ¢ Specification 1)

Coefficient Case 1 Case 2 Case 3 Case 4 Cadse 5 Case 6
' b1 .658 .433 .577 .662 .619 .866
b2 .669 .455 .586 .674 .623 .874
b3 .391 .442 .625 .801 >37250 .182
b4 .263 .307 .471 .615 172 .150
b, .350 .381 .606 .786 .224 .153
b6 .354 .400 .578 .727 .226 «200
b7 .988 . 966 . 967 . 992 . 974 .986
b8 .974 . 966 . 957 .985 .972 .957
b9 ' .989 .994 1.005 1.001 1.008 .959
o2 959 1.013 .952 .990 .961 .952
ci .874 .543 .905 .877 .751 .668
Table 6
Average RMSE for P{vl < v2}
‘Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
Specification 1 . 0695 1127 . 0665 . 0680 .0747 .0747

Specification 2 .0628 . 0840 - .0631 . 0620 .0622 .0610




38.

Table 7

Ratio of the Average over Replications of the Asymptotic
Standard Deviation to the Root Mean Square Error
Specification 1

Coefficient Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
) bl .9810 .7868 1.0023 1.0204 .9207 .9986

b2 .9838 .8078 1.0049 1.0236 .9162 . 9965

b3 .8635 .8146 .9101 .8268 .8948 .7005

b4 . 8909 .8820 1.0419 1.0058 .8134 .6641

bg .8926 .7811 1.0183 .9214 .9073 .6864

b6 .9175 .8876 1.0560 1.0338 .8839 . 7257

b7 .7698 .8014 .7732 .7566 .8279 .7691

b8 .7881 .8706 . 7699 .8042 . 8584 .8809

b9 .8177 .8768 .8037 .8439 .8347 .8746

Specification 2

Coefficient Case 1 Case 2 case 3 Case 4 Case 5 Case 6
b1 ' 1.0006 1.0033 1.0006 1.0006 .9915 1.0005
b2 .9982 .9982 .9982 .9982 .9989 .9982
by .9043 .7633 .9162 .8883 .8989 .9399
b, .9942 .8110 .9389 1.0712 .9135 .9952
b5 1.0460 .8438 1.0356 1.0072 1.0045 1.0743
b6 .8569 .7161 .8696 .9773 .8452 .8607
b7 .7729  .8207 .7938 .7603 .8364 .7680
bg .7887 .8763 .7843 -8032 .8420 .8774
by .8144 .8687 .7913 .8356 .8089 .8874
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