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This paper presents a method for approximating optimal policies for
a dynamic system of non-linear structural equations and, using an econo-
metric model estimated by the author, applies the method to study the prob-
lem of controlling inflation and unemployment. Discussion of many impor-
‘tant issues in deterministic control theory has generally assumed that the
model is represented by a set of reduced-form equations, with each of n

dependent variables in time t given by a function of the form:
i i ,
xt = ft(xt-l’ ut) i=1,..., n ¢n)

where ut is the m-dimensional policy or control vector. See, e.g., Canon,
Cullum and Polak (1970) and Athans (1972). Many non-linear models of

aggregate economic activity, however, are not available in such a reduced-
form. Instead they appear as a set of simultaneous equations, exemplijfied

by the structural model:

i i i .
xt = ft(xt-l’ ut, xt) i=1,..., n (2)

N

where xt is a subset of the state vector at time t not including the ith

component.

This paper is concerned with the characterization and computation of
optimal policies for non-linear structural models. It is divided into two
parts, one elaborating methods for dealing with such models and the other
reporting on an application of the methods to the problem of choosing
aggregate economic policies for the American economy when concern is direc-
ted towards reducing both mflation and>unemployment. The first section estab-
lishes criteria for the existence of a reduced-form model "locally-equivalent"

to the original structural model. The existence and properties of this
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equivalent model underlies much of the subsequent discussion. The second
section shows how the Lagrangian method of characterizing an optimal policy
for a reduced-form model can be amended for structural models. It is

shown how application of the results of Section 1 will preserve the inter-
pretation of the Lagrangian multipliers or costates for the more general
‘case. The third section presents an algorithm for approximating an optimal
policy for structural models based on linear/quadratic control theory. Some
special difficulties with this algorithm, which do not arise when it is
applied to redrced-form models, are noted. These methods of characterization
and computation were developed to permit analysis of the inflation/unem-
ployment problem in macroeconomic policy-making. Using a non-linear
structural model of the post-war American economy and a loss function to
measure economic performance the fourth section discusses the computed
optimal policies and implicaions of those policies for aggregate activity.
Computational experience with the model and loss function is reported in
Section 5. The results of this paper indicate that in theory as well as

in computation, optimal control of structural models can be addressed
within the framework developed for reduced-form models. While these re-
sults do not extend the theoretical frontier of optimal control, they do
show how the existing theory can be applied to a class of model frequently
used by economists.

1. The Locally-equivalent Reduced -~ form Mddel

7/

In this section we will show that, under a mild assumption on the

non-singularity of a Jacobian of the structural model, there exists a set
of reducad-form functions which imply the same dynamic behavier as the ori-
ginal simultaneous equations. Consider, in a slightly more general form, the

structural functions which define the state at time t given the state in the
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previous period and the current choice of policy:

x.) =0 ' (3)

Folxo_gs v %

We assume that the structural model is continuously differentiable. Given
X =x andu = u , state %, is realized at time t if x = x is a

t-1 t-1 t t t t t

solution to equation (3). Suppose Et is such a solution. Let p denote
the rank of the n x n Jacobian matrix d. F (x ., u, x ), i.e., the

3¢t t-1" t t

Jacobian of Ft with respect to the components of the state vector xt eval-
uated at (Et L’ Et’ Et)u Clearly p < n. For some sufficiently small open
neighborhood of Et’ M(Et), we have:

rank(dSFt(§ x)) > p for all x ¢ M(;t) (4)

t-1’° Et’
As x varies in M(Et) the set of p vectors which were linearly independent

at Et must remain linearly independent since the partial derivatives in the
entries of the Jacobian are continuous functions of x., Thus the rank cannot
decrease in M(Et). It is possible, however, that a vector in the Jacobian
which could be represented as a linear combination of the p linearly

independent set at §t can not be so represented at some other x € M(Et), so

the rank may increase. The weak inequality of (4) is resolved by the

occurance of one of two possibilities. Either the rank remains constant:

1. k(d,F (X a =
rank ( 3 t(xtsl’ uty x)) p for all x ¢ M(§t)

3

or else it increases at points arbitrarily close to §t:

2. for every open set SCZM(it) with Et € S, there exists a

tat S d x u .
state Xg € S such that rank ( 3Ft(xt U xS)) >p
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If p=n, i.e., if d.F is non-singular at the point (X , U, X ),
3t t-1 t t
then possibility 2 is excluded, since rank(dBFt).g n everywhere. In
this case by the Implicit Function Theorem (Dieudonne (1969, pg.270)),
there exists an open neighborhood N(;t 12 Et) of (§£ L’ E;), an open
neighborhood N'(Eé) of §£ and a differentiable function ft:

£:NE , u)=>N'"(x) (5)
t t-1 t t

such that the state xt given by:
= f s 6
xt t(Xt-l ut) (6)

1s a solution of the structural model for all (xt 1’ ut) € N(Et_l, Et).

In particular ft(Et-l’ Et) = §£. Thus if d3Ft(§i-l’ Ei, Et) is non=-singular

the structural model has, locally, a reduced-form representation at time t.

While we are typically unable to obtain close-form expressions for the
component functions of ft some of their properties are available. In parti-
cular the elements of the partitioned Jacobians of ft evaluated at (§t_l,ﬁ£)
are given by:

-1
d = -(d,F d F i =1, 2 7
(E T T@FD T @) i=1, (7)
where d3Ftand diFt are evaluated at (Xt—l’ U Xt)'

EREET E&), an assigned initial

state Eo’ and a state trajectory X = (Eé, X15he, xp) such that:

Suppose we have a policy sequence,ﬁ'= (u

F (x

e Gl T ) =0 t=1,..., T (8)

and such that d3Ft(§% x Et’ Et) is non-singular for t = l,..., T. Then a

simple extension of the above shows there is a reduced-form model which is
equivalent to the structural model for all policy sequences in a neighborhood
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of U and for all initial states in a neighborhood of Eé. The state trajec-
tory is, at least locally, uniquely determined by the choice of Eé and U.
It is in this case of a local reduced-form representation that the results
developed for the optimal control of reduced-form models can be applied

to structural models. 1In an appendix we discuss briefly the consequences

of p <n.

2. Characterization of Optimal Policies

A familiar technique in characterizing an optimal policy sequence is to
approach the optimal policy problem as a programming problem with equality
constraints, and then to apply the Lagrange Multiplier Theorem (Canon,
Cullum and Polak (1970, pg. 51)). We show in this section that, by using
the results of Section 1, this technique may be applied to characterizing
optimal policies for structural models in a way that preserves the inter-
pfetation of the Lagrangian multipliers. For expositional purposes we treat

here only the simple additive loss function on the state trajectory :

T (o}
LX) = 5 ft(xt) (9

where fz is a scalar-valued function of the state at time t. More complex
single period loss functions, e.g., f:(xt, ut), can be treated either direct-
ly or by augmenting the state vector (Chow (1970)).

Consider first the selection of a policy sequence U = (ul, ceey uT) to

minimize L(X) subject to a reduced-form model and an assigned initital state:

T o
min ¥ f (x ) (10a)
bject : = f t=1, ..., T 10b
subject to X t(xt-l’ ut) , (10b)
X, =X (10c)




"~

The choice of U is assumed unconstrained and allowed to take on any value

in a real vector space of dimension Tm. Thig optimal policy problem may be
viewed as a problem in choosing an (X, U) pair to minimize the loss function
subject to the equality constraints of (10b,c). Forming the Lagrangian

function Jffor this programming problem:

T
ZL(x,0) = I fct)(xt) + <po | %, - —o>

T
/
+ t§i<\pt | X, - ft(Xt-l’ ut):> (11)

where P = (po, pl, ey pT) are the multipliers or costates, we know that if
U* is a solution to problem (10) and X* is the associated state trajectory
then (X*, U*) is a stationary point for ;f (Canon, éullum and Polak (1970,
Pg. 51)). This implies the gradients of ;( with respect to (xo, Xis +ees XT)
and (ul, cens uT) all vanish at the point (X*, U¥). The condition on the

State gradients leads to the linear dynamic system for the costates:

o %* ’
=¥
Pr XfT(xT) ‘ (12a)
= % * ! 0 * = -
P, (dlft+l(xt , ut+1 )) Pt+1 +-V%ft(xt) t T 1,..., 1 (12b)
= (d f *, % ' 12
PO ( 1 1(Xo Ul )) P1 (12¢)

while the condition on the policy gradients leads to:

= * % ! = PP 124
0 = (d,f, (x, ;% u)'p, £=1,...T (12d)

The costate trajectory can be readily computed from (12a,b,c) given the
gradients of the Ibss function and the state Jacobians of the reduced-form
model. As is well-known (Zangwill (1969)) the costate pt has the interesting
interpretation as the marginal change in minimum loss=-to~go with respect to a
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change in state at time t.

We now show that equation (12d) has a particularly important and
familiar interpretation. If we make repeated substitutions of the reduced-
form model we can obtain an expression for‘the state at time t as a function

only of the initial state and the elapsed policy choices:

t t

xt = ft(U , EQ) U = (ul, cee, ut) (13)

Substituting this expression for X, in the definition of loss, equation (9),
we obtain the final-form loss function:
~ T

— _ fo) ~ t —
L(U: XO) = t=zl ft<ft(U 3 XO)) (14)

where loss now depends directly on the given initial state and chosen
policy sequence. If U* is the solution to problem (10) the usual first-
order necessary conditions imply W L(U*, Eﬁ) =0fort=1, ..., T.

’ u

t
Polak (1971, pg. 67) shows that for any choice of policy, not necessarily

optimal:

Vztfag 26) = -t@t;fog U) t=1, ..., T (15)

- 1
(dpfe e ys ) 'y

where X is the state trajectory associated with the pair (Eé, U) by model
(10b) and the costates are computed by (12a, b, ¢) at the given (X, U).
Equation (12d) is thus the usual first-order condition on an optinal policy.
Equation (15) reveals that by using the costates we can obtain the gradient
of final-form loss from the Jacobians of the model and gradients of the

definitional Joss function, and do not require an analytic expression for L.

This result is important for implementing the computational algorithm of

Section 3.




=

Consider now minimization of the same loss function subject to the

constraint of a structural model:

T
. ) .
mﬁn tgi ft(xt) _ (l6a)
subject to: Ft(xt-l’ U s xt) =0 t=1, ..., T (16b)
X, = % (1l6c)

Suppose U* is the optimal policy for this problem, with associated state
trajectory X*. One approach to characterizing U* is to view the optimal
policy problem as the programming problem of selecting a pair (X, U) to
minimize the loss function subject © the equality constraints of (léb,c).
However, if we follow the same steps that we followed for the reduced~ form
problem, setting up the Lagrangian with the explicit equality constraints,
taking the gradients, and setting them to zero, we will lose the interpre=
tation we were formerly able to place on the costate trajectory.

If d3Ft(xt_l*, ut*, xt*) is non-singular for all t we can characterize
an optimal policy by applying the results of Section 1. Suppose N(U*) is an
open neighborhood of U* and M(EO) is an open neighborhood of Eg within which
some reduced-form model {ft} is locally equivalent to the structural model
{Ft} in (1l6b). We may not have analytic expressions for the ft functions

but we do know they exist and can compute their Jacobians. Since U* solves

the unrestricted problem (16) it must also solve the restricted problem:




F3e

0
min ¥y f(x) (17a)
U e N(U"»‘ t=1 t t
bject to: = = ‘e 17b
subject to xt ft(xt_l, ut) t=1, , T (17b)
b = —}E (170)
o) o)

where ft is the locally equivalent model. Were we to restrict the domain
of U to N(U*) in problem (16) it would be identical to problem (17) since
the model constraints are locally identical in the two problems.

Problem (17) may be placed in the Lagrangian structure of (1l1) exactly
as we did with problem (10), yielding equation (12) as the characterization
of the optimal policy sequence. To interpret (12) for the given structural
model we need only replace the Jacobian of the implicit reduced~form model
in (12) with their equivalent expression from the Jacobians of the struc-
tural model by using (7). Once this replacement is completed the costates
retain the interpretation as the marginal sensitivity of minimum loss-to-go
with respect to a change in state. The fact that N(U*) and M(§6) are open
neighborhoods gives us the "room" to conduct the variational analysis required
by the Lagrange Multiplier Theorem in characterizing the solution to a pro-
gramming problem with equality constraints.

For arbitrary policy sequences equation (15) generalizes to:
~s _ —]_
=, = '
‘U._tL(U: x0> ((dSFt(Xt-l’ ut: Xt)) (dZFt(xt-l, ut’ xt))) Pt (]-8)

The gradient of the implicitly defined final-form loss function can thus be

recovered for structural models when d3Ft is non=-singular.

3. Computation of Optimal Policies

In this section we consider a method for computing a policy sequence which,

together with its state trajectory, will satisfy equation (12). 1In the
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linear/quadratic case (12) can be solved algebraically for the optimal
policy (Chow (1972a)), but in more general cases an algebraic solution
is not available. While there are many algorithms for computing optimal
Sequences we restrict our attention here to one based on linear/quadratic
control theory, noted by Polak (1971, pp. 69-71).. After describing the
application of the algorithm to the optimal control of reduced-form models
we show how, again using the results of Section 1, it ecan be applied to
structural models.

Consider the problem of computing an optimal sequence Pr problem (10).
Given some tentative sequence U and associated state trajectory X, if we
alter U by an increment AN = (Aul; ceey AuT) the altered state trajectory

X + M must still satisfy the model. Hence:

+ - f
x ot t(xt

AR, u + pu) (19)
t t-1 t t :

-1
with Ax = 0
o]

Expanding the right-hand-side of (19) about (xt L’ ut) we obtain:

+ = +
X Axt ft(xt—l’ ut) + (dlft)Axt_1 + (dzft) Aut O(Axt

pe ) (20)
t t

-1’
where o(Axt L’ M ) are the high order terms in the expansion. The Jacobians
- t

. i = i 2 b .
are evaluated at (xt_l, ut) Since xt ft(xt-l’ ut) equation (20) becomes
= 2
T O (dyf ) u, + olax, 1> B ) (21)
It follows that a first-order approximation, §x JDAxt obeys the model:
t
gx, = Atéxt_1 + BtAut (22a)

R = 0 (22b)
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wh A =4d f and B = d_f . Equation (22) is a
°re S 1 t(xt-l’ ut) ne B 2 t<xt-1’ ut) quation (22)
linear model providing a first-order approximation to the change in state
consequent upon a change in the tentative policy sequence.
Consider next the effect on the value of loss of changing the state

trajectory from X to X + AX. The change in loss, AL, is:

T 5 T 5 23)
AL = tzi CH o) - tgi £, (x0) (
and a second-order approximation, 62L, to AL is given by:
T 1 1
L = zmx 'K + k 24
8, o (zAxt e M tAxt) (24)

where kt is the gradient of f: and Kt the Hessian, both evaluated at xt.
The definiteness of Kt is generally unknown but if f: is a convex function
then Kt is positive-semi~definite, and if f: is strictly convex then Kt is
positive-definite (Nikido (1968, pg.50)). Equation (24) provides a second-
order approximation to the change in loss consequent upon a change in the
tentative state trajectory.

Starting from the tentative policy sequence we now ask for that change
in policy which will minimize the second-order approximation to the change
in loss subject to the constraint of the first-order model of equation (22).

That is, we seek to solve the linear/quadratic problem:

T
. 1 '] + 1 25
ng tgi(zsxt t&xt kt éxt) (25a)
subject to: fgx = A + B 25b
ubject to: sx téxt-l tAut (25b)
= 0
6xo (25¢)

This well-known problem (Chow(1972a)) has an exact solution given by:
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Au x = Gtéxt-l‘k + g t = ]_, ey T (263)

with

It

*= (A + BG * + B t=1, ..., T 26b
6% (B, + B ) 8%y 8 L, , (26b)

gx % = 0 (26¢)

with feedback matrix Gt and forcing vector gt:

-1
G =- (B 'HB B 'H 27
t ( t t t) t tAt (272)
g, = - (B_'HB ) B 'n (27b)
t t tt t t
and matrix and vector Ricatti equations:
H =X + (A +BG)H((A +BgG 27c
t-1 t-1 ( t t t) t( t t t) ( )
H =K
T T
h =k + (A +BG)'h (274)
t-1 t-1 t tt ot

If for some tentative policy sequence we find Aut* = 0 for all t then

(26a, b, ¢,) imply that gt must be zero for all t. But then, by (27b),

wa have Bt'ht = 0 as well and, from (27d), h k A 'h . Comparing
t

.|_
t-1 t-1 t
this dynamic equation for ht with that of pt in (12a, b, ¢,) we see that
ht =P, for all t. But then Bt'ht = 0 is just (12d) and we conclude that the
tentative sequence solves the first-order necessary conditions for an optimal
policy.

In more general cases, when AN * #£0, we wish to increment the tentative

sequence U in the direction of AU*. 1In order to speed convergence we can
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appeal to a linear search algorithm to obtain the value of ) such that
U + XAU* minimizes the value of the original loss function (9) subject
to the non-linear reduced-form model (Polak (1971, chapter 2)). The
process of computing the increment and optimizing the Step-size is
iterated until a test for Convergence is successful. Ag long as the
Hessian matrices of L are positive-semi~definite this algorithm will
converge to a policy sequence which satisfies the first-order conditions
for optimality. If some Kt has negative eigenvalues those eigenvalues
can be set to their absolute values to avoid computing a sub-optimal
increment to policy in equation (26). (Greenstadt (1967)).

Armijo (1966, noted in Polak (1971, pg. 36)) has suggested a linear
search algorithm which we have found both informative and efficient.
Choosing an integer N (usually less than zero) and constants g € (0,1),
B € (0,1), the integer n is first set to N and then incremented until the

test:
~ o ' ~ n ~ )
L@+ a0, ) <L, x) + g VI, x,) | AU>=> (28)

is satisfied (cnf. Figure 1). Since <37£kU, x,) j AU*>><:O when AU* # 0

this procedure bounds E(U + BnAU*, xo) below E(U, xo) by some finite amount
for all sufficiently large finite n. We denote the first satisfying value
of n E»N by nS. o < 1 guarantees the:hcrementing of n necessarily termin-

~ s
ates for some finmte n° so that L(U + Bn AU*, xo) is a finite improvement

~

over L(U, X,). Note that the test requires knowledge of the gradient of
final-form loss, which may be computed from equation (15), demonstrating
the usefulness of the costate trajectory in computation as well as in

characterization of an optimal policy sequence. The new tentative policy

At

w

is set to that tested Sequence which gave minimum loss, i.e. to U + Bn AU
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where n* is such that:

K
Ay

LU+ g pu, x ) = min RICE: 8™ AU, x_) (29)
ng[N,...,n ]

If the model is linear and the loss function quadratic one iteration of
the algorithm will yvield the optimal policy sequence for the original
policy problem and n* will equal unity. In more general cases the number
of iterations required before attaining convergence gives some idea of
how the actual structure differs from the linear/quadratic in a non-local
sense, and the value of n* gives an idea of the adequecy of the local
linear/quadratic approximations of (22) and (24). If n* is found to be
quite smali we would conclude that the approximations hold only over a
relatively small range of variation in the policy sequence.

This incremental linear/quadratie algorithm can be readily applied to
cdmputation of optimal policies for structural models. The only difference
is that the matrices At and Bt are now defined as the state and policy
Jacobians of the locally-equivalent reduced-form model, as obtained from
equation (7). The gradient of final-form loss is given by equation (18).
Computational experience with the algorithm applied to a structural model is
reported in Section 5.

If the dimension of the state vector is small me may well decide to
compute the structural Jacobians of (7) directly by analytic differentiation
and evaluation. if, however, numerical approximation is used some special
problems arise in approximating At and Bt for structural models that do not
come up for reduced-form models., Although one could approximate the struc-
tural Jacobians numerically and then apply (7), a more direct way would

approximate the jth column of At as:
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(A), = (Xt" - x.')/28 ij=1, ..., n (30a)

t’]
where:
"o 30b
Ft(xt_l+ 52j, U, X ) =0 (30b)
- "y = 30
PGy~ 8250, %) =0 (30c)

6 is a small real number and 2j is an n-dimensional vector consisting of
unity in the jth component and zeros elsewhere. ut is the tentative policy
at time t and xt 1s the state at time t from the associated state trajec-
tory. The columns of Bt are similarly approximated by perturbing the m
components of policy.

A major distinction now arises between two different classes of
structural models., TIf the state implied by the model can be computed
exactly in a finite number of steps, no problem is encountered with apply-

ing (30). For example, if the model is recurrsive:

i i i .
X = ft(xt-l’ s xt) i=1, ..., n (31)

i 1 i-1
where xi is a subset of the vector (xt, cees xt ) for i>1 and is empty
for i = 1, we can evaluate xt from xt 1 and U then evaluate xg from

and x

u )

xt-l’ 2 and so on to xg. Recurrsive models can be solved exactly
with a single pass throught the structural equations. The non-linear
structural model of Fair (1971) appears in a recurrsive form.

For some structural models, however, current state cannot be computed
exactly but only approximated by an iterative solution algorithm, Gauss-
Siedel for example (Klein and Fromm (1969)). If the structural model is

of the form of equation (2) we might begin with a tentative solution state

Sq and then iteratively compute successive tentative solutions as:
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e S5y i=1,2, ... (33)

When Sk is appropriately close to SK 1 for some integer K we would set

xt = SK. If § in equation (30) is chosen too small the approximation of (A )
may be subject o considerable noise consequent upon the inability to compute
the exact values of xt' and xt”. At the extreme Suppose § were zero but
different tentative solution states were assumed in starting the iterative
algorithm used to solve the model in equations (30b) and (30c). The de-
nominator of (30a) is zero, but the numerator may well be non-zero. This
problem does not arise if the Structural model can be solved exactly in a
finite number of steps. Numerical approximation of the reduced-form

Jacobians may be more satisfactory if the value of 6 is substantially larger

than is typically the case for numerical differentiation.

4. An Application to Controlling Unemployment and Inflation

Several authors have investigated the application of optimal control
methods to aggregate economic policy in a linear/quadratic framework, in-
cluding Chow (1972b), Pindyck (1973) and Pindyck and Roberts (1974). How-
EVer, many macroeconomic models not specifically designed for optimal con-
trol purposes exhibit important non-linear specifications, including an
interest-elastic proportional demand for money, behavioral explanation of
national product account items in real terms and national income account
items in nominal terms (necessitating the presence of the implicit price
deflator as a state variable) and behavioral explanation of the rate of
inflation rather than the level of the deflator. Within the framework of

the first three sections questions of optimal policies for these more

general models can be addressed.
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This section presents quantitative results on applying optimal ontrol
to the reduction of inflation and unemployment in the American economy.
The model used in this study has been presented in Garbade (1974). Because
of its importance to the Present question we comment first on the Phillips
relation between inflation and unemployment in the model. The section
following describes our experience in implementing the algorithm of Section
3.

The model does not have an explicit Phillips curve. Rather it endogenous-

ly and independently explains inflation and unemployment, with the opportuni-

ties for trading one against the other available to the policy-maker implicit.
An important feature of the model is that while trade-offs do exist in the
short-run they become increasingly unavailable over longer periods of time.
Let Rp be the current rate of inflation, R; a8 proxy for the expected rate and
i_a standard rate of gross private production assuming 47 unemployment. We

postulate that in the long run actual inflation differs from the expected

rate as a linear function of the gap between actual and standard production:

n -
(Rp -~ Rp)* =a + b (X LT X 1) (34a)

with a partial adjustment from quarter to quarter of:

n n n
ARp ~ Rp) =B(®p - Rp)* - (Rp - Rp)_l) (34b)

Most macro-econometric models, e.g., Fair (1971), assume =a long-run

relation betwgen inflation and the inflationary gap like Rp* = a + b(i - X),
but we felt that incorporation of inflatonary expectations as a baseline for
price changes was more appropriate in view of recent American experience.
The expected rate of inflation is presumed to evolve according to the adap-
tive model:

17~




n n
ARp = Q/(RP__l = RP_]_) (35)

See Gordon (1973) for a discussion of adaptive expectations in the post-
war period. On estimation we identified a = .45 and b = - .0405. With
these parameter values it follows from equation (34a) that if it were pos-
‘sible to hold the rate of production above X - 11 billion dollars at 1958
prices for a prolonged interval the rate of inflation would approach a pog-
itive spread over the expected rate. But (35) implies that R; will rise
as long as it is below the actual rate. Both the actual and expected
rates will therefore increase indefinitely, which is to say the model has
a Phillips curve that approaches, in the long run, a vertical line at an
unemployment rate corresponding to a rate of production of X - 11. We
doubt this interplay between adaptive expectations and equation (34a)
would remain valid in hyperinflation, but it seems a reasonable method of
modeling the interplay during periods of more moderate price changes.

The model does admit a temporary trade-off between unemployment and
inflation. An exogenous increase in production, from a stimulative change
in govermment policy for example, leads to increased demand for labor ser-
vices and expanded employment as well as a widening of the nflationary gap
X - E). The reduction in unemployment occurs more rapidly than the increase

in the expected rate of inflation; thus yielding a transient trade-off.
One of the purposes of the model is to study whether it is optimal to take
advantage of such transient characteristics in aggregate economic behavior,
as has been suggested by Solow (1969, pg.l7).

The loss function used to evaluate economic performance has been de-v
scribed in Garbade (1974). The form of the single-period ioss function, the
fz of equation (9), is given in Table 1. The principle objectives specified
by the function are stabilization of the rate of unemployment (Ru) at 47
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Table 1. Single-period Loss Function

£0 =
t

State Variables

(.9925)%(16.66 Rp)% + 33.33(Ru - 4.)2

20.((Es + En + .2478 Kd)/Pt) ~- 10. (Kh/Pt)
+ ((G - 1.01157 G_l)/2.22)2 + ((Eg - 1.0093 Eg_l)/.lOO)z
+ ((Rtb - Rtb_l)/.372)2 + ((S - 1.0)/.025)2

N 2 a 2
+ ((FHL ~ P FHL)/.882)“ + 100. ((Yg - p Wg Eg)/.770)°)

Rp
Ru
Es
En
Kd
Pt
Kh
P

Policy Instrume

rate of inflation, percent, annual rate

rate of unemployment, percent

household expenditures on services, billions 1958 $
household expenditures on non-durable goods, billions 1958 $
stock of consumer durable goods, billions 1958 $

population, millions

stock of residential structures, billions 1958 $

implicit gross private product deflator, 1958 = 1.00

nts

G

Eg
Yg

Rth

government purchases of privately produce goods and services,
billions 1958 §

government employment, millions

government compensation of its employees, billions $

Treasury bill rate, percent

Federal personal tax scaling factor, S = 1. implies no
surcharge or reduction




FHL Federal Home Loan advances to savings and loan associations

billions $
Target Parameters
P
FHL target level of deflated FHI advances
N\
Weg

target per capita real wage index for government employees




and stabilization of the rate of inflation (Rp) at 0%. Increases in un-
employment above 4% are penalized twice as heavily as increases in infla-
tion above 0%. The loss function also penalizes large departures of the
instruments from their trend behavior. The term ((G - 1.01157 ¢ 1)/2.22),
for example, is a measure of the departure of current government purchases
(G) from the target value of 1.01157 G_1 in standardized units of 2.22 bil-
lions dollars at 1958 Prices. The construction of the other policy stabil-
ization terms is similar. With the value of the stabilization terms normal-
ized by the size of the denominators the weights on each were set to unity.
The absolute weights on inflation, unemployment, total consumption and the
resident-housing stock were arbitrary, although the two former items received
the major emphasis.

The initial quarter for fhe 0p£imal policy problem was taken as 1960/1
with an eleven quarter planning interval (T = 11). As noted in Garbade
(1974) the optimal policies in the last four quarters of the planning
interval diverge significantly from those which would be optimal for an
infinite horizon problem. This myopic behavior stems from the proximity
of the planning horizon, beyond which the loss function implies the policy-.
maker is indifferent among alternative states of economic activity. The
initial state was set at its historical value. Residuals of estimated
equations were set at their expected values, yvielding a certainty-equivalent
version of the original stochastic model.

Table 2 records the optimal and historic policies over the 11 quarter
Planning interval, 1960/IT to 1962/1V. Perhaps the most striking feature of
the optimal policy sequence is the secular increase in government employment

and compensation compared to the cyclic behavior of government purchases.
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Table 2. Optimal Policies
Rtb_ FHL_ 5 G Yg _Eg
1960/1II 3.92 1.91 1.000 51.7 4L8.7 10.18
IIT 3.87 1.88 .999  53.1 51.2 10.57
Iv 3.82 2.11 .997 54,2 53.8 10.99
1961/1 3.79 2.16 .998 54,3 56.4 11.39
II 3.77 2.25 .999 53.6 59.0 11.79
III 3.77 2.54 1.000 52.2 61.6 12.19
IV 3.80 2.79 1.001 51.0 64,3 12.56
1962/1 3.83 2.91 1.003 50.5 66.7 12.90
IT 3.83 2.03 1.003 51.4 69.1 13.21
III 3.75 2.32 1.000 53.4 71.3 13.48
Iv 3.69 3.26 .996 55.6 73.5 13.73
Historic Policies
1960/1 3.94 1.52 1.000 50.6 46,0 9.75
IT 3.09 1.77 1.000 50.9 L7.0 9.81
ITI 2.39 1.7k 1.000 51.6 48,1 9.80
IV 2.36 1.98 1.000 52.2 48.8 9.85
1961/1 2.38 1.48 1.000 53.4 Lg.5 9.92
II 2.33 1.87 1.000 55.2 50.3 9.96
III 2.33 2.12 1.000 57.3 51.2 10.07
Iv 2.48 2.16 1.000 57.2 52.6 10.31
1962/1 2.7h 2.15 1.000 59.0 53.8 10.52
II 2.72 2.76 1.000 60.8 54, Y 10.60
IIT 2.86 3.0L4 1.000 60.6 54.8 10.64
Iv 2.80 3.48 1.000 61.6 55.7 10.68
Rtb Treasury bill rate, percent
FHL Federal Home Loan advances, billions $
S Federal personal tax scaling factor
G Government Purchases of privately produced goods and services,
billions 1958 $
Y Government compensation of employees, billions $
g .
E Government employment, millions




The quarterly growth rates of optimal government employment decline
monotonically from 4.47% per quarter in 1960/II to 1.9% per quarter

in 1962/IV, but are all well above the target rate of .93% per quarter
(cnf. Table 1). The level of optimal employment exceeds the target level
of 1.0093 Eg_l by at least one standard unit (.100 million workers) in
every quarter and by at least two standard units in eight of the eleven
quarters. Government purchases, on the other hand, always lay within a

one standard unit band, + 2.22 billion dollars at 1958 prices, about the
target level of purchases, 1,01157 G_l. This seems to imply, at least

for the model and loss function we are considering, that government
expenditures directed towards public employment programs are more efficient
in achieving preferred configurations of unemployment and inflation than
stimulation of aggregate activity by expanded purchases of privately pro-
duced goods and services. It is not true, however, that arbitrarily large
increases in government employment can be undertaken without any effect on
inflation. Increases in COmpensation must accompany increases in public
employment, adding to demand, and inflationary pressure, through the con-
sumption functions. Furthermore, expanded government employment limits

the labor force available to the private sector, lowering the standard

rate of private production, i&and adding to inflationary pressure from the
supply o product side. The analysis indicates that after these effects,
and the corresponding effects from expanded government purchases, have been
compared direct employment is somewhat more efficient, aibeit not without
costs. The initial expansion, and subsequent contraction, of purchases
indicates that this policy instrument is more efficient as a stimulus to
private employment at times when further expansion of government employment
might be too costly. Once total employment is on a satisfactory trend

purchases were scaled back to relieve inflationary pressure on the economy.
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Table 2 shows the expenditure stimulus actually applied in 1961 and early
1962 came in the form of expanded purchases rather then employment.,

These results on the efficiency of the two government expenditure
instruments depend heavily on the weights placed on inflation and unemployment
relative tb the weights on the instruments stabilization terms. Greater
emphasis on instrument stability would no doubt reduce the rapid growth in
government employment. Optimality of the policies is defined with respect
to the criterion function, and there is no reason why a policy-maker may
not wish to use a dlfferent function than that employed in the present
study, perhaps to the end of keeping the public sector more modest.

The optimal Federal personal tax scaling factor, S, does not vary
substantially over the planning interval, turning from mildly stimulative in
late 1960 to mildly restrictive in early 1961. The fiscal stimulus to
economic activity in this study comes entirely from government expenditure
rather than revenue policies.

Table 2 indicates that optimal monetary policy is accomodating, with the
Treasury bill rate Steady at about 3.8% in 1961 and early 1962. This con-
trasts with the historic behavior of the bill rate, which showed a steep
decline in 1960 to about 2.47 and a mild increase through 1962 to 2.8%.

The quarter to quarter variation in the optimal bill rate is well within the
standard unit of 37 basis points, suggesting that monetary policy is not
especially efficient for deterministiq policy planning. Optimal Federal

Home Loan advances to savings and loan associations grow much more smoothly
than historic advances, without the decline and subsequent increase in 1961
evident in the historic choices. Support of residential construction through-
increases in advances appears more important in the environment of relativ-
ly higher yields on direct short-term investments that characterizes the
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optimal choice of policies than in the lower yield environment of the
historic choices.

Table 3 displays selected components of the optimal and historic
state trajectories. The average optimal rate of inflation over the
planning interval is 1.9%, while the average optimal unemployment rate
'is 4.7%. These compare to the historic averages of 1.0% and 5.87 re-
spectively, and the target values of 0% and 4%. Although we were un-
able to hit the target rates, either on average or in any single quarter,
the results indicate that, judged by the loss function of Table 1, the
historically lower average rate of inflation was purchased at too high
a cost in terms of unemployment.

A notable feature of the optimal state‘trajectory is the constancy
of the rates of inflation and unemployment. Some authors (Samuelson
(1967, Pg. 163)) have suggested that an optimal policy might drive the
economy up and down along the short-run Phillips curve, first stimulating
activity to reduce unemployment and then, as inflation begins to emerge,
switching to a restrictive policy to forestall the development of infla-
tionary expectafions. Until 1968 this was quite similar to the American
experience. Since the present model has a transient Phillips trade-off
between inflation and unemployment such a stragtegy could be implemented
as long as it didn't impart a secular bias to the expected rate of infla-
tion. The optimal state trajectory, however, offers no justification for
assuming the strategy is desirable from the point of view of aggregate
activity.

Since the long-run Phillips curve of the model is vertical it is con-
ceivable that the optimal choice of policies would have reduced the rate
of inflation to the target rate of zero and settled for the natural rate of
unemployment (Samuelson (1967, pg. 65) has noted this possibility).
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Table 3. Components of State Associated with Optimal Policies

X Rp Ru Ed Ip Th Rp
1960/II b50.1 1.86 L.86 L46.6 48.0 22.5 1.819
IIT  L451.5 1.88 14.68 L47.k 48.3 22.2 1.823
v b51.0 1.87 k.71 47.9 L7.8 20.9 1.829
1961/1 453.9  1.80 L.71  148.8 L7.5 22.5 1.834
II Ls6.h  1.86 L4.69 k9.6 47.3 23.1 1.831
IIT  457.0 1.92 L4.69 50.1 Lh7.0 22.0 1.834
IV 457.9  1.90 L.72  50.6 L6.6 21.h 1.8L2
1962/1 461.3 1.89 L.70 51.0 LE.6 22.8 1.848
II L6h.5  1.97 - L.66 51.8 46.8 22.1 1.852
IIT  470.3 2.04 4.61 52.9 h7.5 21,2 1.864
v L82.6 2.17 4.36 54.9 Lho. L 22.8 1.881
Historic States
1960/1 Lh7.0 1.80 L4.98 k5.4 L6.6 23.7 1.821
II 4h5.8  1.70 5.05 45.6 L47.6 22.0 1.819
IIT  Lh3.5 67  5.37 Ls5.0 47.0 21.0 1.807
Iv 439.8 1.96 6.0L 43,5 47.0 20.7 1.69L
1961/1 438.4 .93 6.54 k1.7 Lh.9 20.9 1.721
II LU8 .4 12 6.75 L43.2 Ly 6 21.1 1.641
IIT L456.6 -.08 6.52 4.5 45,7 21.6 1.490
IV 466.0  1.97 5.95 146.3 46.6 22.6 1.332
1962/1 L73.0 1.32 5.4 48.1 L7.6 23.1 1.396
II 480.8 .52 5,28 48.1 49,3 23.8 1.388
IIT  486.3 .83 5.33 k49,7 51.1 2k, 2 1.302
Iv 491.3 1.14 5.31 50.8 50.7 23.8 1.254
X Gross private product, billions 1958 $
R Rate of inflation, percent
P
Ru Rate of unemployment, percent
Ed Expenditures on consumer durables, billions 1958 $
Ip Business investment in plant and equipment, billions 1958 $
Ih Investment in residential structures, billions 1958 $

RB Proxy for expected rate of inflation, percent




This can be achieved with little long-run cost if Rg, the proxy for the
expected rate of inflation, were driven down close to zero, thereby cen-
tering the transient Phillips curve at zero inflation. Evidently the
costs of unemployment required to drive down the expected rate are too
great to justify such a strategy given the value of R; in the initial
~quarter. Looking at Table 3 we see that the optimal expected rate changed
only slightly over the planning interval, leaving the transient Phillips
curve unchanged. One of the beneficial effects of the relatively lower
historic rate of inflation was to reduce the expected rate by more than
half a percentage point by the end of the planning interval (Table 3).
This reduction permitted a better transient Phillips curve in years after
1962 than that which results from our study. As a matter of conjecture it
Seems reasonable to suppose that were the terminal planning horizon suffi-
ciently far away the optimal expected rate of inflation would exhibit a
secular drift towards zero, at least in the eafly and intermediate years of
the planning interval. The present study indicates, however, that elimination
of inflationary expectations will be optimal only for very long horizons,
probably approaching six or eight years. Over any shorter horizon such a
policy objective appears too costly in terms of unemployment. This result
might be modified, however, in a case where inflationary expectations were
high in the initial quarter and where a rapid downward shift in the tran-

sient Phillips curve might be worth the burden of substantial unemployment.

5. Computational Experience

The optimal policies exhibited in the preceeding section were computed
by the algorithm of Section 3. To start the algorithm we projected the

instruments over the planning interval at their no-loss growth rates,e.g.,1.157%
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per quarter for government purchases, using the historical policies in

the initial quarter as a base, and solved the model for the associated
tentative state trajectory. The Jacobians of the implicitly defined
reduced-form model were approximated as in equation (30a) and the grad-
ients and Hessians of the definitional loss function directly approximated
by numerical differentiation. The optimal policy increment with respect

to the approximaing linear/quadratic structure was then computed by (26)
and the step-size sub~procedure of (28, 29) applied to yield a new ten-
tative policy sequence. This process was repeated until convergence occur-
red in the sixth iteration.

Table 4 records the reduction in loss obtained at each iteration of
the algorithm. The loss associated with the initial tentative choice of
policies was 1891.8. Since the initial choice was arbitrary we do not
ascribe any significance to the large decrease in loss at the first iter~
ation. It is interesting to note, however, that the second and third iter-
ations also lead to substantial reduction in loss. Were the model linear
and the loss function quadratic a single iteration would have been sufficient
to gain onvergence. Even the mild non-linearities in the present model, which_
include especially the mixture of real product and nominal income account
items, are sufficient to preclude the assumption that a local approximation
is an adequate global description of the model and loss function. Inspec-
ting the values of n* in Table I we see they are either zero or unity,

implying the linear/quadratic approximation is satisfactory on a local scale.

6. Conclusions
This paper had two objectives, investigation of the problem of controk

ling inflation and unemployment in the context of a non-linear structural
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model and the development of methodologies to deal with such models. As
to the first it appears that stable economic activity is preferred to cyclic
behavior. Furthermore, even in a model which exhibits a vertical long-
run Phillips curve there is little evidence to suggest that elimination
of inflationary expectations is a desirable goal over even the moderately
long planning interval of 11 quarters. On the other hand there is none of
the upward bias in the expected rate that might have characterized the
optimal policies when significant weight is placed on unemployment. When
initial inflationary expectations are low the best policy appears to be
one of simple stabilization.

An optimal choice of policies places more emphasis on fiscal over
mwnetary instruments, although it must be kept in mind that coordination
of the whole set of available instruments is one of the important benefits
of policy analysis by optimal control techniques. Nothing in the present
analysis says that monetary policy either doesn't matter or matters but
slightly. The results indicate oly that stimulation of aggregate activity
is best accomplished by an expansionary fiscal rather than monetary policy,
Within the set of fiscal instruments considered, increased expenditures
seem more important than decreased revenues for achieving a desired expan-
sion, and Wlthln total expenditures expanded government employment and
compensation is preferred to larger government purchases of private product.

With respect to the second objective of developing methodologies for
structural models we showed that many results from the optimal control of
reduced-form models can be translated to the more general case by appealing
to the local equivalence argument of Section 1. The reason this is possible -
is that analytic methods for a non-linear model typically use the Jacobiansg
of the model to describe local behavior instead of addressing global behavior
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with the full model. The Jacobians of a reducel~form model locally equi-~
valent to a given structural model can be recovered even when the reduced-
form model itself is unavailable, and hence the analytic methods go through

to the more general case.

Appendix: rank (dSFtl*= p <n.

It may be that a particular structural model will exhibit multiple

solutions, so that:
- - i .
Ft(xt-l’ut’ s7) =90 i=1, 2, ...

>

Given assignments x 1 and U , the solution set § = {sl s2,...} may be

t
finite, countable, or uncountable. In the case where S is finite we are
likely to find that only one of the solutions is reasonable, i.e., can be

construed as the consequence of current policy Et and previous period state
X .
t-1

of the model, and we would set Et to the reasonable solution. Tt is possible

The other elements of S would be dismissed as mathematical artifacts

that rank (dBFt(Et_l, E;, si)) =n for all i when S if finite or countable,

t-1
These are cases of isolated solutions. The cases of § finite or countable

so that each solution is Iocally unique to neighboring choices of x and uE

do not arise with linear models, since there either the solution is unique
or, if a solution exists at all, there is an uncountable set of solutions
lying on a hyperplane in state space.
Suppose for some solution state §t rank (d3Ft(§t_l, Et, E;)) = p <n.
Here either possibility 1 or possibility 2 may hold. TIf rank'(dBFt(Et-lﬁ£’ X))=p

for all x ¢ M (2;), i.e., possibility 1, then, by the Rank Theorem (Dieﬁdonne'

(1969) pg. 277) there is a connected manifold, C, of dimension n ~ p contained
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in M(§t) with §£€ C such that Ft(§£-l’ ﬁi, x) = 0 for all x ¢ C. TIn this
case the solution of the Structural model is not even locally unique, and

the solution set is uncountable. There are a whole sequence of solutions,
arbitrarily near each other. It is impossible to choose one of these as

the "true'" state of the system, and we would be led to believe that the

system has been inaccurately represented by the mathematics of the struc-

tural model. TIf possibility 2 holds no general statements appear possible.
The solution §£ may or may not be locally unique. Even.if it is unique

there will be policies arbitrarily close to Et and states arbitrarily closge

to x . for which no solution state exists or for which the solution states

are not near Et. In either case the opportunity of conducting the perturbation
analysis required by the Lagrange Multiplier Theorem is precluded. Hence

if p < n extension of the results from optimal control of reduced-form models

to structural models fails.
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