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1. SUMMARY AND INTRODUCTION

In a previous paper [ 3 ], Roy Radner and I
analyzed the following situation: An agent is in charge
of I distinct activities. At time t the level of
activity i is Ui(t). Although the agent is responsible
for all I activities, his ability to control them is
severely limited. 1In the first place, regardless of his
actions, the evolution of U(t) = (Ul(t),...,UI(t)) iz
stochastic. More importantly, he één only devote himself
to one activity at a time and while his efforts are generally
successful (attended activities tend to improve), their
absence is likely to be harmful (neglected activities de-
teriorate). The agent's problem is to choose a rule for
allocating his effort or attention among the various com -
peting activities.

A formal version of this model is as follows: The

allocation of the agent'seffort at time t 1is determined

by a vector a(t) = (al(t),... aI(t)) satisfying ai(t) > 0;
by ai(t) = 1 . In general, we shall consider here only cases
where the a;(t) are equal to 1 or 0 ; fractional

allocations, which are discussed in [3]1, can arise from
mixed strategies or because the agent is actually able to
divide his attention among several activities. The allo-
cation vector a(t) affects the evolution of U(-) through

its effects on the increments of U(*), Z(t+l) = U(t+l) -U(t).



Thus, the distribution of Z(t+l1l) = (Zl(t+l),...,ZI(t+l))
is determined by a(t) and, possibly, by the past history
of the process. In [ 3 ] we modeled the influence of the

allocation of effort by assuming

E Z,(t+l) =a (t)n; - (1-a,(t)) g, (M.1)

where Ny and Ei are given positive parameters. We

further assumed that:

The distribution of Z(t+1l) 1is

determined solely by a(t): (M.2)

and

Given af(t), the coordinates of

Z(t+l) are mutually independent. (M.2)

In the sequel, I shall refer to assumptions (M.1), (M.2)
and (M.3) as the Markov assumptions. In addition to these
three assumptions we made some regularity assumptions very
similar to the following conditions, which I shall adopt in
in this paper:

Zi(t+l) is integer valued, (R.1)
|Zi(t+l)| < b for some b >0 |, (R.2)

and



If

H = {h¢ RII |h,

l| = ll izl,,..’I},

then there exists Yy >0 such that for all values
of a(t), all past histories of events up to and
including time t , and he¢H,

P {Z(t+l) = hla(t) > v

As usual, the underlying probability structure is

(R.3)

represented by the triple (@, ;; , PH. ‘?.O’J;l"'°'“%t°'

is a sequence of increasing sub-sigma fields of‘fi ; \th
represents the events observed up to and including date t
Thus a variable dated t , such as U(t), a(t) or ZzZ(t),

is &jl s—measureable as long as t > s

This model can be used to analyze a number of
different questions. One of the most natural is determining
whether the manager can control all I activities simul-
taneously or whether his attempts to look after them all
will lead naturally to disaster for one or more of the
activities. In [ 3] we defined survi?al as keeping all
indices above some arbitrary level for all time and asked

whether or not it was possible to survive. Formally, if



survival is possible if

P {M(t) > 0, all £t} > 0 (1.2)

The notion of being in control captured somewhat more

sharply by a different notion. If

lim inf M(t) = <« , a.s., (1.3)

then I shall say the manager eventually succeeds. There

are three reasons for believing that (1.3) is at least as
interesting a property as (1.2). First it is more pleasing
to know that events in which one is interested will occur
almost surely than to know there is some positive (but
possibly very small) probability that they will occur.
Secondly, if the manager eventually succeeds, things get
better and better in the sense that for any arbitrary level
of performance, L , and any ¢>0 , there is a (non-random)
time T such that with probability at least 1l-¢, M(t) > L
for all t > T . Finally eventual success implies there is
with arbitrarily high probability, a limit to how bad things
get in the sense that for every ¢ >0 there is a finite

B(¢g) such that M(t) > B(e) for all t with probability

at least 1-e . The following Proposition demonstrates that



these are the implications of eventual success.

Proposition 1

If lim inf M(t) = =, a.s. then

(i) For every L , and every ¢ > O , there
exists T(L,e) such that

PiM(t) > L, all t > T(L,e)} > l-¢ .

(ii) For every e >0 , there exists
B(eg) such that

P{M(t) > B(e)  all t} > 1-¢
PROOF :
(i) Let Yt(w) = Max[M(t,w), L + 8§ ] for some
§ >0 . Then Yt - L + § a.S.

and Egorov's Theorem implies that for every

e >0 there is a set F with P(F) > 1-¢
such that Yt(w) + L + 68 uniformly on F.

The conclusion follows.

(ii) Assumption (R.2) implies |[M(t) - M(t-1)]| < Ib.
 Fix L and e , let B(e) =L - T(L,e)Ib.

The two concepts (1.2) and (1.3) are, despite their

different meanings quite closely related. Whether the



manager can survive or will eventually succeed depends

on two things: the distribution of the Z(t)'s and the rules
used to determine the allocation of attention. In [ 3 ] we
showed for the Markov case, thét there was a simple test for

determining whether any policy could survive. Specifically,

we showed in Theorem I of [ 3 1 that if
1

1/8 (hAEL) (1.4)
i nl+gi i t *

- g
z = [1 - g =

then z >0 ‘was a necessary and sufficient condition for
the existence of any policy which has a positive probability
of survival. It is trivial to adapt the argument of | I
to prove that T >0 is also a necessary and sufficient
condition for the existence of any policy which will eventually
succeed. Thus ¢ , a simple function of the conditional means
of the distribution of the Zi(t)r emerges as a natural
measure of the difficulty of a task facing a manager. If
t < 0 the task is impossible; nothing he does can lead
survival. If ¢ > 0 , he can, if he chooses the right
policy, eventually succeed.

If survival is possible, relatively simple policies
can bring it about. 1In [3] we desribed two. Both policies
also will, if >0 » eventually succeed. The first,
balanced growth, is a behavior in which the allocation of

effort is constant. Let



~

then Zéi =1 and if ¢ >0, a; > 0. cConsider the behavior

which simply sets ai(t) = ai for all i and t

It is easy to see that, for the Markov case,

B[z, (t+1)] a, (t) = a,] = T

so that the law of large numbers implies

U. (t)
lim %

t

M(t)

t
this behavior will eventually succeed.

from which it follows that 1lim =z a.s.. Clearly

Another simple rule which will eventually succeed
when T >0 , is what we called "putting out fires." This is
the policy iﬁ which all attention is allocated to the'activity
which is currently performing worst -- apparently a very
common kind of administrative behavior. Formally we may define

putting out fires by

(i) if Ui(t) # M(t), then ai(t) = 0 ;

(i1i) if Ui(t) M(t) and ai(t—l) =1, then

(1.6)

~e

ai(t) =1
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(iii1) if neither (i) nor (ii) holds, then
ai(t) = 1 for 1i = the smallest 3§ such

that Uj(t) = M(t).

A notable feature of putting out fires behavior is that, in
contrast to the constant proportions behavior described
above, it can be pursued without knowledge of the parameters
determining the distribution of Z(t+1).

In [ 3 ], we proved, again for the Markov case that,
if 7 > 0 and putting out fires is followed, then the
policy will eventually succeed (and survival is possible).

The purpose of this paper is to extend and qualify
these results, which seem at once too weak and too strong.
They appear too weak because they are restricted to
the rather special Markov case; they are too strong because
they seem to imply that putting out fires, which is often
criticized as being a poor administrative strategy, 1s as
good a rule as any in the sense that putting out fires will
persevere when any thing will; if putting out fires fails,
nothing will work. These two defects are related. Putting
out fires is, I believe, thought to be a bad strategy because
it involves too much changing about and such changes are
costly. These costs cannot be modeled easily within the Markov

framework of [ 3 ].



Suppose the Markov assumptions are replaced by the much
weaker assumptions below which state in essence only that
allocating effort to an activity leads to expected gains and

withholding effort causes expected losses:

E[Z; (t+1) a, (t) = 1, 3.1 > ny (G.1)

- 8> ElZ; (+D) |ag(8) =0, F,.1 > £, (G.2)

where B8 , ny and Ei are given positive numbers. Then,

if T is defined as in (1.4) above, its positivity is still

a sufficient condition for putting out fires to eventually

succeed.

THEOREM 1:

If there is putting out fires behavior, assumptions

(R.1-3) and (G.1-2) are satisfied,and ¢ > 0 , then

Ui(t) _
lim inf s >z a.s. i=1,...,1,
and
lim inf M(t) = = a.s.
The proof of this theorem -- which closely parallels

the proof of Theorem 3 in [ 3] -- is given in section 2 of



this paper. 1In section 3 the problem of introducing costs

of switching attention from one activity to another is
discussed. One plausible model which captures this effect

is introduced. It is shown that in this model there are
rewards to staying with one éctivity and not switching around
from activity to activity. An example is given in which
putting out fires does not persevere but another policy, which

involves less frequent changes of attention, eventually

succeeds.



2. PROOF OF THEOREM I

The proof of Theorem 1 follows from the following proposition

which is of some independent interest. Let D(t) = max U, (t) -

ieTl
min U, (t) .
Jjel
Proposition 2. Under the conditions of Theorem I, there is a G
such that if G < D(s) and - T* is the first integer

such that D(s + T*) <G  then there exist H and K such that

Pir*>n) <g e |

Remark 1. This implies that E(T*) is finite as

1]

BI* = 2 Pr(T*>n) <3 H K

PROOF OF THEOREM I:

We may without loss, set s =0.

LEMMA 1: The proposition implies

U e) U ()

I - T —> 0, a.s.

2-1



PROOF:  Since ]Ui (t) - UJ (t)] < D) > 1t will suffice to show

D—(t—) —> 0 8+ S No generality is lost if it is assumed that

t
D(0) <G . Let A, =0 and for n=1,2,... define B~ as the
first date t >An-l such that D(t) >G¢ ana An as the first
date t > B, such that D(t) <G . Then if, for some n s

A
n-lSt<Bn ?

D(t) <G ; if B <t<a
A n = n

D(t) <G+ (A -B )b

and
A ~-B
A -B n_n
D(t) G n n G b .
2 < 2 , z
T 2§ " T PS¢ n
A -B A -B
Thus lim sup D-T(t—) < 1lim sup % + __n?n_ = b lim sup -Z . o .
To prove the Lemma, it will suffice to show that
A -B
lim sup 1 2 = 0 &S0
A -B
For any ¢> 0, 1let En be the event that 4 4 > €

Proposition 2 implies P{(An ~-B )>ne } < HeKRE
n’ = =

Let X ~ be the indicator of E, , and define “zyn-l = Jan ,

then M = E[X | o ] <H e'_Kn eand, LM < = ., We conclude from
n nl* n-1" — n




Freedman [ 2 , p. 919, Proposition (32)] that & X < ®» a.s.

In other words, almost surely only a finite number of the events E

B _-A
n

occurs or lim sup < €& , a.s. Since this holds for

B -A
all €>0 , 1t follows that lim sup

LEMMA 2:  Let U(t) = w, U (t) where wo= (0 + éi)/Ej(nj+§J.>=

e Se

z
i i
Then lim infﬂtll >

PROOF:  Let Z(t+l) = O(t+1) - G(t); then Z(t+1) = I W, Z, (t+1)

and
EZ(t+l) = ZWi EZi(t+l)
i
> Zwla () - (- (6)8, ]
1
= ;i:wi[ai(t)(ni +E8)-81 = ¢
Thus,
M(t)=E[2(t)l“‘jﬁ_l] > e .
1 - t t .
Consider i b3 z(7) 5 i(T) Z M(T)
U(t) _ 1 1 1
T 4 Tt t
% M(7)
t .
} ZZ(t)
>t 3
' = M(7)
1

Since




2.4

lim = 1 a+s8. [Freedman, 2 p. 921, Theorem (40)].

it follows that

:L:Lminfﬁ—ét—Z > ¢

which proves Lemma 2.

To prove Theorem I it remains only to observe that

- U,(-t)
§<liminfg—(:°—)— = 1im inf & w, —
-_ t 5 i t
U (t)
= lim inf ¥ w, Uk( ) = 1im inf k-b s 8eS.
i ' 7%

The next to the last step follows from Lemma 1.

Proof of Proposition

The proof is by induction on I. Clearly the proposition
holds for I = 1. The induction step, that if it holds for I = J-1
then it is true for I = J, closely parallels the proof of Proposi-

tion 2 in [ 3 ]. As in that paper, the proof is given in three Lemmas.

~
f

LEMMA 3:  Suppose %/ is any proper subset of (,'7 = {1,...,J},
. ’
that K is the complement of K in y and that putting out

fires is practiced on the activities in /»’( while no effort is



o’
4

allocated to those in /Z’ . Then there is a (non-random) T

such that
Emin U (t)> min U (0) +1 for all t>T
YTk bt K z
ke 4 ke
Emx U (t)< max U (0) -1 forall t>T
b k - k -
ke 7 ke
T can be chosen so that (2.1) holds for any')i' properly
4 '
contained in ¥ .
._4/
PROOF: Consider the activities in /4 alone. Let
¢ =(1- 2 gk)/z (n, + &) (2.2)
A ke % Metbe ke Kk
Comparing (2.2) and (1.4) we see that gji >0 whenever t >0
so that the induction hypothesis implies Proposition 2 and thus
Theorem 1 holds when putting out fires is followed on the activities
in /éi alone. Thus, for any ke )4:
Uk(t) -
lim inf T >t H 8.8 (2.3)
and
lim inf £ min U (t) > £ a.s. (2.14)
. . k -
ke 4

Since the increments of Uk(t) are uniformly bounded by b ,

2.5

(2.1.a)

(2.1.p)



l min
ket

we may apply the Lebesque Monotone convergence theorem and the Fatou-

Lebesque theorem to conclude that

1
lim inf E — min U (t) >

t kek k
R § : .
E lim inf = min U (t) > ¢ .
Tt . k -~
keA.

It follows that

lim inf E min Uk(t) —_> + @
kef

and there exists T;.- such that t > 'I',,;- implies

E min Uk(t) > min Uk(o) + 1.
ke,{' ke £

If no attention is paid to an activity then (G.2) states that

E Z, (t) < - B . It follows in a straight forward way from Theorem 4Q)
of Freedman [2] that, '

lim sup max
ke K

Another application of Lebesque and Lebesque-Fatou produces
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lim sup E max U (t) — - =

s Kk ’
keK
so that there is a T! such that t > T! implies
A A
E max Uk(t) < mex Uk(O) -1.
4 ke A
Letting T = max (max(T/L s T,ZL )) where 4 ranges over all

proper subsets of 7  completes the proof.

LEMMA L4: Let D(t) = Max Ui(t) - min Ui(t), and G = 2 JT(b+l);
i 1

if D(0)>G, then ED(T) < D(O) -2 where T is as

in Lemma 1.

PROOF : This lemma is identical to and has the same proof as Lemma 2 of [ 3 ]. |

LEMMA 5:
Suppose G <D(0) <2 Jb+G. Let T* be the first T such

-KT
that D(T*) <G . There exist H and K such that P(T*>T)<He .

PROCF : Let D

]

D(0) and consider the random variables

x = D(T) -D[(n-1)T)] .
n

/ i _ﬁ?v,l' 2 . . .
Let vf¢ n = Qf‘nT 5@/ , 1s an increasing sequence of sigma

I n
fields and Xn is s/ n-measurable. Furthermore, if Yn %mfl Xm 5



2-8

then D(nT)=D+Y . Let C=G-D. Then -C<2bJ. If
Yn <C then D(n T) <G . Let N* be the first N such that

Y <C. It will suffice to show that there exist H'! and K' such that

N-X-
for all n>24dJdB

PN* > n) < m' e TR, (2.5)

The random variables Xn’ Yn have the following properties

x| gia (2.6)

where B =2JTb and Lemma 2 implies E[anYn~l >C] <-2.
Let X +B
Wn = 2B
n Y + uB
S = Zw =
n 1 m 2B
R = °
" E[whlfg_l] |
Suppose
en > 2Jb >-C ; (2.7)

-24B
if N¥>n , then Yn >C and Rm < ) for m=l,...,n
so that
n
C + nB n(-24B)
= by < =D o
Sn > 2B an and Rm 7B n
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Since (2.7) implies a_ > bn we may use (4.b) of Freedman [p. 91]

to conclude that

PIN* >n] < exp][ - ——2 ] (2.8)

Note that

(an-bn) (c - 2n)2 4~n2 2n

ZBC +mB) 2 o B2 2

2 an

because of (2.7). Thus (2.8) may be replaced by

ho

Pln* >n) < exp -(
B

)n for n>2Jbv

o

/

which with H'=1, K = E%- is (2.5).
B
Proposition 2 follows immediately.

Remark 3. The assumption £ >0 is stronger than is necessary
to prove Proposition 2. As the structure of the proof (particularly
the proof of Lemma 3) makes clear all that is needed is Qj >0,
J=1,...,1, vwhere

- E 1

;= - 1?3 ;]-1—+—1§:] /izj (n+¢,) . (2.9)



ITI. COSTS OF PUTTING OUT FIRES

We now consider a model in which following putting out fires
behavior may be 1ll advised as there is a cost involved in switching
from one activity to anothef; in such a situation, wise policies
would, as putting out fires does not, ~economize on the numbei'of such
switches. The simplest possible model is the following: Suppose
that the allocation of effort is indivisible so that ai(t) =0
or ai(t) =1. Let m(t) be the activity to which effort is allo-
cated at time +t . Let s(t)~be_the numﬁer of consecutive periods immedia-
tely preceeding (but excluding period t) during which attention has been
allocated  to activity m(t). Thus if m(t) = 8 (t) while m(t-1) # 8, (t)
s(t) =0 ; if m(t) = m(t-1)=,-+e,m(t-T) = a;(t) while

m(t - (T+1)) # a, then s(t) =7 .

Now suppose,

The distribution of Z(t-1) is determined (3.1.a)
by a(t) and s(t). M

Bz, (541) = a (68)(n, + 8, ) - (L-a (t))E, , (5.2.0)

where for each i , {ais} is a bounded sequence of non-negative

numbers such that

5, = 0; (3.2.a)
2.0
0. = 6is+l ( )
i
5] > 0 for some s ' (3.2.¢)

is



The specification (3.1.b) and (3.2) captures the notion
that there is a cost to switching attention often and that there
are increasing returns to continuing to do the same thing. We
shall show this formally below. The criterion we shall use to
measure quality of performance is the long run rate of growtﬁ of

the Ui(t)’s which we define as

R; = lim Ui(t)/t a.s.

when that limit exists. Recall the definition of §i (2.9).

The following theorem is our first result about growth rates.

THEOREM 2: Suppose assﬁmptions (3.1) and (3.2) hold
and putting out fires is followed. If gi >0 i=1,...,I
then the growthvrates Ri exist and are equal to one

1
another. This common growth rate, R ; exceeds U .

Again the proof follows from a proposition of some independent

interest.

Let vV, (t) = U (t) - M(t), V(t) = (vl<t),---;VI<t)> and

consider the Markov chain

C(t) = (m('b), S(t)) V(t)) . (3.3)



Proposition 3: c(t) is positive recurrent.

PROOF of THEOREM 2: Since C(t) is positive recurrent, the long

run relative frequency of the events m(t) = i and s(t) = s
converges almost surely to the invariant probability of that event , say

I [e]

a, o The a, are strictly positive numbers such that = & 84 =1.
is is i=1 S=0

x
Let éi = L a, - Then a straightforward generalization of

Theorem 2.b of [ 3 ] implies that, Ry exists for all i

and that

M8
o
(o4

R, = ai(ni - (l-ai)f.i +

(5.4)

i}
-

8

Now suppose Ri > Rj for some i and j . Then

= - > t) - U, &
v, () U, (6) - M(8) > U, (8) - U, (¢)
But this last quantity diverges to + o almost surely, which
contradicts Proposition 3.  Similarly Rj >R, is impossible and
all activities must grow at the same rate.

It only remains to show that this common

rate, Rl , exceeds £ . Recall from (L.5) there exists a set of

numbers 3. such that X ai =1 and
i

i

0
=]

I
L)
v
o >
e
v

I
ve 1
-

l,000,1. (3.5)




Since X éi = 1 it follows that there is an index j such
i

that 5j >a,. . Combining (3.4) and (3.5) we get

J
=anmn, - (1-a,)t. <a.n, - (1-2,)¢,
g b ( J)éa_ 575 ( J)E.J
< af, - (l-a)t. + Z &, a. = R
JJd J o gop J8 I8

The second inequality is strict since (3.2.c) and the fact that all
[o0)
a.. 's are strictly positive imply £ &, a. >0 .

Proof of Proposition 3. Since C(t) has a single class, it wilil

suffice to show that the expected time to return to a finite set of states

is finite. As before, let D(t) = max Ui(t) - min Uj(t> = max Vi(t).
i J i

Let G be as in Proposition 2 above, and consider

A = (M), s(t), V(&))|s(t) =0, D(t) <G} .

For notational ease let y(t) = (M(t),s(t),V(t)). Let t be
the first date such that y(tl) é A and T be the first date

after 1 such that y(T) €A . I will suffice to show that

ET < .

Consider the set

B = (m(t), s(t), V(&)|D(t) <a} .



Suppose

v(0) e B . Let n, be the first date + >0 such that
y(nl) ¢ B . It follows from (R.%) that

K
(n, > kG} < [i-y % for  k=1,2,...

so that

This bound is independent of y(0). Lef N be the first date
greater than D, such that y(Nl) €eB. It foliows from
Proposition 2 above (which since Ej >0 holds for this case)
that E(Nl - nl) is bounded. Thus there is an L such that
EN, <L. Now N, is the length of the time of the first
return to B ; in a similar manner define the random variables
n, and N2 as, respectively the length of time it takes y(t)

to leave B <for the second time and to return to B for the second

time. The random variables s nB,..o,NB, N&"" are defined
k

similerly. T, = ZIN,  is the date of the ¥ return to B
and B Tk S kKL .
Consid £) f £=T to =T +n. _ -1
onsider y(t) from ; ; 41

(Tj + Ih-l is the date at which y(t) leaves B for the fhtime).
If for one of those +t's, s(t) = 0 then we shall say y(t) visits
A during its j#h visit to B . Tt follows from (R.3) that

the probability of this happening is positive and always exceeds

some positive number O independent of J and of y(Tj) .
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Thus if the random variable K 1is defined as the first k > 1
such that y(t) visits A during its kth visit to B, EK <=,
Clear%g the time of y(t)'s first return to A , T, is less
than ;l N, . However, it is an immediate consequence of Lemma
k=j :
6, below that
K+1

E IN, < E[K+l1]L < o .
k=3 ¢

This completes the proof of Proposition 3.

LEMMA 6:  Suppose
= +.;.+
Sn Xl +X2 ‘ Xn

where

+ -
E[an (W4 n_l} Mn S “-

If n* is a stopping time such that E n*¥* < u , then

ES 4 < HEn*.

PROOCF : Iet Y = X - M, then
_— n n n

E[Ynl jkn—l] - Yn-l



and the sequence

is a martingale.

Since
E[ ]Tn+l - Tn‘ l.,l‘n]
i 1 Y B RN IR - SRS B NV
10 SURY B 1V RS - S B S

= eMyg S ER,

it follows from Proposition 5.33 of Breiman [ 1, pp. 99] that

ET = E Tl = 0 . However,
n¥* n* n¥
Tx = Z ¥ = 2 X -« M > S, -pn*
n 1 B 1 0 ;1 B n
thus
0 =

ET x > ES x- 1En¥

or
LEn* > ES .

completing the proof.



It is appropriate to examine the costs of putting-out-fires
behavior as contrasted with behaviors which involve less frequent
reallocations of attention. Consider in particular the following

class of behaviors which I shall call putting out fires with delay

d behaviors or simply 4 ~ delay behaviors:

i) If s(t-1) < d-1 then ai(t) = ai(t-l) . (3.5.a)

ii) If s(t-1) >d  then putting-out-fires (3.5.5)
behavior is followed. e

If  d=1 then (3.5) is simply putting out fires. If d exceeds
unity then the agent is required to attend an activity 4
consecutive times before switching to a new activity. The consequence
of following a d-delay behavior is very similar to that of putting out
fires. If Ei >0 for all i ,the proof of Proposition 2 can be
trivially adapted so that its conclusion holds under the assumptions
(3.1) and (3.2) when a policy of putting out fires with delay d 1is
followed. Proposition 2 is essentially all that was needed to

prove Proposition 3 above. The rest of the proof goes through un-

changed for this case; this proves

Proposition k: If a d-delay behavior is followed and if gj >0,

J=lye+.,I  then the Markov chain C(t) defined in (3. 3) is

positive recurrent.



THEOREM 3: If a d-delay behavior is followed and if QJ >0,

J=l,ee6,1 then all activities grow at a common rate

d—
R >t .

To show that putting out fires, or more generally unnecessary
switching of attention is costly, it would be nice to show that Rd
is monotone increasing in d . I have not been able to do this;

however, a somewhalt weaker result in the same spirit can be proved.

THEOREM 4: There exists R ©° such that R® > R® for all d

00

and lim Rd = R .
d—s

PROCF : The proof is given first under the assumption that for all 1

8, =0, 8,.=8,>0, s>0 . (3.6)

Afterwards I discuss how to extend the argument to the more general
specification (3.2).
Fix d . Proposition 4 implies the long run frequency

of occurrence of the event M(t) =i and s(t) = s converges to

d .
the invariant probability 8 . Thus,

(o]

' -4 a
4 g4y - (et By 2 oA

(3.7)
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;4 - z a?s .
i gep T
-d o d - .
Let b; = Z &, the probability that m(t) = i and
s=1
s(t) >0 . Then (3.7) can be written as
d =a ~d - ~d
= + - (1 - - @&, - .
R a(n; +8,) - L-380)e - B b, )8, (3.8)
~d d o Lo
Note that (ai - Ei) =a >0 the probability of the event
m(t) = 1 and s(t) =0 . Let b, be the set of weights such
A N
that bi >0; Z bi =1 and, for all i,k .
”~N N
bi(ni + Si) - (1- bi>§1
LI\ N
bk('qk+6k) - (1 -bk)gk .

Let R ® denote the value of this common sum. I will show
that

R > R . (3.9)

Since both Z &l =2b =1, thereisa k such that A <b
, . .

i k
1
so that
: - =d d
R = ay (g +8) - (1= a0t - abs,
~d -
< oy (0 +8) - (1-EE

1A
o>
=
=
=
+
o
=
e
I
N
'_l
H
o>
v
b
oy



This proves (3.9).

To complete the proof we only need show

lim a? = 0 (3.10)

d = 10

since  (3.8), (3.9) and (3.10) imply that 1im B;1= b, and
d 5

1im &Y = g% .

d "o

Recall that ago is just the invariant probability of the
event that M(t) = i  and attention has Just begun to be allocated
to 1 at time t . Now it is well known that the invariant or
stationary probability of an event A is just equal to [E TA]-l
where TA is the time to return to A. (See, for example, Breiman
[ 1, ~ Proposition 6.38, p. 123].)

When Ad is the event that M(t) =i, s(t) = 0,
and a d-behavior is. followed, then Td » the time to return to Ad

is always greater than 4 , +thus lim E(Td) = from which
d—oo

(3.10) follows.
This argument can be adapted to deal with the more general
specification (3.2) in an obvious way. By assumption the sequences

{s_s] are monotone increasing and bounded.
i

1]

- 00 * - *
= i . - -b
Let 5, = lim Sis Then R bi(ni + 5i) (1 i)gi

S —

and

I
=

* *
where the bi are chosen so that % bi
i




R +8) - (-, = bf(ny +5,) - (1 -v¥e, .

Choose any set of &y such that 81 < 8i . Let bi be

a set of weights such that = by =1 and b, (nk + sk) -

~
~ ~

(1.bk)§k = bi(ni + si) - (1 - bi)gi . Call this common sum R .

Then it is straightforward although tedious to show that

a ~
lim inf R° > R . This completes the proof.
d->e :

Theorem 5 shows that if (3.2) holds then rutting out fires
is a policy which leads to a lower growth rate than other policies
which change allocations less frequently. This paper closes with
a. demonstration that the costs of too frequent switching may bé more

dramatic; specifically, I give an example where putting out fires

cannot survive but for large enough 4 , putting out fires with

a delay of d will eventually succeeed. Let & >0 and M >0 be

such that

) E <1
-1 (n+ &)

while

(n+¢)

or



Tt 7 - (1 - I'l) E <0 (3.11)

If for all i, ni==n and &; = £, then gj >0, j=l,...,I and £ < O .

g

Choose & so that I ——— <1 , or
(048 )
or
-1 -1 i
I (n+%)-(Q1-I)E>0. (3.12)

Suppose that for all i

0 for s <8

6is B °
o] for s> 8

Theorem 4 implies that if a d-delay policy is adopted, all activities
d
grow at the rate R .
The symmetry of the example implies that

R = I - (1 - TThE, - adss (3.1%)

where ai; is the relative frequency of the event M(t) = i and
d
s(t) >8 . For fixed d ag 1s a function of S, in fact
lim ai;= 0, (311) implies it is possible to pick S so that
S
R1‘< O . If the common rate of growth of all activities when putting

out fires is followed, Rl, is negative then 1lim Ui(t) —> - o B.S.

and survival is not possible.




However, for S fixed, 1lim ad

d— oo

~N

with 8 fixed there is a 4

g —>1 so that (3.12) implies R > 0;

such that R(1 >0 for all 4 >4 .

Rd >0 implies for all i 1lim Ui (t) = + = which in turn implies

the d-delay policy eventually succeeds.
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