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1. INTRODUCTION

The purpose of this paper is two-fold. First, it is to show that the
best linear unbiased estimator which we proposed previously [1] for interpola-
ting, distributing and extrapolating a time series by the use of a regression
on a set of related series has wider applicability than the examples explicitly
cited in the paper. In particular, our method is applicable to the problem
of estimating missing observations as treated b& H. E. Doran [2]. Second,
our method will be compared with Doran's method, and shown to be more efficient.
This can explain why the latter method performed so poorly in the simulation
experiments reported in Doran's paper.

The main problems cited in our paper [1] are the following. Given quarterly
observations on a stock variable and monthly observations on some related time
series, we wish to estimate the monthly observations of the first variable.

This is the problem of interpolation. Given quarterly obser&ations on a flow
variable and monthly observations on some related time series, we wish to esti-
mate the monthly observations of the first variable. This problem has been
called distribution because the estimated monthly observations, on the Gross
National Product for example, are supposed to sum to the observed quarterly
figures. Each quarterly figure is supposed to be distributed into three monthly
figures. If even quarterly observations on the variable concerned are unavail-
able for a certain time interval such as certain future time periods, the prob-
lem is one of extrapolation. Both a stock variable and a flow variable can

be extrapolated. Our estimator applies to all these problems, and others as
well.

The problem posed by Doran [2] is as follows. Given quarterly observations



on a (stock or flow) variable in an early period, and given its monthly obser-.
vations in a later period, the problem is to estimate the missing monthly
observations. Doran referred to our work [1], but stated that his problem
is different because no related series are used. It turns out that our esti-
mator not only applies to Doran's problem, with or without the use of a set
of related series, but that it is more efficient under Doran's assumptions.
We will point out the difference between these two estimators and show the
relative efficiency of ours.

In section 2 we restate our method and the assumptions under which it
can be applied. Section 3 applies our estimator to the problem of missing
observations. Section 4 compares our estimator with Doran's and shows the

efficiency of the former.



2. A METHOD OF BEST LINEAR UNBIASED ESTIMATION

It is assumed that during a sample period the monthly figures (not neces-

sarily available) for a variable is governed by the linear model

Yy =XB +u (2.1)

where y is column vector of T observations on the dependent variable to
be estimated, X is a T X p matrix of observations on a set of p related
series, and u is generated by a covariance-stationary stochastic process
uncorrelated with the observations X and has mean zero and covariance matrix
v .

The observed series Y, is assumed to be Cy , with C denoting a given

linear transformation. For the problem of interpolating a stock variable,

the matrix C is

100
00010 ...

= Sl I (2.2)
0. .. 100

For the problem of distributing a flow variable, it is



l1110... 0
06001110...0

CD =1/3 L (2.3)
0 o« o 111

where the factor 1/3 is used if both the monthly and the quarterly series
are expressed at annual rates. The matrix C is certainly not restricted
to the form (2.2) or (2.3). Our estimator is aéplicable to other situations
in which we observe some known linear transformation y, = Cy of the time

series y . Premultiplying (2.1) by C , we find the observed series to satisfy
y, =CXB +Cu=XB8+u (2.4)

where X = CX and u = Cu .

The monthly series to be eétimated is denoted by =z , which satisfies
z = XzB + u, (2.5)

with X, and u, reséectively denoting the related series and the random
residuals corresponding to 2z . The new symbol 2z is introduced because we
may be dealing with the problem of extrapolation outside the sample period.
For the problems of interpolation and distribution using the transformations
(2.2) and (2.3), 2z is identical to y . For the problem of missing obser-
vations to be studied in section 3, z 1is a subvector of vy .

A
In our previous paper, the linear estimator =z = Ay. which is unbiased,



with E(ﬁ-z) = 0 , and which minimizes the trace of the covariance matrix

Cov(E-z) is found to be

2=x8+ [.vz_vf]t'i, | (2.6)
where

V.., = Euu’ = cvc” , ' (2.7)

V,. =Euul , (2.8)

8= v vy, = e e v v T (2.9)
and

i =y, -x8=[I- x.(x:v:%x.)'lx'.vf%]u . (2.10)

The estimator (2.6) consists of two parts. The first results from applying
the generalized least squares estimator é obtained from the regression

model (2.4) to the related series Xz associated with the vector z to be
estimated. The second is an estimate of the residual u, associated with =z .
It amounts to applying the coefficients [Vz V?%] = (Euzuf)(Eu_u:)'l in

the multivariate regressions of u, on u to the estimated residuals

G. in the regression modél (2.4). The estimator (2.6) requires using the

covariance matrix of the regression residuals. We suggested imposing some

autoregressive structure to the process generating u and estimating the



structure by using the observed residuals U, . The estimate of the covariance
matrix V__ can be used in (2.10) to obtain a new set of residuals u_ ,
and the process can be iterated.

Using (2.5), (2.6) and the second equalities of (2.9) and (2.10), one

finds the vector of estimation errors to be
- - =1 -
2-2z= [(xz-vz.v_%x.)(x.vfx.) lX.+Vz.]V.].'u. -, (2.11)

From (2.11), the covariance matrix of estimation errors follows.

= (v - -1 T N T |
Cov(2-z) = (X -V, V "X )(X'V X)) X=XV 'V ) (2.12)

+ v v viy )
4’ 2 "_'Z

The first component of the error covariance matrix is due to the error in
estimating sz by xzé . The second component is due to the error in esti-
mating u, by regression on u, , with sz denoting Euzu; .

The estimator (2.6) is fairly general. It is applicable whenever the
assumptions underlying'the regression models (2.1) and (2.5) are approximately
valid and there exists a set of observations Y. = Cy which is a given linear
transformation of y . The related series X may consist of dummy variables,
lagged values or future values of some related variables, and trend variables.

It may merely consist of the single dummy variable 1, which serves to estimate

the mean of the series.



3. APPLICATION TO THE PROBLEM OF MISSING OBSERVATIONS

In the problem of missing observations posed by Doran [2], monthly
observations on the time series are available in a later period but only
quarterly observations are available in an earlier period. In the framework

of our estimator, the observed series can be written as

y = CY = 4 (3.1)

where the matrix R has the form (2.2) for a stock variable and the form
(2.3) for a flow variable. By choosing the matrix C as given in (3.1),
our estimator applies to his problem.

However, Doran [2] prefers to deal with the problem when no related
series are allowed. We consider this to be a highly artificial situation
because there are likely to be some related series, including dummy variables,
which can usefully serve as regressors. The least that one should do is to
use a single dummy variable identically equal to one; its coefficient gives
the mean of the time series. Doran assumes that the mean of the series is
known to be zero, so that even the regression intercept is dispensed with.
Although we believe that the assumptions of having no related series and of
zero mean for the series to be estimated are not very useful, we will consider
our estimator under these special assumptions and show that it will have
a smaller error covariance matrix than the estimator proposed by Doran.

When the only regressor is the dummy variable 1, the estimator (2.6)

becomes



-
1
1
A . ~ -1 A
2z = B + [vz.v..]u. (3.2)
1
g
where the estimated mean is
B=(zvi)hHrtly (3.3)
ij ij )
with v?? denoting the i-j element of V?% , and the estimated vector

of residuals is

B
1

ﬁ. =y - | é . (3.4)
1

When even the mean is éssumed to be zero, the vector B in (2.1) is a zero
vector, y is identical with u , and y, and u, are also the same.

For the problem of missing observations defined by (3.1), our estimator is
reduced to

s _ -1
z=[v, V. ly, (3.5)

or



-1
y; = [By,y;  Ev,y)l (By, vy By Y| [¥p, (3.6)
EY ) EY,¥; P
-1
= [VllR V121 valR RV, , Ry,
Vo R Va2 Y5
where Vij denotes Eyiyj (i,3=1,2) .
Utilizing the well-known partitioned inverse
(3.7)
RV..R° RV i (Rv, Rt -y, .&") trv. vi:
11 12 1.2 1-2 12 22
P -l - - -l = -l Pl - -1 -l
V1aR Va2 Va2Vp R (RV) ,R%) Vaz * VoV RT(RV) LRY) TRV, V.,
where V1-2 denotes the covariance matrix of the residuals of the regressions

of Y, on vy, i.e.,

-1
Vie2 = Vi1 T VioVaaVar ¢

1.2 11

we rewrite the estimator (3.6) as

-~ - a-l - P
§, =V, R®RV, RI Ty, + [I -V, RRV, R

(3.8)

v, vl (3.9)

12°22¥2



-10-

From (3.9) we obtain the covariance matrix of estimation errors.

=1
) va.z] (3.10)

Cov(§,-y,) = [T - V) ,R*(RV, R)T'RI v , [T - R*(RV, R

')'le .

=V, -V, R(RV 1.2

1.2 7 V1.2 1.2R
The expression (3.10) could also be derived from the second component of
(2.12) using the partitioned inverse (3.7).

We conclude this section by showing that the error covariance matrix
(3.10) of our estimator (3.9) is smaller than that of any other estimator
which is a linear combination of Y. and Yy, - Let an alternative esti-
mator be written as

(3.11)

-1 ' -1 -1
*t = - L - - »
v} [Vl.zR (RV1.2R ) + Bl]Ryl + {1 v1_2R (va_2R ) R]V12V22 + Bz}yz

Its error covariance matrix is

E(yi-yl)(yi-yl) (3.12)
= {[I -V, _R°(RV R’)-lR][-I v v'l] + [B.R B} v v x

1.2 1.2 12722 1 2 11 12

Va1 Va2

{[-1 Vv v'll‘[I - R*(RV R‘)'lnv ] + [BLR B.]"}

12722 1.2 1.2 1 2
= Cov(yl—yl)4-[BlR B2] V11 V12 R Bl

v v B.

21 22 2
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“lpy 1.

- x-v 1.287) RV L,

P -1 L4 L »
) "R]V, ,R’B B.RV, [T - R7(RV

2R (RV 2 1 1

1. 1.2R

Since tbe last two terms of (3.12) are zero, the error covariance matrix
of the alternative estimator exceeds Cov(§l-yl) by a positive definite
matrix. Although our estimator was derived from minimizing the trace of
Cov(§l-yl) » it has the smallest covariance matrix among all linear functions

of Y. and Y, .

4. COMPARISON WITH DORAN'S ESTIMATOR

In this section, the estimator of section 3 will be compared with the
one proposed by Doran [2] in terms of the method of derivation and of effi-
ciency. We seek an unbiased estimator 91 which is a linear function of
both Y. and Y, and has the smallest expected sum of squared errors.
By contrast, Doran tries to find a linear function yi of Y, alone which
will have the smallest expected sum of squared errors, subject to the restric-

tion that Ryi = Ryl =y (In Doran's notations, x and y stand for

1. °
our vy, and Y, respectively, his estimator being denoted By x , with
RE=RXx=cCc .)

Formally, under the assumptions of having no regressors and of zero mean
for y , we seek y, = Ay = Alyl_ + A2y2 which minimizes ¢tr E(Yl-yl)(yl-yl) .
The outcome of this minimization is the estimator (3.9). Doran also minimizes

-

tr E(yI-yl)(yI-yl) but confines his estimator yi to be a linear function

of Y, alone, subject to the restriction Ryi = ¢ . The resulting estimator,
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given by his equation (2.9), is

-1 -1 -1
* = 4 L - » »
Y} = R7(RR) 7y, + [I - R7(RRY) "RIV,,V oy, - (4.1)
Using (4.1) we find the covariance matrix of estimation errors to be
Coviy*-y.) = [I - R*(RR") IRIV, _[I - R” (RR”) "1R] (4.2)
141 1.2 ‘

As we have shown at the end of section 3, our estimator has the smallest
error covariance matrix among all estimators which are linear combinations
of ¥Yy. and Yy, - Since Doran's estimator (4.1) turns out also to be a
linear combination of ;. and Yy o it must have a larger error covariance

matrix. By (3.12), this covariance matrix exceeds ours by

(B)R By} Vi, V| |R°B] (4.3)
Va1 Va2 B2

where, by comparison of (3.9) and (4.1),

R*(RR) L - v R (RV

=1
1 ) (4.4)

w
[

1.2R

4y 1g - R‘(RR’)'lR]v v,

R7(RV 12V22

B, = V5.5 1.2R

Therefore, the excess (4.3) of Doran's error covariance matrix is
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*e - o -
Cov(y1 yl) Cov(y1 yl) (4.5)

-1 . -1 . romey 1
R*) RV, , - R*(RR") 'R

P - - P -1 P
[V, ,R*(RV, ,R") 'R - R*(RR) RV, ,IR"(RV, ,

4-1 » 4-1 P l-l
R*) TRV, , + R*(RR) "RV, LR*(RR") 'R

V. oRT(RV,

1 2

1l 1l

- V. LR(RR) TR - RY(RR) TRV,
The expression after the second eéuality sign of (4.5) could have been obtained
by subtracting (3.10) from (4.2). The expression after the first equality

sign of (4.5) was obtained by rewriting the positive definite matrix (4.3).
(4.5) is zero if and only if R is an identity matrix (in which case the
problem of missing observations does not arise), V1_2 not being an identity

matrix. (4.5) is also zero if and only if V =1, provided R$ I .

1.2
The above theoretical analysis may explain why Doran's estimator performs

poorly as compared with some simple estimators according to the sampling

experiments reported in his paper [2]. As it was stated explicitly in our

paper [l1], we chose not to constrain our monthly estimates to be equal to

the observed monthly data every three months in the case of interpolation,

or to sum to the observed quarterly data in the case of distribution. Rather

we tried to find a best linear function of all the observed data in the sense

of having a small error covariance matrix. It was shown that the resulting

estimator satisfies the above constraints. By premultiplying (3.9) by R,

we can easily see that the constraint R§1= Y. is satisfied. By imposing

this constraint but considering a linear function of only a subset v, of

the observed data, one loses efficiency as we have described.
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Both papers [1] and [2] contain methods for dealing with the unknown
covariance matrix V , developed from treating the data in the time domain

or the frequency domain. These will not be repeated here.
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