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ON THE CONTROL OF NONLINEAR ECONOMETRIC

SYSTEMS WITH UNKNOWN PARAMETERS

Gregory C. Chow*

An approximate solution, based on the method of dynamic programming,
is provided for the optimal control of a system of nonlinear structural egua-
tions in econometrics with unknown parameters using a quadratic loss function.
It generalizes the methods previously proposed by the author for the control
of a nonlinear econometric model with constant parameters and of a linear
econometric model with uncertain parameters. It is an improvement over the
method of certainty equivalence which replaces the unknown parameters by
their mathematical expectations and utilizes the solution for the resulting
model. Since the solution is given in the form of feedback control equations,
many of the useful concepts and techniques developed in the theory of optimal
feedback control for linear systems are now applicable to the control of
nonlinear systems using the method propoéed, including the calculation of
the expected loss of the system under control by analytical rather than Monte

Carlo techniques.

l. INTRODUCTION

In this paper, I present an approximate solution to the optimal control
of a system of nonlinear structural equations using a quadratic welfare loss
function when the parameters of the system are unknown. This is a generali-

zation of the solution given in Chapter 12 of Chow [2] for the control of
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nonlinear econometric systems with known parameters. It is also a generali-
zation of the solution given in Chow [1] for the control of linear econometric
systems with unknown parameters. It applies the method of dynamic programming
to solve an optimal control problem involving a nonlinear econometric system
with unkown parameters.

This paper advances the state of the art in the control of nonlinear
econometric systems as it improves upon the certainty-equivalence solution
which is obtained by replacing the random parameters in a system by their
mathematical expectations. It provides for a set of numerical feedback
control equations based on a system of nonlinear structural equations in
econometrics. It will show that many useful analytical concepts and tools
developed in the theory of control of linear systems are indeed applicable
to the control of nonlinear systems. Furthermore, in the derivation of an
approximate solution using the method of dynamic programming, it will indicate
precisely where the approximation takes place and why an exact solution is
difficult to achieve.

In sectioﬁ 2, we set up the control problem and provide an exact solution
to the optimal control problem for the last period. In section 3, we'gi&e
an approximate solution to the multiperiod control problem using dynamic
programming. In section-4, the mathematical expectations required in the

solution of section 3 will be evaluated approximétely to simplify computa-

tions. Section 5 contains some concluding remarks.



2. AN EXACT SOLUTION TO A ONE~-PERIOD CONTROL PROBLEM

The t-th observation of the i-th structural equation is written as
(2.1) Yip = @i(yt,yt_l,xt,nit) ‘ (i=1,...,p)

where Vi is the t-th observation on the i-th dependent variable, Ve

is a column vector of p dependent variables, xt is a vector of g control
variables, and nit. is a vector of unknown parameferé-in equation i includ—
ing the random residual and variables not subject to control. Higher-order
lagged dependent variables are eliminated by the introduction of appropriate

new dependent variables and identities. Denoting the column vector of func-

tions @l,...,Qp by ¢, we write the system of structural equations as

(2.2) Y, = ¢(yt’yt—l’xt’nt)

where nt consists of ni as elements. 1In this section and the following

t

is available after the

we assume that a posterior density function for n.

system is observed for certain periods. We further assume that,‘when we look
ahead in the calculation of the optimal decision X, for the first period

in a T-period control problem, we ignore the possibility of learning further

\

about these parameters.

To apply the method of dynamic programming to solve the T-period control

problem having the loss function.
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where a, are given targets, and Kt are known symmetric positive semidefin-
ite matrices, we first consider in this section the decision problem for the
last period T , given all information available at the end of periocd T-1 .

Note that the vector X is imbedded in the vector v, so that the loss

function (2.3) has only y, as arguments. In the last period, the problem
is to minimize with respect to X the conditional expectation (on all infor-

mation available up to the end of T-1 ) which is assumed to exist:

= ' - ' ' = [ _ ' .
(2.4) Vo = Ep_g (VpRp¥p = 2yKpas + agkpan) = B o (ypHpyy = 2vghy + cp)

where, for ease of future generalization, we have defined

= . = . = a!
(2.5) H K ; hT KTaT i Cq aTKTaT"

The expectation in (2.4) is taken over the random vector N

on which yT
depends according to (2.2). The vector YT—i is taken as constant.
The one-period optimization problem just described can be solved exactly,

at least in principle. Given any x the probability distribution of Yo

T r
is induced by the probability distributions of Ny by the use of (2.2).
If the nonlinear function ¢ is complicated, the distribution of yT may

be difficult to express explicitly, but it can always be evaluated numeri-

cally, at least by Monte Carlo techniques. Similarly, the expectation of



the quadratic function (2.4) of Yo can also be evaluated. This expectation

can then be minimized with respect to x_ by some numerical method. The

T

solution §T will depend on Yoo - If this dependence can be expressed

explicitly, we can eliminate X, as an unknown in the optimal control prob-
lem for the last two periods T and T-1 , and reduce the two-period problem'

to one involving only one set of control variables Xn_1 using the method

of dynamic programming. If this dependence is not explicitly expressed, one
can hardly solve the two-period optimization-problem using a closed-loop
strategy. It would be possible to find an optimal strétegy among the "open
loop" policies which specify both Xp_q and X simultaneously at the begin-

ning of T~1 , since the expectation

T

2. ’ ' - ' t
(2.6) Ep-al tZT_l(ythyt 2 ikeag o adkay)]

can in principle be evaluated as a function of X0 1 and X - However,
the truly optimal strategy for the last two periods is of the closed loép .

form; it allows for the choice of x sequentially after the outcome vy

T T-1

at the end of period T-1 is observed.

Therefore, to solve.a multiperiod optimal control problem, it is desirable
to express the optimal policies Xy for later périods as functions of the
initial conditions Yeq To do so, some approximation is required. Even
for a one-period problem, an approximation would be useful because an exact
solution as described in the last paragraph can be very costly. To derive
the distribution of Yo froﬁ the distributions of Np using Monte Carlo

methods, one may have to sample many times from a distribution invelving



many random variables, and, for each sample of n some numerical method

T
such as the Gauss-Seidel has to be applied iteratively to obtain a numerical
solution for Yo . Ip this section, we will give an exact solution to the
one—period control problem. In the next section, we will introduce app:oxi—
mations to the solution of the multiperiod control problem.

To obtain an exact solution for the minimization of (2.4) we differen-

tiate with respect to X and interchange the order of integration (or taking

expectation) and differentiation, reéalling that the expectation is over the

random vector nT » given ygn 4 and xT :

_é_ 1 ' ‘
(2.7) 8%, Ep_qy (pHpyq = 2vghy + o)

- 9 o ol
= Ep g 5%, (YHpYy = 2Yphy)

A Byi
=_2ET_l 3;; (Hyy, = hy) =0

where the chain ru;e of differentiation has been applied, and Byé/axT denotes
the ¢ x p matrix of derivatiﬁes of the p elements of Yo with respect
to the g elements of Xp - The solution x& satisfies the last equation
of (2.7).
Tt will be useful to write the solution in a different form for future

use. Define §T as the solution of

~

. . . .
(2.8) YT = Q(YTI YT_lr XTI ﬂT)



for the given y;_l and some X is a function of the random vector

v Yp
np as given by (2.8). Perform a first-order Taylor expansion of (2.2) about

~ o

yT ' yT_l , and xT :
(2.9) Yo * Yq ¥ Byp(¥q = Yg) + Byn ¥y g = ¥p_g)' * BypXg = %)
where
, El) a9
(2.10) BiT=g£= (5—1-...5—2) ;
YT YT YT
LN 3!
B! = ——— ,:; B! = —;
27 ByT_l 3T axT
B ~ [+ ~
and all derivatives of @ are evaluated at Yo 1 Yopoq and Xm and are
functions of nT . The reduced form of the linearized structure (2.9) is
2. = + +
(2.11) Yo = Bp(np)yg o + Cplng)x, b, (ng)
where
(2.12) A (n) = (1-8)"t8
: i p) TN Y
C(n) = (I-8,)"'8
Al L i’ Far

) =5 -~ A_ys
by, (g Yp = Sq¥poy T



Using the linearized model (2.9) or (2.1l1), we can express the solution of
the last equation of (2.7) for X in an iterative form.

An iterative solution of (2.7) is as follows. First, start with some

~

xT , and define the random function §T by (2.8). Second, use the linear-

ized random function (2.9) to replace Yo in (2.7) by the right-hand side

of (2.11),
' X -t -
(2.13) ET_l[cTHT(ATyT_l + CoXy + by - Cehpl =0
and solve the resulting equation for X s yielding
- -1
.4 = - 1 1 ] -
(2.14) Ap (Bq_ CqHigCp) 1By CpllpAp) Vo g * ET—lCT(HTbT hy) ]
= +
Cp¥p.1 ¥ 9p
where
_l .
2. = - 1 ]
(2.15) o (Ep_1CqlpC) ~ (Bq_1Colipdn)
g = - (E, ,C!HC )_l(E C'H 5 -E_ .C'h)
T T™=1"TTT T-1"TTT T-1"T'T
~ [~} ~
Third, evaluate X by (2.14) at Yoop = Ypo1 and use this value of X

as ;T in the first step. Repeat these three steps until X converges.

We claim that if the above iterative process converges, the resulting

;T is an exact solution to (2.7) or to our one-period optimal control problem.

This claim is justified if, at convergence, the Yo satisfying the linear



~

function (2.9) or (2.11) is identical with the Yop satisfying the original

nonlinear structural equation (2.8). When x_, = x and vy = yo the

T T T-1 T-1 '

linear equation (2}9) is reduced to

~

(2.16) YT = YT + BlT(YT - YT)

or (r - BlT)yT = (I - BlT)YT '

~

implying Yo = Yoq o provided I - B is nonsingular. Thus, at convergence

1T

of our iterative procedure, the Yoo given by (2.9) or (2.11) is identical
with the §T given by the nonlinear equation (2.8),band our method provides
an exact solution to (2.7).

bThe reader will have noted that the expectations involvéd in the compu-
tation of GT and gT by (2.15) can be difficult to evaluate numerically.
The matrices AT and CT can be complicated functions of the random variables
N - We have written the solution to the one-period control problem in the
above form to facilitate its generalization to the multi-period case by suit-
able approximations. Leaving aside the problem of evaluating the expectations
in (2.15) until section-4, we proceed in section 3 to obtain an approximate

solution to the multiperiod control problem by the method of dynamic program-

ming.

3, AN APPROXIMATE SOLUTION TO MULTIPERIOD CONTROL BY DYNAMIC PROGRAMMING

We utilize the feedback control equation (2.14) for ;T . Note that

o
=y since it

T-1

this equation provides an exact solution only when Yoo



-10-

was derived by using the linear approximation (2.9) or (2.10) for (2.8) and

the linear approximation is exact only when vy « All the deriva-

- [+]
-1~ Yp-1

tives in the matrices AT and CT are evaluated at Yooy For

— o°
Ypo1 -

other values of vy other than y;_l , the solution (2.14) is only approxi-

T-1
maﬁe as a consequence of the linear approximation (2.9). However, we néed
this approximately optimal feedback control equation to eliminate X in
order to carry out the dynamic programming solution.

Substituting the right-hand side of (2.14) for X in (2.11) and the

result for Yo in (2.4), we have the minimum expected loss for the last

period

>

(3.1)

<
L]

' .
Bpop [ + CoGp)yy o + by + Crgp] Hi[A, + C Gy, + by

= 2Ep g L(Bg + CpGplyg g + by + Cpgpl by +

' 1
Ypo1Bpoy (Bp + CpGp) Bp(Bp + C Gy

+ 2y! ' -
2yT_lET_l(AT + cTGT) (HTbT hT)
+ ' |
Bp_q (bp * Cpap) "Hy by, + Crg,p)

]
- 2ET_l(bT + CTgT) hT + cT .

~

VT is exactly the minimum expected loss for period T only if Vo1 = y;—l

in which case the linear approximation (2.9) to Yoo is exact. We will use

(3.1) to approximate the minimum expected loss and treat it as a quadratic

+
CTgT]



-11-

function of Yoop - Since y;_l is unknown before the end of period T-1 ,

(-]

we will have to perform the linearization (2.9) about some guess of Yopp

realizing that the matrices AT and CT of the resulting derivatives will
be affected by this guess.

We proceed to include the period T-1 in our optimization problem.
By the principle of optimality in dynamic programming, we minimize with res-

pect to x the expression

T-1

- 1 - [ '
(3.2) Voeor = B W 1 Kp ¥y = ¥ g¥pogpey o apoKpi20g

+ VT)
since the optimal policy xT for the last period has been found and incor-
porated in GT . Substituting the quadratic function of Yo, @s given by

(3.1) for GT in (3.2), we have

= ' - '
(3.3) Vo1 T B WpogBpogYeoy © Wpoghpog * Opy) o

where
: v
(3.4) Ho_; = Ko g ET_l(AT + CTGT) 3T(AT + CTGT)
= t 1 1
Kp_p t ET_l(ATHTAT).+ GT(ET_lCTHTAT) )
1
(3.5) ho ;= Kpq3p.p + Ep_y Bp + C G (hy = Hibo)

v
= a +
KT--l T-1 ET-l(AT * CTGT) hT

- 1 - 1 1
ET—l(ATHTbT) GT(ET—lCTHTbT) !
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= ' ! — '
(3.6) Co_1 ET_l(bT + CTgT) HT(bT + CTgT) 2ET_l(bT + CTgT) hT

+a) .
ap_18¥pa13poy T Cp

Observe that (3.3) has the same form as (2.4) with the subscript T-1
replacing T . The steps following (2.4) can therefore be repeated to vield

the solution §T—l as given by (2.14) with T-1 replacing T . When this

solution is substituted in (3.3) and a similar approximation is used, the

minimum expected loss GT—l for the last two periods becomes a guadratic

function of Yo_, @S given by (3.1) with T-1 =replacing T . The process

continues until the approximately optimal policy X for the first period

1

and the associated expected loss Vl for the T-period policy are obtained.

Our multiperiod control problem is solved.

We will state our solution in the form of an iterative procedure con-
sisting of the following steps.

1. Choose some initial guess il paeey iT of the vectors of control variables

for the T periods. Using the econometric model, with the unknown parameters

and disturbances nt set equal to their expected values, and the abo?e values

of control variables, solve for a set of initial values y; faees y° of

T-1
the dependent variables by the Gauss-Seidel method.

2. For each period t, t=1,..., T, linearize the nonlinear model for yt

about the above values of y;_l and x as is done in (2.9), using a value

t

of n drawn at random from the given distribution. In other words, consider

t

the linearized structure
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(3.7) y. =y +B_ [y

where §t is the solution of

3. = O (y ° X
(3.8) Yo = Oy e Yo g0 X Ny)

obtained by some iterative method such as the Gauss-Seidel. (The iterations
to solve (3.8) could be saved by using y; obtained in step 1 for §t '
this value being the solution of (3.8) corresponding to the expected value

of n, . But we save the approximations and computational short-cuts for

t

section 4.) Computationally the partial derivatives Blt’ B2t and B3t are

easy to obtain. Each derivative is the change in the value of ¢ from

@(it, y;_l, it' nt) with respect to a small change in one element of its

first three (vector) arguments. Having computed Blt' B2t and B3t’ we compute
A i . .
t(nt)' Ct(nt) and bt(nt) using (2.12)
3. T i 'H C 'H A ! a ' ar
he expectations ET—lCTHT o ET-lCTHT ' ET_lCTHTbT an ET—lCT are

computed by using numerical integration or Monte Carolo methods, the latter

by averaging over repeated random drawings of nT in step 2. Compute GT

and I by (2.15) and obtain the optimal §T associated with y;_l by

(2.14) . Replace X by this §T and repeat step 2 for period T and step 3

T

~

until Xq converges. As we have pointed out in section 2, the solution ;T

is optimal for the last period, provided that the initial condition is indeed

Ypo1

4. Using the expectations E C'HC , E

1 T
o1 B Co HA , E __C'HDb , E

T—lCT T T T-1 T T T B

Al
T-1 T TT
and E

T_lA&‘HTbT and the feedback control coefficients GT in step 3, we

compute H and hT_

-1 1 can be applied

by (3.4) and (3.5) respectively. HT-l
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to evaluate the expectations etc., as in step 3 and to

1
ET—2 T—lHT—lCT—l'

compute ﬁ r G

-1 -1 and Io_1 by (2.14) and (2.15), with T-1 replacing
T . This Xp1 will replace Xno1 and the process is repeated until Xn_q
converges. Essentially, in step 4 so far, we utilize the HT_l and hT__l

obtained from the results of step 3 in order to repeat step 3 for T-1. The

~

solution will be an optimal x associated with the given y;_z

T-1 . Similarly,

we can utilize the results of step 4 thus far to obtain H and h

T-2 T-2

in order to repeat step 3 for T-2. The process continues backward in time

until il is obtained.

This solution for il would be optimal if the erl in each future
period t were the true value to be realized. Insofar as the future y's
are not known exactly because of the uncertainties in our model, the solution

is only an approximate one. However, this solution improves upon the certainty

equivalence solution. One version of the certainty-equivalence solution

i ' . ' c ., where C, is the
amounts to replacing Et—lCthCt’ etc., by thCt’ etc ., £
expected value of Ct . An even cruder version would replace Et—lcéHtct by
v - s — .
Ct(nt)HtCt(nt) where Ct is evaluated at the expected value nt of nt :
Since Ct is a nonlinear function of nt ' C(ﬁé) is not the same as E£ .

Our solution takes into account the uncertainty in the parameters by evalua-

. . . .
ting the appropriate expectations Et—lCthCt' etc.

5. If our solution deviates from the truly optimal because the initial value

y;_l used in the linear approximation for each future period is not the

true one, we can improve upon these values by recomputing them in step 1

~

using the nearly optimal feedback control equations xt = tht—l + gt ob-

tained in the above 4 steps for the given y;_l . Given y; , we compute
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X by its feedback equation. The nonlinear model is solved for yi , with

nl = nl . Given y; , we compute x, , and so forth. The steps 1 through

2
4 can be repeated to yield a new set of more nearly optimal feedback control
equations. And another round of computations will generate another set.of
feedback control equations using the previous set to provide initial values

in step 1.

6. The minimum expected loss associated with any set of nearly optimal feed-
back control equations can be computéd by our method. The method as described
by equation 3.1 throughbthe paragraph following equation 3.6 carries with

it the minimum expected loss Gt for all future periods from t onward.

Each Vt has the same form as (3.1) with t replacing T . The total ex-

pected loss for T periods is given by V

1 - It can be computed by applying

(3.1) and using (3.6) to compute backward in time until c¢ is acquired.

“e-1 1

Our method has been derived and described computationally. In the process
of describing it, we have contrasted it with the certainty-equivalence solu-
tions (in step 4). We have also found that the method yields linear feedback
control eguations which are useful in the analysis of macroeconomic policies
using an econometric mode; as more fully discussed in Chow [2]. vThevminimum

expected loss associated with fhe approximately optimal policy can be analy-

tically computed.

4., APPROXIMATE EVALUATION OF REQUIRED EXPECTATIONS

In section 3, and step 3 in particular, the expectations Et_lC%_HtCt '

etc., are evaluated by Monte Carlo techniques using random drawings of n, -

This approach can be very costly, and the gain in accuracy may not be worth

the cost. We stated that approach in section 3 partly to single out the



only source of approximation errors in our method, namely, that of using
an inaccurate value of y;_l in the linear approximation of the noniinear
structure at each stage of the dyhamic programming solution. = Otherwise, the
method described in section 3 would be exact. In this section we introduce
a sécond‘source of approximation errors which may be tolerable'for the séke
of economy.

Let us rewrite the required expectations in a moré streamlined notation.

Denote by Ht the p by s matrix
(4.1) . I =(, Cc,_ b))

so that the required expectations t lCthCt , etc., in step 3 of section 3

are submatrices of

(4.2) (HthHt)

Denote the s columns of I by ﬁl,...,ws and the column vector consisting

of these columns by 7 . We suppress the subscript t when understood.
If Q is the covariance matrix of w , and T is the mean of T , we have
pugpny] pegpag
ﬂlﬂ .o ﬂlﬂz Qll ‘e le
(4.3) Erq' = ' 4+ Q = e e + ... .
T o...TT .o
Ts™y s's Qsl st
S P Jore -

The i-j element of (4.2) is, with t suppressed,
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' ' ‘ = ]
(4.4) (EIL H]'[)ij EwiHﬂj E tr (Hnjwi)

tr HEw.7! = w,Hm, + tr HQ.. .
ji i ji

Therefore, once the mean T and the covariance matrix Q of. 7 are known,
the required expectations in (4.2) can be computed by‘(4.4).

We will now provide an approximation to T and Q assuming that the
econometric model consists of a set 6f constant; but unknown parameters. 0

and a vector of random residuals €, . Thus

£ consists of 6 and e, ;

Ny t

n in equation (2.1) consists of Oi and € This assumption applies

it it °

to most econometric models encountered in practice. We also assume that

a point estimate 6 of 6, a covariance matrix V of the estimator é '
andva covariance matrix .S of the residual vector €, bare éll available

by applying classical estimation methods. Here a change in philosophy £rom
the Bayesian to the classical point of view may be adopted. Rather than
treating the unknown parameter 6 as random, and consider Ve in (2.2)

as induced by the random 6 , we replace 8 (part of nt) in (2.2) by é

and consider the resulting estimated model which generates a random vector

;t from the random estimator. é and the residuals Et . The control problem
is to minimize the expectation of a quadraticlfunction in ;t thus defined.
This viewpoint is explained in Chow [2, p. 243]. Without adopting the above
classical viewpoint, one may consider the classical point estimate é and
its covariance matrix V as approximations to the mean and covariance matrix
respectiveiy of the Bayesian posterior density of 8 . These approximations

are valid when the classical estimation method employed is maximum likelihood

and the Bayesian posterior density is derived from a diffuse prior density.
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In this case, the likelihood function is proportional to the posterior density
and its maximum may be close to the mean value of the latter density.

To derive the mean vector = and the covariance matrix Q of 7 required
in (4.4) from the mean vector and the covarianée matrix of nt (which includes

8 and et) we use a first-order approximétion of the function T of N, -

Let the partial derivatives of ﬂt with respect to Ne be represented by
the matrix
» o,
(4.5) D=(§-r-1-l—t)
t jt
Each element of this matrix, evaluated at N, = n. , can be computed numeri-

t t

cally as the rate of change in nit , an element in Ht = (At Ct. bt) ’

with respect to a small change in 7.

it Once D, is found, -the covariance

t

matrix Qt of T, can be approximated by

=- "
(4.6) Qt DtWtDt

where W, is the covariance matrix of n having as submatrices the given

t

~

covariance matrices of © and E¢ - The mean vector T can be approximated

A

by the value of 7 associated with ng i this approximation can be improved
by averaging a sample of T7's computed from random drawings from the distri-

bution of n This completes our description of the approximate evaluation

£ *
of the required expectations.

Before closing this section, it is useful to point out that if there

exist exogenous variables =z not subject to control, they can be treated

t

as a subvector in nt . Our treatment of nt allows for the possibility of
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treating z, as random but having a given distribution. The randomness
in Z, generates uncertainty in the dynamic system in the same way as the

randomness in the other parameters. If z, were regarded as fixed, it is

a degenerate random vector; it only affects the mean vector of T in our

model without contributing to its variances and covariances.

5. CONCLUDING REMARKS

A method is proposed for obtaining an appréximaté solution to the dptimal '
control of a nonlinear econometric system with uncertain parameters; It
results from applying the method of dynamic programming. It provides a set
of approximately optimal linear feedback control equations. These equations
can then be used to study the dynamic properties of the system under control.
Insofar as the method is'a generalization of the theory of optimal control
for linear systems under uncertainty, many of the useful results and concepts
from the linear thedry can be applied to the nonlinear case. For example,
the comparison in Chow [1] of the optimal feedback control equations and the
associated expected welfare loss under uncertainty.with the corresponding
results under the assumption of constaﬁt parameters is valid for'noniinear
systems.

‘As a generalization of the method of Chow [2, Chapter 12] for dealing
with nonlinear econometric models with giﬁen parameters, the method of this
paper is computationally not much more difficult. The main complication lies

— 1] —
in the computation of ECLHC etc. in place of C(nt) HtC(nt) , etc. in

t ’

the certainty case. As we have pointed out in section 4, this amounts to

calculating the derivatives of the elements of Ht = (At Ct bt) with res-

pect to the elements of n_ , and applying the matrix of these derivatives

t
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to form an approximate covariance matrix of the elements of Ht . These

calculations are by no means difficult using the computers available today.

The method ofichow [2, Chapter 12] for the control of nonlinear systems
with known parameters, which is identical with the method of this papervexcept
for the use of C(ﬁé)'Htc(ﬁ;) etc., has been programmed, the Fortran code
being available at the Econometric Research Program of_Princeton University.
The limited experience available indicates that the method is not expensive
to use. For example, controlling the Klein-Goldberger model with 23 struc-
tural equations for 5 periods with 4 targets and 4 instruments using the
Fortran source deck takes 32.7 seconds on the IBM 360-91 computer at Princeton
University ({(costing the user $14.35). The program pfovides not only the

linear feedback control equations for each period but all the matrices At ’

Ct and bt of the line;rized reduced. form at each time period and for each
iteration until convergence, the expected welfare loss, and the graph of the
expected time path of each of the 27 (23 plus 4 control) variables. It took
three interactions in the sense of thrée rounds of the initial values of the

~

control variables %X, as described in section 3. Thus the incorporation
of uncertainty by evaluating the required expectations should not bevcompu—
tationally prohibitive. If oné does not treat all the parameters in a very
large econometric model as random, the method'of this paper can be applied

to incorporate uncertainty in a subset of parameters {(the remaining ones

being treated as fixed), and to study the effect of uncertainty on the optimal

control'policies.
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