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A NOTE ON THE DERIVATION OF

THEIL'S BLUS RESIDUALS

Gregory C. Chow*

In two papers the results of which are summarized in his Principles of

Econometrics [1, Chapter 5], H. Theil has proposed a best linear unbiased

(BLU) estimator of the residuals in a standard linear regression which has
a scalar (S) covariance matrix (of the form GZI). Theil's proof in the
form of seven Lemma's [l, pp. 209f213] and other related theorems appears
complicated and can be further motivated. This note provides a simple con-
structive proof of the BLUS residuals.

‘To set up the problem, consider n observations of a regression model

with k explanatory variables

(1) y =XB +¢
where Eee' = Icz . For a linear estimator Cy +to be unbiased, we have
(2) E(Cy) = EC(XB + €) = CXB = 0 ,

which implies

(3) CX =0 .
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It follows from (3) [1, p. 207, Theorem 5.5] that the linear estimator can

be written in three alternative: forms
(4) Cy = Ce = Ce

where e is the vector of residuals by the method of least squares

(5) e = [I - X(X'X)_lX']e .

In order for Cy = Ce to have a scalar covariance matrix

() E(Cee'C') = CC'cr2 = 102 ,

we require

(7) ' cc' =1 .

The restriction (3), with X having k columns, is a set of k linear
restrictions on the columns of C . Therefore, the rank of C cannot exceed

n-k . We thus let C be an (n-k) x n matrix and Cy be an estimator

of only h-k components of € . Accordingly Theil partitions model (1) as

il
+

(8) = +



with Xo being a nonsingular kxk matrix and X being an (n-k)xk matrix.
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The linear estimator can be written as

(9) Ce = Ce  + Ciey v

, =1
N~ - . i ' ! = = - =
Cl being (n~k)x(n-k) Using Xoeo + Xlel 0 , we have e, (XlXo ) ey
' -1 . _ =
z e1 , where 2 = Xlxo . Further using Coxo + Clxl = 0 , we have Co =
_'l
—clxlxo = —ClZ . (9) thus becomes
- - -7t - ]
(10) Ce ( ClZ)( Z el) + Clel Cl[I + 22 ]el .

The constraint (7) for a scalar covariance matrix yields

t | J— tet | - L Yo LIS
(11) coco + clcl clzz c1 + clcl Cl[I + 77 ]cl I

The linear estimator is alternatively written as

(12) Coeo + Clel = —ClZso + Clel .

The vector of errors in using (12) to estimate € has a covariance matrix

- Cl] .

- - = 2 v ] -
(13) Cov ([ ClZeo + (Cl I)sl] =g [Cl(I + 7% )Cl + I C1 1

To find the matrix Cl in the estimator (10) which minimizes the trace
of (13), following Theil's definition of being "best," subject to the constraint
(11) for a scalar covariance matrix, I would propose to ‘form the Lagrangean

expression



= ] ] - - t - 1 [
(14) L tr[Cl(I+ZZ )Cl + I vCl Cl] tr M[Cl(I+ZZ )Cl 1]
where M 1is a symmetric (n-k)X(n-k) matrix of Lagrange multipliers, and
differentiate with respect to Cl . Using the differentiation rule

otr (AB) /9tr (BA)/5A = B' , we have

(15) oL = 2C, (I+2Z2') - 2I - 2MC. (I422') = 0
BCl 1 1

To solve equations (15) and (11) for the two unknowns Cl and M , we post-

multiply (15) by Ci and use (l1ll) to obtain
- - '

(1l6) M=1I-¢C; .

Substituting (16) for M in (15), one gets
' 1y =

(17) ClCl(I+ZZ ) I.

Since Cl is symmetric because M in (16) is symmetric, (17) implies C

(I+ZZ')_1 or

(18) c, = (I+zz')'l/2

which is the solution. Theil has written the solution in the form of C1 =

PDP' where P is a matrix consisting of the characteristics vectors of

(I+22') corresponding to the roots dzz

2

, D haVing diagonal elements di
and (I+22') = PD “P'. The reader may consult Theil [1] for further treatment

of this topic.
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