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1. Introduction

Consider the estimation of any or all the equations in a system given by

y., = £, (¥, ,6.) + u, i=l,...,g9 (1-1)
it it it’ i it t=1,...,T

where 1 indexes equations and endogenous variables, t indexes observations,

Vi and u,, are random variables, Yit is the vector of random variables
reeosY. . ... , i f . -

vy 'yl-l,t'y1+l,t' 'ygt) and 6, is a vector of parameters. Two

stage least squares estimators for ei have been suggested in [ 3] and [ 4]

for systems nonlinear in the variables but linear in the parameters. The
suggested approach estimates ei by first regressing the endogenous functions
appearing on the right hand side of (1-1) on some polynomials in the
exogenous variables and using the predictions for these endogenocus functions

. . . . - 2
from the first stage in a second stage in which Z(y. - £, (Y, _.6.)) is

£ it it it i

minimized; a procedure analogous to TSLS in the linear case. For general
nonlinear systems, Amemiya introduced the general nonlinear two-stage least

squares estimator [ 2]. Writing Yy and fi for the vectors containing

) and £, as elements, 2Amemiya's class of estimators is obtained by find-
ylt it

ing the Gi that minimizes

1 ' —ll - -
(y;=£;)'D(D'D) "D (y, £, ) (1-2)

where D is a matrix of suitably chosen constants. Various members of the
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class are obtained by defining D in alternative ways. Possible choices for
D are (a) D = X , the matrix of exogenous variables in the entire system of
equations. This yields what is called the standard nonlinear TSLS estimator
(SNTSLS). (b) D = E(Bfi/ae)' » which is denoted as the best nonlinear TSLS
(BNTSLS) estimator. Other possibilities are (c) to employ as the columns of

D not only the columns of X but also higher order polyndmials of these
columns. Depending on the degree of the polynomial, these estimates will be
referred to as POLY-2, POLY-3 and POLY-4. Amemiya further devises (d) the
nonlinear limited information maximum likelihood ‘estimator which is the standard
LIML estimator (NLIML) for ei » the coefficients of the ith equation, on
the assumption that the equations other than the ith are linear and given by
Yi = XII + Vi - A final estimator of interest is (e) the modified nonlinear
LIML estimator (MNLIML) which results from the first step in an iterative com-

putation of the nonlinear LIML. It is shown in [ 1] that the asymptotic

covariance matrices cov( ) of all these estimators obey
cov (SNTSLS) > cov (BNTSLS) > cov (MNLIML) > cov (NLIML)

where cov(*) > cov(**) means that cov(*) - cov(**) is a positive semidefinite
matrix.

The purpose of this note is to examine the finite sample behavior of
several of these estimators and to compare them with the full information
maximum likelihood estimator and the ordinary (nonlinear) least squares
estimator in a particular two equation model in which one equation is nonlinear
only in variables, and the other is nonlinear in both variables and
coefficients. The estimators explicitly computed and compared are (1) OLS
which is the estimator obtained by minimizing the residual sum of squares without

attending to the simultaneity (i.e., the estimator obtained by minimizing (1-2)




with D = I) of the system; (2) SNTSLS, and other polynomial estimators where
D alternately contains lst, 2nd, 3rd or 4th degree polynomials of the columns
of X (but no cross-product terms); (3) NLIML; (4) MNLIML; (5) FIML . The
BNTSLS estimator is omitted from consideration since E(3£/00)' will often

be difficult to compute and may not even exist.

2. Description of the Model

The structural equations of the model are

+ + + = -
Yie bllogy2t bZth b3 u (2-1)

by

+ = -
Z3p¥qg Y ¥op Y bgZ, = u (2-2)

where (ult'u2t) is i.i.d. as N(O;Z) - In order to avoid difficulties in

generating observation as well as in obtaining estimates we wish to restrict

the true values of the parameters so that, for all t , there exists a unique

solution for i iti . imi i -
Yigr Yo Wwith Y, Positive. Eliminating Yy, from (2-1)

and (2-2) we have

Yor T Kppl09Y, * ky =0 (2-3)
b4 b4
where klt = —blz3t and th = ult(ZBt—bzzlt—b3) + b522t - u2t . A sufficient

. , . 1 . .
condition for our requirement is that klt >0 . This in turn requires that

<
.bl 0 and z3t

> 0 for all t . The values of the other coefficients
may be set without regard to these considerations.
In each experiment a set of values was chosen for the exogenous variables.

The latter are identical in Yepeated samples and were generated independently

It is easy to verify that if k < 0 , there will exist two solutions,

one solution, or no solution according to whether log(—klt) > ,=, or < —k2t
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from uniform distributions over specified ranges. fhe values of the structural
parameters and the ranges of the exogenous variables as well as the sample size
are given in Table 1. Each experiment or case consisted of 50 successful
replications; on some occasions more than 50 replications were necessary to
generate 50 successful ones because of computational failures.2 It is clear
from Table 1 that Case 2 is the same as Case 1 and Case 4 is the same as Case

3 except for sample size. Case 5 differs from Case 1 by having a true
correlation between U and U, of .84 rather than .43. Cases 6 and 7

differ in that selected b-coefficients have different values from Case 1.

In Case 8 the range of 2z is increased.

3. Results of Experiments

Very few computational failures were encountered in the experiments.
If the computation of any method failed for whatever reason, the sample was
discarded and a new one was generated. In nine instances, scattered over
Cases 1, 2, 5 and 6, failures occurred in computing the polynomial estimators
because a local minimum to (1-2) could not be achieved. FIML failed only
in Case 5, in which case, however it failed 32 times as a result of apparently
very flat segments of the likelihood function. Since Case 5 is the one in
which the covariance matrix of errors is (intentionally) nearly singular, this
is not very surprising. For the remaining cases the failure rate is negligible.

Mean square errors are displayed in Table 2. The superiority of FIML is
evident. Out of 40 possible comparisons (8 cases, 5 coefficients), FIML has
the lowest MSE in 31 instances. NLIML is next with 8 instances and MNLIML is
best in only one instance. No other estimator ever has lowest MSE for any
coefficient. On the other hand, FIML is worst in terms of MSE 4 times and

NLIML 13 times. As expected OLS performs badly, being worst 15 times. SNTLS is

*
See Section 3.
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worst 5 times, POLY-2 once and POLY-3 twice. Although FIML seems cléarly

best on these criteria, there is no obvious second best. NLIML is second in
the number of times it is best but it is also second (to OLS) in the number

of times it is worst, suggesting the frequent presence of outliers. POLY-4

is never best but also never worst. A somewhat similar conclusion emerges
from Table 3. For each case and each replication we ranked the estimators

in terms of their absolute deviations from the true value for each coefficient.
These ranks were then averaged in each Case over the replications and (to

save space in the table) over coefficients as well. These mean ranks are
displayed in Table 3. They are obviously robust in comparison with MSE's

and indicate that FIML has the lowest rank in every case. OLS has the worst
mean rank in 5 Cases and NLIML in 3. The differences, however, are not
staggering and even FIML is not that far ahead. In particular, the performance
of the methods other than FIML seems bunched closely together. As a final
generalization of this type we observe that higher order polynomial estimators
tend to do somewhat better than the lower order ones, as can be confirmed from
both Tables 2 and 3.

The comparison of Case 1 and 2 on the one hand and 3 and 4 on the other
reveals the expected decrease of MSE's with increasing sample size. The
magnitudes of the decreases are not uniform over estimators or coefficients but
occur even for OLS. Increasing the range of variation for either z2 or z3
substantially reduces the MSE's for the coefficients in Equation (2-1) and
increasing the range of variation of 24 also has a substantial effect on
the MSE of b4 - Reducing the true value of b4 (Case 7) has the same effect
as would reducing the range of variation of Z3 r as one would expect. The

absclute advantage of FIML over some particular alternative estimator is highly

variable, not only over coefficients but from Case to Case. Thus, for example,
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for bl » the ratio of the MSE of FIML to that of OLS ranges from .25 to .75,
whereas for b2 the same ratios range from .30 to .98.

Table 4 contains the ratios for each Case, coefficient and estimator of
the MSE to the mean over the replications of the estimated asymptotic
variance. For larger samples and consistent estimators these ratios may be
expected to be near unity. Although no rigorous test is applied to judge
closeness to one, many of the ratios are in the heuristically acceptable range
of .8 to 1.2. Notable exceptions are MNLIML, NLIML and OLS and Cases 1, 7
and 8. Coefficient b4 is particularly badly estimated in this respect.
Moreover, increasing the saméle size, as occurs between Cases 1 and 2 and
between Cases 3 and 4 improves the ratios in less than one half the cases; an
unusual result for estimators other than OLS. The fraction of cases in which
improvement occurs is just over one half if MNLIML, NLIML and OLS are omitted.
Table 5 presents the number of coefficients for each Case and estimator for
which we reject the null hypothesis that (estimated coefficients-~true value)/

msgt/?

is distributed as N(0,1) . The Table is based on the Kolmogorov-Smirnowv
test and is not altered markedly if the divisor is not MSEl/2 but (asymptotic
variance)l/2. In general, normality is rejected for MNLIML, NLIML, and OLS

but not for the other methods. The fit to normality does not improve as

sample size is increased, confirming the anomaly noted in Table 4. This

anomaly often characterizes situations in which convergence to the true
asymptotic distribution has adequately taken place for practical purposes. In

such situations increasing the sample size with relatively few replications such

as 50 may exhibit only random oscillations about the true distribution.

4. Conclusion
The various estimators examined are not massively different in performance.

On the whole




(1) FIML is the best estimator;

(2) OLS is the worst estimator;

(3) The evidence concerning the further ranking of the various estimators
introduced by Amemiya is somewhat ambiguous;

(4) The results appear to be highly dependent on the particular model
and on the particular true value assigned to the coefficieﬁts. This latter
point is well known but deserves to be stressed, for in some cases estimators
other than FIML may do almost as well as FIML but in other cases can do sub-
stantially worse. From the point of view of obtaining estimates that are
best behaved in small samples the risk-averse strategy is obviously to choose
FIML. It is clear, however, that in models of larger size than the one
investigated here the relative computational cost of FIML will rise, since the
upper bound on the number of parameters in the optimization problems involved
in the other methods is the upper bound of the number of coefficients in a
single equation. Whether an improvement in the MSE's of, say, a factor of 2

is worth it must be left to the investigator.
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FIML
SNTSLS
POLY-2
POLY~3
POLY~4
MNLIML
NLIML
OLs
FIML
SNTSLS
POLY-2
PQLY=-3
POLY~4
MNLIML
NLIML
OLSs
FIML
SNTSLS
POLY-2
POLY-3
POLY-4
MNLIML
NLIML
OLS
FIML
SNTSLS
POLY~2
POLY-3
POLY-4
MNLIML
NLIML
OLSs
FIML
SNTSLS
POLY=-2
POLY-3
POLY-4
MNLIML
NLIML
OLS

1

.8832
1.3639
1.3502
1.2022
1.1961
1.0934

©1.1222
1.6312

-0264

. 0447
.0441
.0409
.0411
.0407
.0411
.0528
6.8208
10.7255
10.6275
9.6187
9.5611
9.1149
9.3494
13.1360
0584
.06%0
.0682
.0677
.0670
.0723
.0867
-0635
.763E~3
.749E-3
.741E-3
.743E~3
.724E-3
.713E-3
.711E=3
-741E-3

2

.3948
.6317
.6553
.6631
.6996
.6979
.7278
1.5599
.0101
L0131
.0137
.0141
.0158
L0171
0177
.0340
2.7085
4.4976
4.,5906
4.7252
5.0304
5.0824
5.3162
11.6729
.0262
.0319
.0323
.0329
.0322
.0430
.0638
.0284
.449E-3
.448E-3
.447E-3
.447E-3
.444p8-3
.443E-3
.443E~-3
.4458-3

Table 2

Mean Square Errors

3

.2098
.3161
.2982
.2971
.2953
.3671
.4062
.3387
.0101
.0120
.0109
L0107
.0105
.0107
L0113
.0103
1.8543
2.9595
2.8160
2.7880
2.7577
3.3063
3.6307
3.0587
.0435
.0491
.0495
.0479
.0447
.0489
.0505
.0476
.561E~3
.565E~3
.5738~3
-582E-3
.572E-3
.558E~3
.556E~3
.569E -3

Case
4

.1670
.2125
.1858
.1875
.1916
+2638
.2887
.2230
.0074
.0092
.0095
.0095
.0095
.0108
.0112
.0102
1.3930
1.6259
1.4626
1.4810
1.5083
2.067¢9
2.2722
1.749%96
.0220
.0333
~0338

-0334

.03i6
.0332
.0360
.0276
.300E~3
.324E-3
.324E-3
.324F-3
.324E-3
.323E-3
.322E~3
.323E~3

5

.6159
1.4040
1.2573
1.0594
1.0033

.9247

.9274

.9259

.0116
- .0368

.0333

.0298

.0285

.0293

.0294

.0294
4.1895

10.2438
9.1840
7.9044
7.4461
7.1110
7.1340
7.1182

.0309

.0540

.0536

.0504

.0513

.0598

.1193

.0484

.776E-3

.832E-3

.829E~3

.826E-3

.B10E-3

.825E~3

.B89E-3

.798E-3

1
1
1

1.

6

.4440
.8661
.9352
.9084
.8137
.6676
.7564
1.2223
.0128
.0188
.0222
.0201
.0176
.0171
0177
.0264
4.8585
8.9519
9.9974
9.7204
8.5344
7.4699
B.4501
13.2451
.1099
.1486
.1401
-1356
1271
.1084
-1086
.1125
.976E-3
.056E-3
.056E-3
.068E~-3
053E-3
.971E-3
.956E-3
.001E~-3

7

3.1053
4.9628
4.5994
3.8235
3.8648
2.8141
2.7685
5.8504
.0541
.0882
.0853
.0764
.0783
.0636
.0630
.1130
23.6434
38.2350
35.6417
30.2668
30.6158
22.9328
22.6216
46.6891
.0514
.0654
.0657
-0651
.0642
.0596
.0583
.0581
.717E-3
.696E~-3
.698E-3
.700E-3
.688E~3
.686E-3
.680E-3
-696E-3

B

.5361
.8705
.8325
.7152
.7239
.7109
.7441
.9268
.0216
.0354
.0349
.0324
.0327
.0343
.0350
.0402
4.09744
6.6410
6.3695
5.6369
5.6954
5.9058
6.1695
7.5283
.0277
.0325
.0321
.0315
.0313
.0357
.0437
.0301
.739E~3
+730E-3
.717E~3
.720E-3
.703E-3
.682E-3
.688E~3
. 709E-3
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Mean Ranks

Case
1 2 3 4 5 6 7 8
FIML 3.70 3.64 3.92 3.80 3.60 3.60 3.98 3.66
SNTSLS  4.54 3.96 4.55 4.28 4.89 4.69 4.77 4.42
POLY-2  4.65 4.24 4.56 4.39 4.88 4.95 4.90 4.68
POLY-3  4.39 4.49 4.32 4.46 4.26 4.90 4.62 4.29
POLY-4  4.36 4.44 4.16 4.33 4.27 4.62 4.31 4.38
MNLIML  4.43 4.51 4,79 4.92 4.69 3.96 4.08 4.56
NLIML  4.75 4.96 5.13 5.38 5.11 4.15 4.01 4.88

OLS 5.18 5.77 4.56 4.43 4.31 5.14 5.34 5.14




Table 4

11.

Ratios of Mean Square Errors to Mean Asymptotic Variances

FIML
SHIITSLS
POLY~-2
POLY-3
POLY-4
MNLIML
NLIML
OLsS
FIML
SNTSLS
POLY-2
POLY-3
POLY~4
MNLINL
NLIML
oLs
FIML
SNTSLS
POLY-2
POLY-3
POLY-4
MILIML
MLIML
OLS
FIML
SNTSLS
POLY~2
POLY~3
POLY-4
MNLIML
NLIML
OoLs
FIML
SNTSLS
POLY--2
POLY-3
POLY~-4
MNLIML
NLIML
OoLS
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.93
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.84

.78
.80
.93
.98
1.06
1.43
1.51
3.34
.84
.75
.85
.94
1.03
1.36
1.42
2.78
.70
.75
.86
.91
1.00
1.36
1.43
3.23
1.34
1.38
1.42
1.45
1.43
2.06
3.09
1.36
1.11
1.10
1.10
1.10
1.10
1.09
1.08
1.10

.80
.92
.92
.95
.95
1.29
1.43
1.17
.88
.84
.79
.78
.77
.81
.85
.78
.78
.96
.96
.98
.97
1.27
1.40
1.16
1.27
1.15
1.17
1.16
1.10
1.41
1.49
1.23
.93
.93
.24
.96
.95
1.03
1.03
.S5

Case

4

1.13
1.04

.96

.98
1.01
1.64
1.81
1.37
1.16
1.17
1.23
1.24
1.24
1.49
1.55
1.40
1.10

.93

.88

.90

.92
1.48
1.63
1.23
1.30
1.53
1.57
1.56
1.49
1.74
1.91
1.43
1.00
1.08
1.08
1.08
1.08
1.08
1.07
1.08

5

1.17
1.29
1.29
1.16
1.11
1.16
1.16
1.14
1.00
1.35
1.32
1.23
1.19
1.32
1.32
1.32
1.07
1.26
1.26
1.15
1.10
1.18
1.18
1.17
1.29
1.31
1.31
1.25
1.29
1.86
3.88
1.26
1.03
1.07
1.07
1.07
1.05
1.25
1.37
1.05

.61
.55
.82
.89
.84
.82
.94
l.68
w72
.58
.86
.83
.75
.82
.85
1.35
.63
.54
.83
.90
.83
.86
.99
1.71
1.30
1.20
1.18
1.24
1.21
1.41
1.41
1.24
1.10
1.13
1.14
1.17
l.16
1.25
1.24
1.13

1.26

1.19.

1.35
1.25
1.38
1.23
1.22
2.94
1.35
1.33
1.53
1.51
1.67
l.e0
1.60
3.18
1.26
1.21
1.38
1.30
1.44
1.31
1.31
3.07
1.46
1.47
1.49
1.51
1.51
1.58
1.62
1.41

.87

.84

.85

.85

.84

.89

.90

.85

1.10
1.27
1.34
1.24
1.29
1.52
1.60
1.95
1.30
1.54
l.62
1.57
1.62
1.89
1.93
2.19
1.13
1.30
1.38
1.31
1.36
1.67
1.75
2.09
1.46
1.49
1.49
1.49
1.50
2.09
2.60
1.49

.83

.80

.79

.80

.78

.91

.92

.79



Table 5

Tests of Normality

Number of Coefficients for Which
Normality is Rejected at .05 Level

Case
1l 2 3 4 5 6 7

FIML 0 1 0 0 0 0 1
SNTSLS 0 2 0 0 0 1 o0
POLY-2 0 2 0 0 0 0 0
POLY-3 0 3 1 0 0 0 2
POLY4 2 4 1 0 0 2 3
MNLIML 4 4 3 4 1 1 g4
NLIML 4 4 3 4 2 1 g4

OLS 4 3 3 3 1 4 a4




