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AN APPROACH TO THE FEEDBACK CONTROIL OF

NONLINEAR ECONOMETRIC SYSTEMS
Gregory C. Chow*

In this paper, I present an approach to perform approximately optimal feed-
back control to minimize the expectation of a quadratic loss function given a
system of nonlinear structural econometric equations. The method is explained
for simultaneous equation systems with given or uﬁknown parameters (sections 1
and 2). The usefulness of having a solution in feedback form is discussed
(section 3). The Klein-Goldberger model is used as an illustration (section 4).

Some concluding remarks concerning the approach completes the paper (section 5).

1. Feedback Control for Known Econometric Systems

The solution presented in this section for the feedback control of a non-
linear econometric system with known parameters has been obtained in Chow (1975a,
Chapter 12) and Chow (1975b). The former reference applies the method of Lagrange
multipliers while the latter applies the method of dynamic programming to the
control of an econometric system with unknown parameters and deduces the solu-
tion as a by-product. The exposition in this section applies dynamic program-
ming to the case of known parameters directly. It attempts to relate the theory
of control for nonlinear systems to linear theory and emphasizes the computa-

tional aspects of the solution more than the previous references.
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The i-th structural equation. for the observation in period t is

(1.1) Yie = 0 Wer Yeopr ¥pr Ny) + &5

where Vit is the i-th element in the vector Yo of endogenous variables,

xt is a vector of control variables, nit is a vector of parameters and exog-

enous variables not subject to control, and Eie is an additive random distur-

bance with mean zero, variance Uii and distributed independently through time.

In this section, the elements of n,, are treated as given, leaving € to

be the only random variables. Section 2 will deal with uncertainty in nit

which may also incorporate non-additive random disturbances if necessary. Lagged

endogenous variables dated prior to t-1 will be eliminated by introducing

identities of the form Vg =Y Control variables will be incorporated

Ijrt_l‘ )

in the vector Ve for two purposes. First, by defining Vg = X one can

it !

write welfare loss as a function of Yt alone. Second, lagged control variables

can be eliminated by identities of the form Yoe = yk,t—l = xj,t—l . The system
of structural equations (1.1) can be written as
. = +
(1.2) Ve = ®yer Yo qr X ) e
with & denoting a vector function, and with Eeteé = I .

We assume a quadratic loss function for a T-period control problem,

. T : T
= - 1 - = T - ) + ]
(1.3) w tzl(yt ag) 'K lyy - ap) tZl(ythYt 2y Kpa, + agka,)



where a, are given targets, and Kt are known symmetric positive semidefinite

matrices. The problem is to minimize the expectation EOW conditioned on the
information available at the end of period 0 . Following the method of dynamic

programming, we first solve the optimal control problem for the last period T

by minimizing

= ' - ' t -
(1.4) VT ET_l(yTKTyT 2y'K a _+ a'kK a ) E

1 1
- +
oo T Sptrp oy Yoip¥p = 2¥ghy + cp)

with respect to X - In (1.4) we have defined

(1.5) H =X ;h =Ka_ ;c. =a'kKa

for the sake of future treatment of the multi-period control problem. The prob-

lem for period T is solved in the following steps.

(1) sStarting with some trial value x for the control, we set €p equal

T
to zero and linearize the right hand side of (1.2) about Ypoq = ;—l (given),
Xq = QT and Yo = y; which is the solution of the system
* = * ° y
(1.6) gl @(yT, Y17 Xqr )

where y% can be computed by some iterative method such as the Gauss-Seidel.

The linearized version of the structure (1.2) is

= y* - y* - y° -
(1.7) Yp = Y5t BlT(yT yT) + B2T(YT—1 yT—l) + B, (x x) + ¢

where the j-th column of B consists of the partial derivatives of the vector

it

function @ with respect to the j-th element of Yo o evaluated at the given



* ° x imi j— f B
values Yo Yepoq? X and N and similarly for the j-th column o o and
B3T . Computationally, if the structural functions @i are listed in Fortran,

each column of BlT can be evaluated numerically as the rates of change in

@i with respect to a small change in the j-th element of Yo from §T , and

similarly for B2T and B3T . In econometric applications, B is very sparse,

1T
each row typically consisting of very few elements corresponding to the other

current endogenous variables in the equation.

(2) We solve (1L.7) for the linearized reduced-form

.8 =
(1.8) yT ATYT-l + CTxT + bT + uT
where
(1.9) A c. u) =(I-B) ‘s B )
T T T 1T 2T 3T T !
b =y* - A yo -CXx_ .
T T Tir-1 T T

Note that, since all the identities used to reduce a higher-order structure
to first-order and to incorporate the current and lagged x's into y, are al-

ready reduced-form equations, the matrix I - Bl takes the form

T

I - B¥* 0
(1.10) I-B. = 1T

where the order of BiT is the number of simultaneous structural equations

excluding these identities. Thus only I - BIT has to be inverted for the

computation of AT, CT and bT in (1.8).



(3) We minimize (1.4) with respect to Xy v assuming that Yo is governed

by (1.8). This is done by differentiating (1.4) with respect to X, and inter-

changing the order of taking expectation and differentiation:

AV Ay Y/
T T T
(1.11) — = 2E —|H.y_ - |=—|h
BxT 71 BxT T BxT T
= 2ET—1[CTHT(ATYT-1 + CTxT + bT + uT) - CThT] =0
. 9V
where (1.8) has been used to substitute for gy and Yo o The solution of
T
(1.11) for XT is
.12 x =
(1.12) Xp = Cp¥py * 9p
where
(1.13) 6 =- (8. cHc) YE. .coHA)
‘ T T-1"T T T T=-1"T T T
- - (E. .C°’HC) Y(E_ .c’Hb - E_ .C’h)
gT ™1 TTT T-1"T T T T-1"T7 °

By the linear approximation (1.8), A_, CT and bT are not functions of ¢

T T

and are thus nonrandom. Therefore, the expectation signs in (1.13) can be

dropped, but we retain them for future discussion.

~

(4) Using the solution X of (1.12) to replace the initial guess x

T T

in step (1), we repeat steps (1) through (4) till convergence in ;T . Observe
that the solution, even when converging, is not truly optimal because we have

used the approximate reduced form (1.8) with constant coefficients A C

T T



and bT . To obtain an exactly optimal solution, one would first compute YT

as the solution of the stochastic structure (1.2) with gT included, rather

than y% as a solution of (1.6). Thus Yo is a random vector depending on

€p Secondly, (1.7) would be replaced by

~ ~ [«]
= - — + - .
(1.14) Yp = Yp + Bipl¥g = ¥g) * BypWp gy = Ypog) + Bap (g = %)

3 . [} . . d ~
The derivatives BlT' B2T and B3T in (1.14) wh;ch are evaluated at Yo v

and hence the matrices AT, CT and bT in the resulting reduced form corres-

ponding to (1.8), will be dependent on €p + The matrices GT and Iy in the

~

solution for X will be calculated by (1.13) with the expectation signs re-
tained. Such a four-step iterative proceduré would be optimal because when the
solution ;T converges the value Yop given by the linearized struc-

ture (1.14) and its reduced form would be exactly equal to §T’ the solution
value from the original structure (1.2); the second line of (1.11) would be
exactly equal to the first line and not be merely an approximation. The above
approximate solution amounts to replacing (1.14) b? (1.7), i.e., linearizing
the structure about the nonstoéhastic y% rather than the stochastic §T' thus
making the derivatives B, ., B and B nonstochastic. The first §T in

1T 2T 3T

(1.14), which equals ®(§T"'°) + €p by (1.2), is replaced by @(y;,...) + €p
or y; + - in (1.7). This approximate solution is the same as the certainty-

equivalence solution obtained by minimizing (1.4) subject to the constraint

(1.2) with €p = o .

(5) Using (1.8) for Yep and (1.12) for Xp o+ we compute the minimum ex-

pected loss for period T from (1.4), yielding



~

(1.15) Vo = Yo_qBpoq (Bp + CpGp) "Hy (B + CoCrp) Yy

+ ZYT—lET—l(AT + CTGT) (HTbT - hT)

+ + - +
Bp_p Pp *+ Cpap) “Hy (b + Cpdy)

+ E H

o1 Uty = 2Eq_q (bp + cpgp) "By + Ep 4 Cp -

To generalize the solution to T periods, consider next the 2-period prob-

lem of choosing X and Xy ° Since the optimal §T and GT have already

been obtained, we apply the principle of optimality in dynamic programming and

minimize with respect to x

-1 the expression

(1.16) Vi = Bpoo oo ®po1¥poy = oo iKpoiBpoy * 2po1Fpoi®e-1 TV

Bp_o Yo 1B Yooy = WoogPpog © Spoy)

where, after substitution of (1.15) for GT '

(1.17) HT—l = KT_l + ET_l(AT + CTGT) HT(AT + CTGT)

- + - + » -
KT—l ET—l(ATHTAT) GT(ET—lCTHTAT) !

(1.18) h =

ool = Kpo18pey + Epog g + CpGp) "By = Hoby)

= Kp_j8p_q + Bp_y (Bp + CoGp) "hy
= Bp_y (AP, - GT(ET-lCTHTbT) ’



= i - — + -~
(1.19) Cpoq = Ep_q by * Cydg) Hylby + Cpay) = 2By (by * Cp9p) "y
+ aT—lKT—laT—l + ET luTHTuT + E lcT .

Since the second line of (1.16) has the same form as (1.4), we can repeat the

steps in the solution for xT with T-1 replacing T , yielding an optimal

~ A

Xn_q in the form (1.12) and the corresponding minimum 2-period loss VT_1

from (1.16). The process continues backward in time until §1 and Gl are

obtained.

Computationally, we suggest the following steps for the T-period optimal

~ ~ ~

control problem. (1) Start with initial guesses x,, X X

1 greeer Xy solve the

system (1.2) with g, = 0 for y;, y;,..., y;_l , using the Gauss-Seidel method.

(2) For t=T, T-1,..., 1, 1linearize the structural equations as in (1.6) and
(1.7), noting that yz = y; has been computed in step 1. Compute the reduced

form coefficients At, Ct and bt by (1.9). (3) Using (1.13) and (1.17)

alternately, compute Gt and Ht—l for =T, T-1,..., 1. Use (1.18) to com-

pute ht—l and (1.13) to compute = backward in time. (4) Using the feed-

A

back control equations x and the system (1.2) with ¢_ = 0 ,

= +
£~ C¥e-1 T 9 £

etc. The Xx will serve as the initial

compute successively Xl’ Yl Eor Yor £

guesses xt in step 1. The process can be repeated until the Qt converge.

~

(5) Use (1.19) to compute Celq backward in time. Vl will be computed by

(1.15) with 1 replacing T .
Recall that by our linearization of the structure about y; (rather than

about §t which depends on st), all the coefficients At, Ct and bt become

constants, and the expectation signs in all calculations above can be dropped.

We only retain the expectation E u'H u, = tr(HtEu ut) in the calculation

t-l ttt t
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of ¢ by (1.19), which, by virtue of (1.9), equals tr Ht(I - B.,.) V(I - B

t-1 )

1t 1t

2. Feedback Control with Unknown Parameters

The exposition of section 1 has paved the way for introducing randomness
in the parameters nt in the system (1.2). In principle, random nt can be
treated in the same way as random e, - To obtain an exact solution to the

last-period control problem by the method of section 1, it is necessary to lin-

earize (1.2) about §T ;, the solution value of yT which depends on the random

€ and ne - Accordingly, the coefficients BlT' B2T and B3T in (1.14)
and AT, CT and bT in the resulting reduced-form are all random functions
of N - The approximate method we propose to solve the multiperiod control

problem with unknown parameters also follows the 5 steps described at the end of
section 1, except that all the expectation signs have to be kept in the calcu-
lations.

To evaluate the expectations such as (A”’H. A ) in (1.17), two approxi-

Et—l ttt

mations are made. First, all time subscripts of the expectation signs are re-

placed by zero. Thus information on the probability distribution of €¢ and

n, as of the beginning of the planning period is used for the calculation of

the optimal X ; possible future learning about the unknown parameters is ig-

1

nored. Second, we linearize the structure about y; which is the solution of

(1.2) with Et = 0 and nt set equal to its mean ﬁ- , obtaining the struc-

t

tural coefficients Blt’ th and ﬁét ; we then compute the i-j element of

-

expectation EO(A H,A ) by the identity

ttt

: = (AJHA),. . + -a.)a, -a, )’
(2.1) EO(AthAt)ij (AthAt)ij tx HtEO(ajt a]t)(alt alt)

_l)
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- _ -1— ) )
where At = (I - Blt) B2t , and the covariance matrix for any two columns

ajt and a., of At can be approximated by the appropriate submatrix in

being the matrix of the partial derivatives of the columns

. Numerically, the kth column of Dt is com-

DtCov(nt)Dt ’ Dt

of A with respect to n

t t

puted as the rates of change of the columns of At with respect to a small
. th - - . .
change in the k element of nt from n - For a more thorough discussion

of this method, the reader may refer to Chow (1975b).

3. Usefulness of Feedback Control

If we treat the parameters nt as known constants and set Et = 0 , the
method of section 1 provides a solution to the optimal control of a nonlinear

deterministic system. Currehtly, a popular way to solve such a deterministic

control problem is to treat the multiperiod loss W as a function of xl,...,xT

and minimize it by some gradient, conjugate-gradient or another standard com-
puter algorithm, as in Fair (1974), Holbrook (1974), and Norman, Norman and
Palash (1974). It may be useful to point out the possible advantages of the
method of this paper as compared with this alternative approach.

1) From the very narrow viewpoint of computing the optimal policy under
the assumption of a deterministic model, the method of section 1 compares favor-
ably with the alternative method when the number 6f unknowns in the minimization
problem is large. The number of unknowns equals the number T of planning
periods times the number g of control variables. If we are dealing with 32
quarters and 4 control variables, there will be 128 variables, creating a for-
midable minimization problem. Our method, being based on the method of dfnamic
programming with a time structure, converts a problem involving T sets of

control variables to T problems each involving only one set of control
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variables. Its computing cost increases only linearly with T . For each per-
jod t , we solve a minimization problem involving g controls; the matrix

C/H, C to be inverted is g X g . Also, if g 1is increased from 4 to 8, we

; tt
have to solve an 8-variable problem 32 times, whereas the alternative method
has to deal with 256 variables simultaneously.

On the other hand, our method is perhaps more constrained than the alter-
native method by the number of simultaneous equations (the order of the ﬁatrix
I - BiT in equation 1.10) in the econometric sys;em for our linearization re-

quires the inversion of I - Bit . However, by exploiting the bloc-diagonality

and the sparseness of this matrix, it may be possible to deal with some 150
to 200 simultaneous equations. More computational experience is required to
shed light on this question.
2) Once we leave the realm of purely deterministic control, the advantages
of our approach are numerous. First, after incorporating the random disturbances

et in an otherwise deterministic model, one can no longer regard as optimal

the values of x_,...,x

5 obtained by solving the deterministic control prob-

T

lem. Only the value of x, for the first period constitutes an approximately

optimal policy. In contrast with the alternative method of deterministic con-

A

trol, the method of section 1 provides the solution Xt (t=2,...,T) as a

function of the yet unobserved Veq - It provides analytically an estimate

~

Vl of the minimum expected loss associated with the optimal strategies. Using

the alternative method, one would have to calculate yl from §l and El ’

solve a multiperiod control problem from period 2 to T to obtain §2 , cal-

culate Y, from X, and €y v etc., and repeat the T-period simulations

many times to estimate the expected loss from such a strategy. Such computa-

tions are extremely costly, if not prohibitive.
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3) Our method yields a linearized reduced form at each period as a by-
product. The reduced-form coefficients are extremely useful for computing the
various dynamic multipliers of Yy with respect to current, delayed and cum-

mulative changes of x and for exhibiting how nonlinear the system is and

£ !
how the various partial derivatives change through time.

'4) The feedback control equations_are useful as a basis of policy recom;
mendations. They can be used to compare different econometric models. They
can be incorporated into the econometric model to study the dynamic properties
of the system under control. Once the model is linearized, its dynamic proper-
ties can be deduced by spectral and auto-covariance methods, as described in
Chow (1975a, Ch. 3, 4, and 6). Not only the mean paths of the variables from
periods one to T , but their variances, covariances, aﬁtocovariances and cross-

covariances can be deduced.

5) The value of having improved information (a smaller covariance matrix)
for a subset of parameters can be ascertained by comparing the minimum expected

losses computed by varying the covariance matrix of n

& using the method of

section 2. As a special case, the comparison of \Afl computed by varying the
covariance matrix of € using the method of section 1 helps to evaluate the
importance of the stochastic disturbances in the expected welfare loss. 1In
short, by our method, the rich theory of optimal control for linear systems

can be applied to the control of nonlinear systems. Parts of this theory will

be illustrated in section 4.

4, A Numerical Example Using the Klein—Goldbergér Model

To illustrate our method, the Klein-Goldberger model as adopted by Adelman

and Adelman (1959, pp. 622-624) is used. The equations are listed below.



(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

-13-

Consumer expenditures in 1939 dollars = C =
Yy = - 22.26 + 0.55(y6 +ox, - ylg) + 0.41(yl4 =¥y T y3)
+ 0. - . . .
0 34(y9 + X y22) + .26 yl,—l + .072 Yll,-l + 0.26 z.,
Gross private domestic capital formation in 1939 dollars = I =
Y, =~ 16.71 + .78[y14 = Yoy tYg ¥ Xy T Yo, + y5]—l
- .073 .
073 ¥16,-1 * 1% 12,11
Corporate savings = Sp =
= =~ 3.53 + 0. - - .
Yy 3.53 0 72(y4 y20) 028 yl7,—l
Corporate profits = Pc =
= - 7. + 0.
Y, 7.60 + 0.68 y,,
Capital consumption charges = D
= 7. + 0. + . -
Y 7.25 0 05(y16 yl6,—l) + 0 O44(y13 X.)
Private employee compensation = =
= - . . - . - + .
Vg 1.40 + 0 24(y13 xl) + 0 24(Yl3,-l xl,—l) 0.29 zg
Number of wage-and-salary earners NW =
y7 = x4 - (z4 + 25) + 1.062 + (26.08 + yl3 - x .08 y16 - .08 yl6,—l
- 2.05 z6)% (2.17 x 1.062)
Index of hourly wages = w =
Yg = y8,_1 + 4.11 - O.74(z3 Y, T2, 25) + O.52(y15,_l - y23'_1)
+ .54 =z
Farm income = Al =
Vg = .054(y6 + X, = Yig Y, T - y3) + .012(zl)(ylo) * Yyg

Index of agricultural prices = P, =

Y10 = 1-39 vy + 32.0

End-of-year liquid assets held by persons

Yy = O.l4(y6 Xy -

Yig ¥ Y14~ Y1

_y3+

37 Yo

End-of-year liquid assets held by businesses = L2 =

Y12

= .26 Ve - 1.02(2.5) - .26(y15 - ylS,—l) + .61 y12,-l

) + 76.03(1.5)

.84



(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

-14-

1]
<
+
=]
+
v}

1]

Gross national product

Yi3 =¥y ¥y T ¥

Nonwage nonfarm income = P =

Yiq T Y137 Y18 " ¥5 7 ¥g T ¥ T Yo T 3

Price index of gross national product = p =
= 1.062 * +

Yp5 = 1-062 vgly,) # (yg + %))

End-of-year stock of private capital = K =

Y6 = Y16,-1 T Y2 T Y5

End-of-year corporate surplus = B =
Y17 = Y17,-1 7 ¥3
Indirect taxes less subsidies = T =

Yig = 0:0924 y, 4 - 1.3607

Personal and payroll taxes less transfers = TW =
= Q. + . - 6.

Y19 0.1549 Ve 131 %y 6.9076

Corporate income tax = Tc =

Ypo = -4497 y, + 2.7085

Personal and corporate taxes less transfers = TP =
Yy = 0-248ly;, = ¥y = ¥3) + -2695(yy5 g F Yls)[y14 " Y30
+ 0.4497 Yy - 5.7416

Taxes less transfers associated with farm income = T =

A
0.0512(y4 + x,)

Y52

Y53 7 ¥Y35,-1

The control variables or instruments are

X = W2 = Government employee compensation

X, = G = Government expenditures for goods and services
Xy = A2 = Government payments to farmers

x4 = NG = Number of govermment employees.

- y3)—1
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The exogenous variables not subject to control are

z, = FA = Index of agricultural exports

z, = Np = Number of persons in the United States
Zy = N = Number of persons in the labor force
z4 = NE = Number of nonfarm entrepreneurs

z2g = N = Number of farm operators

Zg = time = 0 for 1929 (= 24 for 1953).

In the control experiments reported below, 1953 was chosen as the first year

of the planning period. Initial values of the endogenous variables yo and

extrapolation formulas for the uncontrollable exogenous variables 2, (part of

nt in the notation of section 1) are given by Adelman and Adelman (1959, p. 624).
The four control variables have been listed in the last paragraph. When imbedded
in the vector Yy in the notation of equation (1.2), they become respectively
You to Yoy - Three runs have been tried. Run 1 uses endogenous variables 7
(number of wage-and-salary earners), 13 (real GNP), 14 (real nonwage nonfarm
income) and 15 (price index of GNP) as targets, with the value 1 specified for
each of the corresponding 4 diagonal elements of the matrix Kt in the welfare
function. These target variables are steered to grow at 2, 5, 5 and 1 per cent
per year respectively from their initial values at 1952. Run 2 uses variables

13, 15, 26 (government payments to farmers) and 27 (number of government employ-

ees) as target variables. The target for is to remain at its historical

Y76

1952 value 0.1187, and for is to grow 3 per cent annually from its esti-

Y27
mated 1952 value 9.393. Run 3 uses variables 7, 15, 26 and 27 as target vari-
ables.” In effect, runs 2 and 3 tie up two instruments and uses the remaining
two instruments to control real GNP and the price index, or employment of wage-

and salary earners and the price index.

A major motivation behind the above experiments is to find out whether
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the relationship between the general price index and real GNP (or employment)

can be shifted at will by government policy according to the Klein-Goldberger
model. The answer is definitely yes. The specified targets for the price index,
real GNP, and/or employment of wage-and-salary earners are met exactly by the
optimal control solutions of the above 3 runs, ignoring random disturbances.

Thus the government can choose any price-GNP or price-employment combination

at any period as it pleases by applying government employee compensation and
government expenditures for goods and services as.the control variables.

As pointed out by Chow (1975a, p. 167), "if the number of target variables

(the number of nonzero elements in the p X p diagonal matrix K _) equals the

number g E-E_ of control variables, the time path ;L generated by the deter-
T

ministic system [obtained by ignoring the random disturbances in a linear econo-

metric model] under optimal control will meet the targets exactly and the deter-

ministic part Wl of the minimum expected welfare loss will be zero, provided

that Ct is of rank g." In the above three runs, the number of target vari-
ables equals the number of control variables, and thé matrix Ct for all t

in the linearized reduced form has rank 4. Thus the targets are met exactly.

This illustrates the application of control'theory for linear systems to non-
linear econometric systems by the approach of this paper. Note that, in the
btheory for controlling known linear systems, Chow (1975a, Chapters 7 and 8), it is
useful to decompose the solution vector Yy into its deterministic part ;;
(obtained by ignoring et) and its stochastic part y; =Y, - ;é due to the
random disturbances. The same decomposition can now be achieved by our method
for nonlinear systems. The autocovariance matrix of y; provides the variances'

and covariances of the variables under control from their mean path §£ . It

can be derived analytically as in Chow (1975a) once the system is linearized
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by the method of this paper.

To better appreciate the reason why government policy can shift the rela-
tionship between the general price index and real GNP (or employment), consider
the "aggregate demand curve" and the "aggregate supply curve" implicit in the
Klein-Goldberger model. The aggregate demand curve relating price to real GNP
can be obtained by solving the aggregate demand sector consisting of 16 equa-
tions: (4.1)~-(4.4), (4.9), (4.10), (4.13), (4.14), (4.17)-(4.22) of the IS sec-
tor and equations (4.11) and (4.12) of the LM sector. The aggregate supply
curve is obtained by solving 6 equations: (4.5)-(4.8),(4.15) and (4.16). We refer
to the short-run aggregate supply curve, holding all lagged dependent variables

constant. (4.8) gives wage w as a linear function of employment NW . (4.7)

gives NW as a function of real GNP, capital stock K , and government employee

compensation W Equations (4.16) and (4.5) explain K by capital consump-

5
tion charges D (investment I being predetermined by equation 4.2) and D by

K , GNP and W2 , yielding K as a function of GNP and W2 . Both w and

NW thus become functions of GNP and W2 . By (4.15) price p = 1.062 WNW/(W1+W2)

where the private employee compensation Wl is also a function of GNP and W2
by virtue of (4.6). Hence the resulting aggregate supply curve relating p

to GNP and W2 can be shifted by manipulating the control variable W

2

If the aggregate supply function relating price to real GNP or to employ-
ment contains no variables which are subject to government control, government
policy can only shift aggregate demand and trace out the rigid relation between
price and real GNP, but cannot achieve more real output or employment without
inflation. A case in point is the relation between the wage rate and employ-
ment as given by (4.8). No government policy can shift this rigid relationship

for the current period, given the predetermined variables. In terms of control
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theory, né two instruments can steer wage and employment to specified target
values as they are linearly related by (4.8). The matrix Ct has two linearly
dependent rows and has rank smaller than the number of instruments.

We have computed the optimal control solutions for the three runs described
above, and some other related runs, using T=5 and T=10 as the planning horizon.

To start the iterations, we arbitrarily let the initial xi be the 3 per cent

t

annual growth path for each of the 4 control variables beginning from its his-

torical value as of 1953; these initial paths are given in Table 1 for X

and x2 . For the first period 1953, we use the values of the endogenous vari-

ables as of 1952 as starting values for the Gauss-Seidel iterations to solve

~

for given x , and use as starting values to iterate for

[e] (]
Y1953* 1953 Y1953

given x , etc. Table 1 shows the values of selected target and con-

°
Y1954’ 1954
trol variables for Run 1 at the three rounds of linearizations (three "passes"
through step (1) of the method of sectién 1) required for the convergence of
the target variables to five significant figures. Note how rapidly these vari-
ables converge to the solution, the first pass already near the optimum.

In terms of computing time using the IBM 360-91 computer at Princeton Uni-
versity; each pass took slightly less than 4 seconds, and the total computer
time for three passes was about 12 seconds. When we ran the experiments for
10 periods instead of 5, the time merely doubled, taking about 24 seconds for
three passes to convergence. These would be minimization problems involving
40 variables in the alternative approach to deterministic control. Imagine
a l20-variable problem with 4 controls and 30 periods using a quarterly model
of similar size. The alternative approach would be almost prohibitive, but

out method would take about 3 x 24 or 72 seconds. By our method, increasing

the number of control variables from 4 to 5 would not require much more computing
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Table 1

Values of Selected Variables at Three Successive
Passes for Control By the Klein-Goldberger
Model--Run 1 (y7, Y31 Y140 Y5 @S targets) .

Variable Pass 1953 1954 1955 1956 1957
xl 0 15.70 16.17 16.606 17.16 17.67
(government ; 21.15 25.60 29.41 32.95 36.35
employee : 21.21 26.03 30.63 35.35 40.28
compensation) 21.21 26.03 30.64 35.38 40.35
x2 0 33.50 . 34.50 35.54 36.61 37.70
1 39.96 45.42 49.68 53.59 57.60
overnment
;ipenditures 2 39.95 45.40 49.74 53.85 58.11
3 39.95 45.40 49.74 53.85 58.11

for goods
& services)

yl3 1 180.60 189.64 199.13 209.10 219.58
(real 2 180.60 189.63 199.11 209.07 219.52
3 180.60 189.63 199.11 209.07 219.52
GNP)
y15 1 204.52 207.10 210.23 213.80 217.68
(price 2 204.42 206.47 208.55 210.66 212.82
. 3 204.42 206.47 208.53 210.62 212.72
index)

time, since a 5 x 5 C;HtCt matrix is still easy to invert and the hard com-

puting work is performed in obtaining the linearized reduced form. By the al-
ternative method, a 120-variable problem would become a 150-variable problem.

We next examine the coefficients G£ and 9. in the feedback control

equations for the optimal solution of Run 1 with T = 5. Of the 27 variables

in yt-l (including 4 control variables), only 18 appear in the reduced form,

the matrix At having 9 columns of zeros. Table 2 exhibits coefficients of

selected lagged variables in the feedback control equations for government ex-—

penditures X, - Note that the coefficients of the lagged expenditure, income

and price variables are all negative, showing that government expenditures
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Table 2

Coefficients of Selected Lagged Variables in the Feedback Control
Equations for Government Expenditures--Run 1 (T = 5)

Lagged Variable Intercept
Period 1 3 5 8 9 12 14 15 g
1 -.260 -.109 ~-.768 -.053 =.768 -.138 =-.659 =-.015 124.4
3 -.260 -.109 -.768 -.054 -.768 -.138 =-.659 -.014 137.0
5 -.260 -.109 ~-.768. -.055 -.768 -.138 -~.659 -.014 151.0

. should respond negatively to recent signs of economic expansion. The feedback
coefficients are practically identical for periods 1 through 5 for two reasons.
First, since the number of instruments.equals the number of target variables

(Ct having full rank), the matrice Kt(At + Cth) = 0 and Ht = Kt , as shown

in Chow (1975a, pp. 168-9). This means that the matrix Ht in the quadratic
loss function Vt to be minimized in each future period is identical. Second,

since the linearized reduced form coefficients At and Ct vary only slightly
. . _ - -1_. .
through time, the solution Gt = (CthCt) CthAt will also be stable through

time. The intercept g, , however, is increasing in order to meet the growing

t
targets as we have specified.

It may be interesting to exhibit parts of the matrices A C and bt

t’ Tt

for t =1, 3, 5 to show how time-varying they are. Table 3 shows selected
coefficients of the reduced form equation for consumption expenditures Y, from
the optimal control solution of run 1. Their stability through time is apparent.
The last row of Table 3 reproduces the corresponding coefficients from the study

by A. S. Goldberger (1959, pp. 40-41) on impact multipliers of the Klein-Goldberger

model, although for numerous reasons, including the differences between the two
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versions of the Klein-Goldberger model, the coefficients given by Goldberger

should be different from ours.

Table 3

Reduced Form Coefficients for Consumption from the Optimal Solution-Run 1

Period 211 313 a5 16 11 12 by
1 .3305  .1425  .2036 0 .3005 .2712  33.84
3 3311 1428 .2053 0 .2997  .2736  35.58
5 .3315  .1429  .2064 0 .3005  .2750  37.42
Goldberger .3219  .0297  .2834 .1027  .3355  .2380

5. Concluding Remarks

If we were to pursue a dynamic policy analysis‘using the Klein-Goldberger
model or any other nonlinear econometric model by the method of this paper,
it would occupy a substantial volume. Once the model is linearized and the
approximately optimal linear feedback control equations obtained, the methods
of dynamic analysis as described in Goldberger (1959), Adelman and Adelman (1959},
and Chow (1975a) can be applied to study numerous important and interesting
questions of macroeconomic theory and policy. The main purpose of this paper
has been to show that, using oﬁf method of feedback control, the theory and
techniques for controlling linear econometric systems can be made applicable
to nonlinear econometric systems.

This paper has been written as an invited paper for presentation before
the Third Econometric Society World Congress to be held in Toronto in August

1975 to survey the subject of stochastic control in economics. One would expect
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in a survey discussions on such topics‘as thé methods of feedback control versus
open-loop control, control of linear versus nonlinear systems, control of deter—
ministic versus stochastic systems,'problem of parameter uncertainty, various
computation methods, and important areas of applications. I have not written
such a survey partly because a comparison of methods and a discussion of appli-
cations can be found respectively in Chapters 12 and 9 of Chow (1975a). The
presentation of this paper has been biased towards the feedback approach, be-
cause it appears to be much more useful than the gomputation of optimal time
paths for the deterministic version of a stochastic control problem and helps

to tie together a significant part of stochastic control theory in economics.
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