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DERIVING ESTIMATES OF STRUCTURAL PARAMETERS
FROM ESTIMATES OF REDUCED FORM PARAMETERS

Donald Sant

I. Introduction

Structural equations are generally used in econometric research because
they are more "understandable" in terms of economic theory. The causal relation-
ships and the parameter restrictions that are derived from economic theory are
more easily expressed and interpreted in terms of the structural equations.
However, it is the coefficients of the reduced form which are the parameters
of the stochastic process generating the observed random variables. Knowing
the reduced form parameters permits one‘to make probabilistic statements about
the interaction of economic phenomena, but the structural parameters are gener-
ally needed to test implications derived from economic theory. It is basically
this distinction that makes the identification problem important in the linear
simultaneous equation model. Under the usual assumptions, the reduced form para-
meters are always estimable, but only when there are restrictions on the struc-
tural coefficients does there exist a function giving the structural coefficients
from the reduced form coefficients. This paper derives the particular function
used implicitly in the usual single equation methods of estimating a single iden-
tified (over identified) equation. The reduced form coefficients estimated by
least squares will generally not satisfy all the restrictions from an over iden-
tified system, so the inverse transformation, the transformation of the reduced

form coefficients to the structural parameters, varies with the estimating



technique used. From these transformations, it is easy to see that the usual
single equation estimating methods are asymptotically equivalent. It is also

easy to see that for an exactly identified equation, LIML, TSLS, and indirect

least squares are identical.

II. The Model

Consider the single structural equation,
(1) y =28 +¢€=[¥ X][Y]+e

where & = [g] is an unknown parameter vector, and Y is correlated with ¢ .

This single equation is part of a larger system of equations which has the re-

duced form

where y 1is nxl, Y is nxG, X is nxK

. « . . . .
W2 is K2 1, Hl is KlXG, H2 1s K, XG, Yy is GX1, B is lel, and

§ 1is (G+Kl)xl .

If we define



the relationship between structural coefficients and reduced form coefficients

is
T
T
2
The necessary and sufficient condition for identification is that
rank[ﬂ2 H2] =G |,
Since least squares will yield "good" estimates of the reduced form
ﬂl Hl + the estimation problem is to find good estimates of &
L I
2 2

IITI. Two-Stage Least Squares

Consider first the two-stage least squares estimator.

§ = (Z'X(X'X)—lX'Z)_lZ'X(X'X)—lX'y
where X = (Xl X2) - The estimator ¢ 1is also the result of the minimization
problem
(3) min(p - AS) X'X(p - AS)
§
where p = (X'X)_lX'y is the unrestricted least squares estimator of the reduced

form



and A = [P ;] where P = (X'X) Tx'Y

is the unrestricted least squares estimator of the reduced form

Proof: The ¢ which minimizes expression (3) is

8§ = (A'X'XA)_lA'X'Xp

—

but A'X'X = |Y'x(x'x) Tl{x'x
T 0
= [y'x] = z'x
X'x
11

so0 substitution yields the desired result.

As a corollary:

The minimization problem will yield a consistent estimator of & if

A

is any consistent estimator of w, @ is any consistent estimator of I,

. X'X .
and lim—— = M nonsingular.
n—)oon

Proof:



Plim §

Plim (&' x'x &) ta'x'x n
n n

(a'MA) Tarmas = &

since m = A8 .
Besides giving us the inverse transformation from the estimated reduced
form to the structural estimates, this minimization has a natural statistical

justification. The true parameters satisfy the relationship

The variance-covariance matrix of the estimated (using least-squares) is
. -1 | . .
proportional to (X'X) + SO the above minimization problem is the classical

modified minimum Chi-Square method of estimation which yields estimators with

1/

good large sample properties.
One further result is that TSLS based on the true I is not necessarily
better than TSLS based on the estimated I . If 02 is the variance of the
structural error of equation 1 and w2 is the variance of the reduced form error
in equation 2 corresponding to the random variable Yy , using the true I im-
proves asymptotic efficiency only if w2 5.02 .
The asymptotic distribution of VEKS - 6) wunder the usual assumptions is

N (O, cz(A'MA)_l) . Under the same assumptions, if 6* is the TSLS estimator

using the true 1 , VSYG* - d)&N(O, w2(A‘MA)_l) , wWhere & means converges

in distribution.

Proof:



§*% = (A'X'XA)_lA'X'Xp

/n(s* - 8) = /nl(a'x'xa) Ta'x'xp - (A'x'xA) TA'X'XT]

since m = AS .

/a (5% - ) L

(A'x'x8) A" X'X[Va(p - m]
n n
but under the usual assumptions the least squares estimator p has a normal

asymptotic distribution

2 -1

/e - m % wo, vl

and since

1 1

lim(A'X'XA) "A'X'X = (A'MA) "A'M
n->o n n

it follows that

/nsx - sy % N(O, wi(a'ma) 1) ,

since it is the product of a sequence converging to (A'MA)_lA’M and a random
vector /H(p ~ 7) which converges to a normal random vector.

It should be noted that even though asymptotic efficiency is ambiguous,
the exact expectation and variance is known for &* . E(8*) = § and

E(6* - 8) (8% - 8)t= w2(a'X'xA) L



IV. Limited Information Maximum Likelihood

The modified minimum Chi-Square method of estimation does not use the samp-
ling variation of P in forming the estimate of & . 1In imposing the rank res-

triction for identification, the resulting reduced form estimator has the form

where Pl and P2 correspond to the same partition of the least squares esti-

mators as Hl and HZ . The estimated reduced form has the appropriate rank

but in some sense, TSLS has placed all the burden of the restrictions on the

first column.

Defining the Kx(G+1l) matrices

(p P) T=(r 1)

|
l

the minimum Chi-Square estimator is the result of the minimization problem

(4) min tr[(E;ﬁ)'X'X(Elﬁ)S_l]
1
rank ﬁé=G



where S = n—l[(y Y)—XE]'[(y Y)-XP]

. . . . . 2
is the estimate of the variance covariance matrix of the reduced form errors. /

To derive the minimizing value of I , a reparameterization is useful.

) _l ] —_— . 3
If we let w = (In—Xl(Xle) Xl)X2 = MlX2 (the residuals from a regression of
X2 on Xl) and define
T.o= T+x'x) txix T
1 1 171 172
I,=1,

the reduced form is now

(y Y) = (X W) (T + v

and

The implied constraints are



giving rank F2 = G
Letting Tl and T2 represent the unrestricted least squares estimators

of this system, the minimization problem (4) then reduces to

, . v n -l
(5) min  tr[(T,-T ) "W'W(I -T )5 ]

"2

rank F2=G

because of the orthogonality of Xl and W . The solution to this problem is
a straightforward application of the following lemma.
Lemma: If @ is a JXK matrix, J<K and B is JXK , rank B=b< rank Q<J ,

the matrix B which minimizes either

tr (Q-B) (0-B) ' or

| (0-B) (0-B) ']
)
is B=9 - L.L!Q
i=b+1 T 71

-

where the Li are the latent vectors corresponding to the J-b-l smallest la-

tent roots of QQ'
The proof of this lemma follows from the Courant-Fischer min-max theorem,

Bellman (1960 p. 113), but was also proven by Eckhart-Young (1936).

If we factor S_l and W'W such that ¢¢C' = S_l + C a nonsingular

(G+1) x(G+1) matrix and D'D = W'W where D is a nonsingular K2XK2 matrix

the minimization problem is
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(6) min tr(DTZC - DF2C)(DT2C - DTZC)

P

rank (I'))=G
which is the same problem as in the lemma {(assuming Kzzp) with
T = = .
DI',C = Q and pr.c = B

From the lemma then, the minimizing value of DF2C is

pl'' Cc = DT2C - L

> DTZC

G+lLG+l

where L,

G+l is the latent vector corresponding to the smallest latent root of

~o-1n
Dr,s”r.p' .

This root is equivalent to the smallest value of & such that
f. e -
2W WT2 28 0

which is the same as the root calculated by limited information maximum likeli-

/

hood.3/
This minimization problem has an heuristic appeal besides the statistical

property of yielding an estimator with good large sample properties. Since the

least-squares estimator is a "good" estimator, and the true parameter matrix

is assumed to have a certain rank, we are approximating our good estimator by

another matrix with the specified rank.
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V. Equivalence of the Estimator

Whatever the motivation is for choosing a particular estimating technique,
using this framework permits one to easily see the asymptotic equivalence of
TSLS and LIML. First, in the exactly identified case, where the dimension of

I, 1is GX(G+1)(K2=G), expression (3) and (4) can be made identically equal to

<

zero. The estimate of § will then satisfy

AA

A§ =p

for both TSLS and LIML. There is no need to approximate the least squares esti-
mators of the reduced form since they satisfy the rank condition. 1In the over
identified case (K2>G), the estimators of § will differ in finite samples but
will be asymptotically equivalent. Under the usual assumptions, the least squares
estimators will be consistent estimators of the‘reduced form parameters. Thus
asymptotically, they will be of the appropriate rank. Expression (3) can then

be made identically equal to zero by the value of § such that A8 = 7 . The

estimate of ¢ found by LIML is the value of (¥ B) which satisfies
; 1

(7) Fl[-Y) = B
; 1
F2[-Y] =0

where Fl and F2 are the reestimated reduced form parameters. Asymptotically

A

though, F2 will converge to H2 . Thus the solution to (7) ¢&* , and the TSLS

~

estimator § are constructed in such a way that
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Plim /n(s* - §) = 0 .

This implies (Rao 1965, p. 101) that they have the same limiting distribution.

VI. The k-Class Estimators

The k-class estimators have been a natural organizing framework for compar-
ing single equation estimating methods. This section derives a relationship
between the actual reduced form and the structurai parameters which is true of
all the k-class estimators.

From the relationship between structural parameters and reduced form para-

meters, B is given by

(8) B=m, - Iy

Given consistent estimates of ﬂl, Hl, and Yy , a consistent estimator of @
could be found by using 8. The actual estimator used in the k-class is given
by

Proposition: For the k-class estimators

>

~

' _ll - °
TPy T Byt (XX)) XX (p, = PoY)

™

where pl, P are the least squares estimators of the reduced form para-

17 Pyr By
meters, and vy 1is the k~class estimator for Y

A~ -~

Proof: The estimators (y B) satisfy
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v - ' Y'(I - kM
Y (In kM) Y Y x‘l Y ( n 1D
1 t X'
X'y xlxl B 1Y
where M = In - x(x'x)°lx' . The second row gives
~ N .
(9) ley + XleB = le ;

The normal equations for the least squares estimators give

1 ] — 1 ]
(10) (x1% X1X) |y Pl = (xyy X1Y)

Postmultiplying (10) by [ }] yields
-Y

Yy

<7 ! - ] - == 1] - 1
(11) Ale(pl Ply) + XlXZ(p2 sz) le Xl

~

Inserting (11) into (9) and solving for 8 gives

PN

_ - § ] _ll - °
B = (p Piy) + (X]X,) XX, (p, = P,y)

VII. Conclusion

The sufficient conditions for the identification of structural parameters

require that a certain submatrix of the reduced form have a specified rank.
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In an overidentified equation, the unrestricted least squares estimators will
not have the appropriate rank. This paper derives the relationships between
reduced form estimates (using least squares) and the structural estimators (of

the standard estimating techniques) and how the restrictions are incorporated

in this transformation.
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Footnotes

l/More exactly it is a modified reduced minimum Chi-Square method since observed
values of A are used. See Ferguson (1958) and Neyman (1949). See Basmann
(1960) for a similar derivation of TSLS.

2/See Rothenberg (1973) pp. 24, 81-82 for a discussion of minimum Chi-Square
estimation.

3

/A related result has been shown by Goldberger and Olkin (1971) and by Malin-
vaud (1970) pp. 702-706, but the lemma used in the derivation here seems to have
wider applicability in econometrics than has been previously used.
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