TWO METHODS FOR EXAMINING
THE STABILITY OF REGRESSION COEFFICIENTS

Kenneth Garbade*®

Econometric Research Program
Research Memorandum No. 186
October 1975

*Agsistant Professor of Finance, New York
University, and Research Associate,
Econometric Research Program, Princeton
University. The research reported was
supported by NSF Grant S0C74~11937.

Econometric Research Program
PRINCETON UNIVERSITY
207 Dickinson Hall
Princeton, New Jersey



Abstract: This paper investigates the power of two methodologies, the

tests of Brown, Durbin and Evans (1968) and variable parameter regression,
to detect several varieties of instability in the coefficients of a linear
regression model. The stability study reported by Khan (1974) is replicated
with variable parameter regression, and his results are in part rejected and
in part sharpened.

In pursuing quantitative research, econometricians are frequently able
to appeal to theoretical arguments to justify a choice for the functional
form of an economic model. Rarely, however, are they able to justify a
maintained hypothesis that the coefficients of a model are stable over a
sample interval, for example, that the marginal propensity to consume was
the same in the Great Depression as in the 1960s. Stability of estimated
coefficients is an empirical question that has frequently been ignored.
Among the early works in this field are Quandt (1958) on estimating the
location of a shift from one regression scheme to another, and Quandt (1960)
and Chow (1960) on testing the null hypothesis of stability in regression
coefficients against the alternative hypothesis of a shift at a particular
point in time. Recently Brown, Durbin and Evans (1968) (hereafter BDE) pro-
posed two more general methods of testing for the statistical significance
of structural variation of regression coefficients, and Khan (1974) applied
one of those methods to test the stability of the demand for money in the
United States.

The purpose of this paper is to investigate, using Monte Carlo simulation,
the power of the BDE tests to reject a false null hypothesis .of stable

coefficients under a variety of regimes of coefficient variation. We compare

This work was undertaken while the author was a research associate at
Princeton University in the summer of 1975. The author wishes to thank
Gregory Chow and Richard Quandt for helpful suggestions and Adrian Pagan for
introducing him to the problems addressed here. :



the results of the BDE tests to those obtained from an applicatioh of
variable parameter regression (VPR) (Athans, 1974; Sarris, 1974; and
Rosenberg, 1973), which can be used to measure the magnitude, as well as to
test the significance, of coefficient variation. The first section des-
cribes variable parameter regression as it is applied in this pPaper. The
second section reviews the BDE tests and shows how they are related to a
special case of the VPR model. The third section reports on Monte Carlo
simulation experiments with the two techniques. We find that in some
circumstances, which seem likely to arise in economic studies, the BDE
tests are unable to detect coefficient variation, but that VPR does quite
well. 1In the last section we replicate Khan's (1974) results using VPR,

We are led to reject the hypothesis of stability in the demand for money in

some cases, which Khan could not, and to sharpen his evidence for stability

in others.

1. Variable Parameter Regression

Variable parameter regression assumes the researcher has observed T

ordered scalar observations (F15---» yT) generated by the model:

Ye = xtBt + Uy _ (1a)
ut v N(0, o2) (1b)

where x¢ is an n-dimensional row vector of known exogenous variables and
Bt is an n-dimensional vector of unknown coefficients. The stochastic
scalar ut is drawn from a Gaussian distribution. The dynamic evolution of
the B vector is assumed to follow a random walk with zero drift through

time:




Bt = Be-1 + p¢ . (a)
Py v N(O, oZP) (2b)

where 02P is the stationary covariance matrix of the innovation p.. The
normalizing variance term g2 of (2b) is the same as that which appears in
(1b) and is shown explicitly for expositional convenience. The innovations
u,. and p; are mutually and serially uncorrelated. Although more complex
models of the dynamic evolution of the B's are possible (Rosenberg, 1973;
Sarris, 1974) we retain the simple form of (2) here. We are not concerned
with estimating a particular stochastic process generating the B's, but
rather with the stability of the B's and with the pattern of any indicated
variation. If a researcher is led to reject the hypothesis of stable
coefficients he or she might wish fo consider structural explanations of
the B's as functions of additional exogenous variables, for example, the
marginal propensity to consume could be a function of wealth or consumer
sentiment, rather than develop more complicated models of stochastically
evolving coefficients. Our results in Section 3 indicate that the simple
model of (2) will be adequate in most cases.

Table 1 summarizes the algorithm for estimating the coefficients of
model (1,2). Let ét(s) be the estimate of Bt based on the observations
(yl,..., ys). We exhibit in Table 1 the one-step-ahead predicted coefficient
estimate ét(t—l), with estimation covariance matrix Uth, the updated esti-
mate §t(t), with covariance matrix OZSt, and the smoothed estimate ét(T),
with covariance matrix UZVt. These results are developed at length in
Sage and Melsa (1971). The scalar stochastic innovation e, driving the

updating algorithm is a zero mean, serially uncorrelated Gaussian process
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with variance OzEt whose properties are derived in Mehra (1970). vThe

fa)

first n observations On yt are used to compute the Prior estimate Bnt+1 (n)
and estimation covariance matrix Gan+1 that initializes the recursive
algorithm of steps 1 and 2. Thig method of solving the initialization
problem is described in Garbade (1975).

All the elements of the algorithm in Table 1 are known to the
researcher except the varianée o2 and the relative covariance matrix P of
the coefficienf dynamics, equation (2). These terms are estimated by
maximizing the log-likelihood function exhibited in Table 1. The expression
of the likelihood function is due to Schweppe (1965) and is also considered
in Mehra (1971). An estimate of 02, for given P, is available by analytic
maximization:

T

02 = 3 {e%/(T—n)Et} (3)
t=n+l1

The concentrated log-likelihood function, to within a constant, is then:

L*(P) = —(T-n)1n(5) - 4 zl‘: In(E,) (4)
=n+1
where and E¢ are both implicit functions of P. L* is thus a complicated
non-linear function of Pp. Numerical methods must be used to maximize L* as
a function of the unknown elements in the covariance matrix P,
Testing the null hypothesis of no coefficient variation is éccomplished

by computing the test statistic:

2[1a()] = <2[L#(0) - L*(P)] (5)




where f is the maximum likelihood estimate of P. When P = 0 the smoothed
estimates B (T) of Table 1 can be shown to be identical for all t and equal
to the ordinary least squares estimates (X'X)-lX'y where X' = (xi,...,x%)
and y' = (¥1s+++5¥7). In this paper we consistently maintain the hypothesis
that P is a diagonal matrix, so the statistic of (5) is compared to a chi-
square distribution with n degrees of freedom.

One of the advantages of ﬁsing VPR to investigate structural stability
in a regression model is that the significance of variation in individual
coefficients as well as the significance of total variation may be examined.
Suppose the space of admissible estimates of P is restricted to the positive
half-line, emanating from the origin, corresponding to the variance of the
kth coefficient. The test statistic -2[L*(0) - L*(P restricted)] could
then be compared to a chi-square distribution with one degree of freedom to
test whether the null hypothesis of stability for that coefficient can be
rejected in the presence of a maintained hypothesis of stability for all
the other coefficients. Additional hypotheses may be tested by suitably
restricting the space of admissible estimates of P.

In addition to formal hypothesis testing, VPR also provides the re-
searcher with a graphical presentation of the estimated evolving coefficients
based on the full set of observations, i.e. with the gt(T)'s of Table 1,
and with standard errors for those estimates, the square roots of the diagonal
elements of OZVt. These are useful in deciding whether the variation of
the coefficients is quantitatively important as well as statistically
significant. They may also provide useful guidance if the coefficients

were shifting over part of the sample interval but were stable over the



2. The Brown, Durbin and Evans Tests

In this section we review the BDE tests, Both tests begin with ;he
computation of a series of Tecursive residuals, These residualsg are closely
related to the e, innovations in the VPR algorithm of Table 1. Consider
again model (1). Let X{ be the n by t matrix (xi,...,xé) and let Y! be the
n~dimensional roy vector (yl;...,yt).for nli t <T. Under the null hypo-
thesis that the coefficients ip model (1) are stable the least-squares
estimate of B basged on observations up to time t ig by = (XEXt)‘lxth with
estimation covariance matrix 02(X£Xt)‘l. BDE define the Tecursive scalar-

valued residual W

e = X¢bp 4
we = 1+ xe (1% _1)Tx T t=ntl,...,T (6)

and show that wt'is a serially independent Gaussian Process with mean zero

and variance 62.




regression coefficients, both of which use the recursive residuals. In the
"cusum" test the cumulative sum series:
t

We = I wg/o t =nt+l,...,T (7)
s=n+1

6% = (¥g = Xpby) ' (Yp - X;by) /(T-n)

is computed. Under the null hypothesis of stability Wt is approximately
normally distributed with mean zero and variance t-n. Thus if Ith > 2(t-n)%
one is led to reject the null hypothesis at about a 5% confidence level. In
the "cusum of squares" test the cumulative suﬁ of squares series:

t 9 T
S¢ = I w§ X wg t =n+l,...,T (8)
s=n+l s=n+l

is computed. St is a monotonically increasing sequence of positive numbers
with Sp=1. Under the null hypothesis of stability 1-S; has a beta distri-
butionl with parameters o = -1 + (T-n)/2 and B = -1 + (t—n)/2 and therefore
S¢ has mean value (t-n)/(T-n). BDE Suggest constructing a confidence interval
for St as [(t-n)/(T-n)] * cg, where c, is chosen from Table 1 of Durbin
(1969) using o = .5 times the confidence level desired and n = L(T-n)-1 in
that table. If |S; - (t-n)/(T-n)| > Co the null hypothesis is rejected.
Brown, Durbin and Evans have observed that their methodology does not
provide a parametric test of stability, as is the case with VPR, but rather
a graphical presentation of departures from constancy. In borderline cases
this can lead to problems of interpretation. For example, is the hypothesis
of stability rejected if the 5% confidence interval is violated in only one
period for a sample set of 20 observations? 1Is it rejected if the test

statistics lie outside the interval for three successive observations,



in the coefficients of a5 linear regression model, - The patterns were chosen
to provide one where the BDE tests are expectgd to be quite powerful, one
where VPR ig appropriate, one where neither is appropriate, and ope where
the null hypothesis of stability is true. The objective of these simulationg
is to get some idea of the relative merits of the two methodologies under
various regimes of coefficient variation. We find both methods are quite
powerful in rejecting the hypothesis of stabiiity when there is a discrete
shift in the coefficients, If, however, the coefficients are changing
gradually from period to pPeriod, the BDE tests are extremely weak in de-~

tecting those changes, Two classes of gradual variatiop may be distinguished.

estimating those changes. When the effects of the incremental changes are
not persistent, however, VPR does not do very well, The power of the BDE

tests is extremely weak in either cage, These results are significant to




The model is:
ut v N(0,1) (9b)

where Xt is a scalar. In each replication each of the 103 values of Xe
were chosen randomly from a uniform distribution over the range (-5., 5.).
Because the x's are reselected in each replication our results do not
depend on any particular drawing or patterﬁ, and may be interpreted as
pertaining to a well-dispersed sequence of observations on the exogenous

data series. The cases of coefficient behavior studied were:

Case I: Discrete Jump

1. 1<t < 53
Bl,t B J
3. 54 < t < 103
9 S t=
(" 1. 1<t<53
Bz,t = {

-l. 54 <t < 103




Case IT: Random Walk with Zero Drift

Bil,e = By,eg + P1,¢t

pl’t Y N(O-, -Ol),
By = B2,t-1 + pp ¢
pz,t ,\" N(On ’ .0025)’

Case III: Convergent Markov Process

Bl,t = .7+ '3Bl,t-1 + p_l,t

pl,t “~v N(0., .01),

™
N
]

st =T384 Pyt
P2,¢ ™ N(O., .0025),

Case IV: Constant Coefficients

10

Bi,1=1
Bp,1=1
Bl,l =1
B2,1 = 1.
for all ¢
for all ¢

In cases IT ang III the valyes of the p's were drawn once and the resulting

B's were identical across replications.

Case I, where both coefficients change by a discrete amount at the same

time, should favor the BDE tests. The discrete jump case seriously violates

the assumptions of the VPR model, since that medel assumes identically dis-~

tirbuted increments to the coefficients in every period.

Case II is the VPR
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model of equation (2). Case III is similar to II but the coefficients tend
toward unity instead of following a random walk. Cases IT and III are both

special cases of the more general model:

ABy = M(B* - B__1) + p, (10)

where M is an adjustment matrix whose eigenvalues are positive and not
greater than two. If M equals the identity matrix then Bt = B* + Py and
we have a stochastic coefficient regime. Knowledge of Bt—l is of no value
in predicting By, and the stochastic innovation P+ has no persistent effect
on subsequent B's., If M equals the zero matrix we have Case IT, where the
effect of the P¢ innovations are fully persistent. Case III is between these
two extremes. There is some persistence in the effect of Pt on subsequent
values of the B's, but the magnitude of the effect diminishes as time goes
on. Rosenberg (1973) treats model (10) in some detail. We remind the reader
that our purpose here is not the estimation of the parameters of model (10),
but rather the use of the simpler model (2) in detecting coefficient in-
stability.

We now turn to consider the simulation results for our four cases of
coefficient variation. Because estimation of the diagonal elements of P,
the covariance matrix for the coefficient innovations, requires numerical
methods (cnf. the discussion following equation (4)) it was infeasible to
estimate those variances in every replication. To reduce computer expenses
we estimated them for an iniﬁial set of five replications. The squared
average standard deviations were then assumed as the diagonal entries of P
in 49 additional replications. Let E-be this assumed covariance matrix in

the 49 replications. The graphical results which follow are from the 49

replications.

Table 2 reports the test statistic =2 [L*(0) - L*(ﬁ)] for the five




-2[L*(0) - L*(P)] for first five replicationg

Case: I I1 IIT Iv
Replication 1 185.10 12,57 42 .12
2 193.54 10.65 .00 .00

3 174.16 12.92 1.60 3.62

4 164,75 13.96 3.86 .01

5 168.74 5.01 .33 1.33

=2 [{L*(0) - L*(P)] for first five replications

Case: I 11 III v
Replication 1 92.55 6.28 . .50 -.08
2 96.77 5.33 ~.64 -.31

3 87.08 6.46 ~.19 .11

4 82,37 1 6.98 .46 -.22

5 84,37 2.51 .19 -.05

Frequency of ~2[L*(0) - L*(P)] for forty-nine additiona] replicationg

x2(2 d.£.) I II pasy
2[L*(P) - L*¥(0)] > .58 .75 1.00 .86 02
> 1.39 .50 1.00 .78 0
> 2.77 .25 1.00 .55 0
> 4.61 . .10 1.00 .31 0
> 5.99 .05 1.00 .20 0
> 7.38 .025 1.00 .08 0
> 9.31 .01 1.00 .0 0
> 10.60 .005 1.00 .0 0

OOOOOOOI—‘

N
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replications in which P was estimated by maximizing the likelihood function.
Comparing these statistics to a chi-square distribution with two degrees of
freedom we find that VPR never faiiéd to reject the hypothesis of stable
coefficients at a confidence level well in excess of .5% in the first case,
failed to reject it only once at a confidence level of .5% in the second
case and never rejected that hypothesis in the last case where the hypothesis
was true. In the third case, whgre persistence is present but weak, VPR
was unable to detect the coefficient variation. This suggests the VPR
model of (2) is more powerful in detecting instabilities when there is
significant persistence in the dynamic evolution of the coefficients than
when persistence is weak.

The lower panel of Table 2 shows the frequency of occurence of the
statistic -2[L*(0) - L*(P)] for the 49 additional replications. Since
L*(ﬁ) E_L*(f) by definition of £ these frequencies are relatively greater
at lower values of the statistic than the frequencies of —Z[L*(O) - L*(ﬁ)].
This observation is confirmed by comparing the middle panel of Table 2
with the top panel. With this caveat of relatively lower values of
~2[L*(0) - L*(P)] in mind, the lower panel lends additional support to the
conjecture that VPR is capable of detecting the instabilities of cases I
and II, but is quite weak in the third case.

Figure 1 exhibits the smoothed estimated values of the coefficients
(the gt(T)'s of Table 1) for the case of a discrete jump, averaged over
the 49 replications. These mean estimates are bordered by plus and minus
one sample standard deviation of the sampled ét(T)'s. The estimates are

quite stable in the beginning and end of the sample period, when the
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FIGURE 1

VPR ESTIMATION FOR DISCRETE JuMp
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FIGURE 2

BDE STATISTICS FOR DISCRETE JUMP
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coefficients are stable, and track the discrete jump surprisingly weli.

About 20 to 30 periods appear to be required for the smoothed estimates

to move completely from the first regime to the secdnd. The estimates begin
to move away from the true coefficient valyes before the Jump actually takes
place. This, of Course, is because we are examining the smoothed estimates,
each of which makes use of al] 103 observations On y.. The updated estimates,
the Bt(t)Vs in Table 1, use only information observed up to time t, so those
estimates would not show such Seemingly anticipatory behavior. The results
of Figure 1 indicate VPR ig useful in esfimating the magnitude and timing of
the shift in the coefficients ag well as in testing for the presence of the

instability. The timing and magnitude of the shift could doubtless be

case II.
Figure 2 exhibits the average values of W, equation (7), and Ses

equation (8), for the BDE tests, bordered by plus and minus one sample

standard deviation, from the 49 replications, These graphs provide the

thesis of Stability, The cusum test is pot as reliable, ang failed to reject
the hypothesis in about haif of the trialg, Khan (1974, Pg. 1215) hag
claimed that the location of a shift in regression Parameters ig indicated
when the'St series Crosses the significance line. (1In a footnote he alsb
observes that the shift could have occurred before the Crossing of the(
significance line.) Examination of Graph 2 shoys that both of these con-

jectures are incorrect generalizations. The average St series becomes
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statistically significant long before the shift actually occurs (about
period 23 compared to the shift in period 53). The reason for this is that
the S¢ test statistics are based on the full set of sample observations,

due to the sum to T in equation (8). Information which arrives after period
t is incorporated in the construction of Sts so that statistic depends on
future as well asg past observations. In the present case of a jump in the
coefficients the expectation of the denominator in equation (8) will be
greater than (T—n)O2 since the expectation of wg for periods after the Jjump
is greater than o2, This depresses the value of S¢ in periods prior to the
jump, as is plainly evident in Figure 2.

Figure 3 reports the results of appiying VPR to case II. We have
already seen (Table 2) that VPR is able to detect the Presence of coefficient
instability in this case. Figure 3 indicates the method can also track the
time varying coefficients.

Figure 4 shows the distribution of the BDE statistics for case II.
Although the cusum test appears to do well this is an artifact of the down-
ward drift in the constant term Bl,t of model (9) which is shown in Figure
3. This drift implies a consistent over-prediction of Yt by a least sSquares
regression and consistent negative values in the recursive residuals of (6).
If the coefficients are following a random walk Yt is generated from the

model:

residuals u. ' Thus randomly walking coefficients do not bias a cusum statistic
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FIGURE 3

VPR ESTIMATION FOR RANDOM wArg
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FIGURE 4

BDE STATISTICS FOR RANDOM WALK
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from the eXpected value of zero obtained under the null hypothesis of
stability. The variance of We will depend on the covariance structure of
the compound disturbance term in (11). 1f the variance of Wy is substantially
greater than t-n there would be a good Probability of observing values of
W, greater than Z(t-n)l'/2 and hence of Tejecting the hypothesis of stability,
The power of the test, however, ig not likely to be very great since the
Statistic is not biased by the Presence of coefficients following a random
walk,

Figure 4 shows clearly the failure of the cusum of squares test when
the coefficients follow a random walk, Comparing Figure 4 with the cusum
of squares graph in Figure 8, where the coefficients are stable, suggests

the distribution of the S; statistic ig not changed substantially when the

in such cases,

Figure 5 shows the average estimated coefficients obtained from
applying VPR to case III. Although the likelihood ratio teéts did not
justify rejecting the hypothesis of stable coefficients, i.e., P = 0, the
estimates in Figure 5 are based on the assumption that P = §'rather than
the null matrix, The smoothed estimates do 2 poor job of tracking the actuail
coefficients through time. Figure 6 shows the BDE tests do an equally poor

job of detecting the coefficient variation in case III.

model (9) that can be attributed to sampling error, but the mean estimates
are clearly satisfactory. 1In these simulationg we again assumed P = P

although the likelihood tests did not allow rejection of the null hypothesis
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FIGURE 5

VPR ESTIMATION FOR CONVERGENT MARKOV PROCESS
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FIGURE 6

BDE STATISTICS FOR CONVERGENT MARKOV PROCESS
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VPR ESTIMATION FOR STABLE COEFFICIENTS
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of stability.

To conclude the results of these simulation experiments, we have found
that variable parameter regression is a robust method for detecting coeffi-
cient instabilities when there is substantial persistence in the coefficients
from period to period, whether the persistence is because the coefficients
shift only occassionally or whether it is because they follow something like
a random walk. When there is only weak persistence VPR may fail to reject a
false null hypothesis of stability. The tests of Brown, Durbin and Evans,
on the other hand, are powerful only when there is a discrete shift. Those
tests are quite weak under any regime of incrementally varying coefficients,
whether the effects of the increments are persistent or not. It seems rea-
sonable to conjecture that variation similar to case II is likely to charac-
terize the nature of the coefficient shifts in many economic models. Appli-
cation of the BDE tests to these models may fail to reject a false null
hypothesis. This leads us to reconsider the findings of Khan (1974) in the

next section.

4. The Stability of the Demand for Money

In a recent article Khan (1974) applied the BDE cusum of squares test
to the problem of whether the coefficients in a money demand function were
stable during the Twentieth century. He was unable to reject the hypothe
of stability in any of eight versions of the demand function. However, as
we saw in the previous section, the cusum of Squares test may not be able to
reject such an hypothesis if the coefficients are undergoing gradual evolution.
Since this type of change seems likely for a money demand function, Khan's
conclusions may not be as powerful as they seem. In this section we apply

variable parameter regression to Khan's model to see whether his conclusions
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can be sustained,

Khan's mode]l ig:
Alth = Bl,t + 82,tAlnRt + 63’tAlnYt + u, (12)

where My is real per capita money balances, Rt is an interest rate and Yt
is a real per capita income variable. While we make no criticism of this
model here, we do note that, because it ig expressed in first differences,
it implies an asymptotically unbounded variance on the demand for money as
time goes on. Note that Bl is a time rate of - growth coefficient because of
the differencing. Our data is taken from the volume of historical data
published by the U.S. Department of Commerce (1973). The aggregate quantity
of money is either the narrow money supply M; (series BlOQAand B110 in the
foregoing volume) or the braoder M, (B1ll and B112). Aggregate money is
deflated by the population (All4) and the GNP deflator (B61 and B62). The
interest rate ig either the commercial paper yield, Rep, (B80) or the cor-
porate bond rate, Reb, (B74). Income 1s measured by net national product
(A6). Table 3 compares the stationary estimation results of model (12)
with the corresponding results reported by Khan for hisg data set.

Application of the cusum of squares test to the four versions of the
money demand model gave results quite similar to Khan's. The test statis-
tic was never significant at the 5% level of confidence. In each version,
however, the statistic moved away from the mean value line (t-n) /(T-n) in
mid-1940 and almost became significant in 1950. This feature was also
Present in Khan's figures.

Table 4 reports the estimated values of [ﬁ]%i for each version of model

1

(12) and the values of the log-likelihood ratio statistics. These statistics




TABLE 3

STATIONARY ESTIMATES OF DEMAND FOR MONEY

Definition
of Money Equation Constant AlnRcp AlnRcb Alny
Alan 1916-1966 (1) .00296  -,0833 L4947
(.40) (2.86) (4.71)
(1K) .009 -.085 .332
(1.47) (2.86) (3.69)
1916-1966 (2) .00499 -.3198 .4147
(.68) (3.17)  (4.04)
(2K) .012 -.303 .208
(2.03) (4.61) (2.49)
AlnM2 1891-1966 (3 .01477  ~.0697 .3850
(2.73) (3.07) (4.93)
(3K) .017 -.070 .279
(2.99) (2.65) (3.46)
1901-1966  (4) .01614 -.2688 .2942
(2.75) (2.98) (3.50)
(4K0 .019 -.256 .175
(3.63) (4.30) (2.32)

t values shown in parentheses.

.360

.280

.381

.332

.294

.183

.284

.300

Estimates from Khan (1974) denoted by "K" following equation number.

.051

.049

.050

.046

.045

.045

.046

.041
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imply we can reject the hypothesis of stability for the case of narrowly
defined money and the commercial paper rate., There is virtually no insta-
bility when the broader money supply coupled with the bond rate is examined.
There is some evidence of instability with My and the commercial paper rate
(primarily in the interest elasticity of demand) and a bit more with M; and
the bond rate (in the growth rate term and particularly in the income
elasticity of demand).

Besides the likelihood ratio statistics, VPR provides graphical evi-
dence on the estimated evolution of the coefficients. Figure 9 shows the
smoothed estimates of the coefficients of model (12) for Ml and the commercial
paper rate, bordered by plus and minus one standard error of estimate. The
fluctuations are substantial and well-defined for the growth rate and the
interest elasticity, but the income elasticity appears to have stabilized
mid-way through the Great Depression at about .5. The estimated interest
elasticity of demand for narrowly defined money has fallen to zero in the
post-war period, a phenomenon examined recently by Cagan and Schwartz (1975).
The trend growth rate of demand has turned (insignificantly) negative from
its rather high value during the Second World War. Although we do not
exhibit it here, the pattern of variation in the interest elasticity of
demand for M, using the commercial paper rate is almost.identical to that
shown in Figure 9. When the narrowly defined money supply M; is coupled
with the bond rate rather than the commercial paper rate variation in the
interest elasticity vanishes, but the income elasticity and the growth rate
behave as in Figure 9.

We find that a demand for money function expressed in terms of the

broadly defined money supply and the bond rate is quite stable. When the
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commercial paper rate is introduced the interest elasticity fluctuates
sqbstantially for either definition of money, and when M; is used the trend
rate of growth and the income elasticity of demand fluctuate. These findings
are sharper than those of Khan. Khan claimed, as we do, that the demand
function was more stable when the bond rate was used, but he could not
distinguish between the two alternative definitions of the money stock.

Our results indicate that the demand function for broadly defined money is

more stable.

Conclusions

This paper investigated the problem of detecting and estimating coeffi-
cient variation with two alternative methodologies, the tests of Brown,
Durbin and Evans and variable parameter regression. We found the BDE tests
are powerful when there is a discrete break in the regression regime, but that
they fail to detect the presence of incrementally varying coefficients. We
found that VPR is powerful when there is a discrete break and when there is
persistence in a regime of incrementally varying coefficients. When persis-~
tence is reduced VPR as applied here becomes less powerful. We note, however,
that the power of VPR may be increased in the latter case if the researcher
is willing to estimate values for M and B* in equation (10), which is more
difficult and expensive than using the simple structure of (2). Finally,
neither methodology gave misleading results when the coefficients were in
fact stable.

We also considered Khan's results on the stability of the demand for
money, and found the stability of différent functions differ sharply.
Fluctuations in the elasticity of demand with respect to the commercial
paper rate have been substantial in this century, as have fluctuations in
the trend growth rate and the income elasticity of demand for M;. Demand

for M, using the corporate bond rate has been quite stable.




FOOTNOTES

s=t+l ~ s=np+1 °

Since the numerator and denominator of SEl ~1l. are sums of squares

of independently distributed normal variates with Zero means and equal
variances it follows that (SEl -l)(t-n)/(T—t) is distributed as an F
Statistic with (T-t, t-n) degrees of freedom (Mood and Graybill, 1963,
P8. 232). The result for S; is then immediate since if the statistic
Vv has an F distribution with (m,n) degrees of freedom then w = my/
(n(1 + mv/n)) has a beta distribution with parameters o = (m-2)/2 and
B = (n-2)/2 (Mood and Graybill, 1963, pg. 232).
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