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CONTROL METHODS FOR MACROECONOMIC POLICY ANALYSIS

Gregory C. Chow

I. Why Optimal Stochastic Control?

The use of econometric models for the quantitative analysis of macroecono-
mic policy is now generally accepted. A great deal of research in the last
several years has been devoted to the development and application of optimal
stochastic control techniques in policy analysis. This development appears
to be natural and necessary. Using an econometric model, one can make projec-
tions of the key economic variables in future periods given a set of proposed
future values for the policy variables or instruments. One may then examine
the nature of these projections in order to evaluate a policy proposal. This
approach to policy analysis is deficient for two reasons. First, the dynamic
response of the economic variables to a particular course assigned to the
policy Qariables is complicated and unpredictable. This makes the selection
of policy by trial and error extremely inefficient. There is a need to specify
a loss function of the key economic variables and to minimize its value with
respect to the policy instruments. The specification of an objective or loss
function and the derivation of a policy solution by optimization is an essential
feature of optimal control. It is much more efficient than the method of trial
and error. The objective function is also useful for the evaluation of other
policy proposals than the optimum policies.

The second, and perhaps more important, reason is due to the uncertainty

of economic projections. Given the proposed time paths for the policy variables,



one cannot rely on an econometric model to make perfect predictions of the
important economic variables. This uncertainty not only makes it difficult

to evaluate a given policy path, but it makes the evaluation of such a path
unrealistic and irrelevant. The former difficulty can be resolved by stochas-
tic simulations which incorporate the random elements in the econometric model
in making projections; the means and variances of the future paths can then

be calculated. Because of uncertainty in the economy, a policy maker often
will not adhere to a fixed plan irrespective of future developments. Future
decisions will be made on the basis of future observations of the economy .
Hence, it is usually unrealistic and irrelevant to evaluate the consequences
of a preassigned sequence of policy actions. A more realistic policy takes
the form of a reaction function, or a feedback control equation; it is a rule
to determine the future values of the policy variables according to future
economic observations. By the ﬁechnique of optimal stochastic control, the
solution to a multiperiod planning problem under uncertainty is given by a

set of feedback control equations. The solution in feedback form is important
from both the descriptive and the normative points of view.

We can therefore conclude that in policy analysis it is necessary to
optimize, and optimization has to be performed in a stochastic setting to
yield optimal feedback control equations. Deterministic control theory ignores
uncertainty in the econometric model and yields a preassigned future path for
the policy variables as a solution. This deterministic solution path, never-
theless, has one interesting characteristic. If the econometric model is
linear with an additive random disturbance, if its parameters are known for
certain, and if the objective is to minimize the expected value of a quadra-

tic loss function for T periods, then according to a theorem due to Simon




and Thiel, the optimum solution for the first period is identical with that

of the above deterministic path. This result is known as the first-period
certainty equivalence principle. Imagine how this principle can be applied

to evaluate the outcome of an optimal sequential plan for a stochastic control
problem with twenty periods as the planning horizon. A twenty-period deter-
ministic control problem is solved to obtain S the optimum setting of the
vector of policy variables for the first period. Given xl , We generate Yl ’
the vector of endogenous variables in period 1, using the econometric model
and a random drawing for the vector ul of random disturbances. Having gener-
ated Y, stochastically, we have the initial condition to solve a nineteen-
period deterministic control problem to obtain the'optimal X, for the second

period. We then generate Y, from x2 and a random drawing of the vector u

of random disturbances for the second period, using the econometric model.

2
An eighteen-period deterministic control problem is then solved to obtain x3 ,
and so forth until X0 and Yy, are obtained. All this will give one obser-
vation of a sequence of the x's and the y's for twenty periods. The process
can be repeated n times. Each observation provides a value for the loss
function, and the expected loss can be estimated by averaging over the n
observations. This would be a laborious and costly procedure. By contrast,
using the technique of stochastic control to be described in the next section,
we derive a set of feedback control equations which determine the optimal values
for the future policy variables in terms of the values of future economic
observations. The minimum expected loss associated with the optimal policy

can be calculated by a simple formula. Furthermore, the means, variances

and covariances of the future paths of all economic variables can be obtained



analytically without resort to stochastic simulations. They contain much
useful information concerning the dynamic performance of the economy under the

‘rules of optimal stochastic control.

II. Techniques of Stochastic Control

Before presenting some important applications of stochastic control to the
analysis of macroeconomic policy, I will survey briefly the available techniques.
Of most importance is the derivation of the optimal feedback control equations
and the associated expected welfare loss. Solutions are now available for
linear as well as nonlinear econometric models, as described in Chow (1975;
1976a; 1976b). The techniques can also be classified according to the treat-
ment of unce?tainty. Beginning with the case of complete certainty where all
model parameters are assumed to be known and all random disturbances are set
equal to their mean value zero, one can first introduce random disturbances
and secondly allow for uncertainty in the model parameters. We will postpone
till the end of this paper the treatment of a third kind of uncertainty, namely
in the specification of the model itself. For the control of a linear model with
a vector of random disturbances but known parameters, assuming a quadratic
loss function, we can find the optimal solution as a set of linear feedback
control equations. When uncertainty is introduced into the parameters of a
linear model, and when either the parameters or the disturbances in a nonlinear
model are treated as uncertain, the solutions available are only approximately
optimal. Stochastic control theory is still useful for the calculation of the
expected loss associated with the approximately optimal policies and the deri=-

vation of the important dynamic characteristics of the economy under control.



For expository purpose in this section, I will illustrate the solution
to the optimal control of a linear system with unknown parameters using a

quadratic loss function. The system is written as

1 =
(1) yt Atyt—l + Ctxt + bt + ut

where vy is a vector of endogenous variables at time ¢t , X is a vector of

t t

policy variables at time t , bt is a vector combining the effects of all exog-

enous variables not subject to control, the matrices At ’ Ct , and bt con-
sist of unknown parameters whose probability distribution is assumed to be

given, and u is a vector of random disturbances having mean O , covariance

t
matrix V , and being serially uncorrelated. Endogenous variables and policy
variables with higher-order lags can be eliminated by defining new endogenous
variables so as to retain the form (1) of a system of first order linear sto-
chastic difference equations in which only the current control variables X
appear. We can include the policy variables in the vector Y, so that xt
need not be an argument of the loss function. After suitable transformations,
the model (1) can also be used to deal with serially correlated random distur-

bances. These technical details are explained in Chow (1975). The loss func-

tion for a T period control problem is

(2) W= ] (y

-a )X (y_ - a,)
=1 £ Tt e

t t

where a, is a vector of tadrgets for the variables Yo and Kt is a diagonal

matrix giving the relative penalties for the squared derivations of various

variables from their targets.




To ease the exposition withoﬁt effecting the essential argument, let me
assume that at = 0 and bt = 0 for all t . The problem is to minimize the
expected value of the loss function for T periods by choosing a strategy

for xl ’ x2 reeer Xp oo The control variables will be selected sequentially,

the vector xt for each period being determined only after the up~to-date

information is available. This information consists mainly of Ve 1 which
includes the observations of all past endogenous variables and policy variables
affecting the current endogenous variables at time ¢t . Using the method of
dynamic programming, we first solve the problem for the last period T by

minimizing

(3) Vo = B WpKp¥p) = Bpy tygBpyy)

( ) + x’(E_ C’H C )x

= Y1 o) Yooy X By CpfnCr) g

+ 2x°(E C’H A )

T T-1TTT H

+ “H u
Ypop ¥ BpopUpfipts

where we have used (1) to substitute for Yo taken mathematical expectation

ET-l conditioned on the data available at the end of period T-1 , assumed

at = 0 and bt = 0 , and defined KT = HT for future convenience. Minimizing

(3) with respect to the vector xT ; one obtains the optimal feedback control
equation for the last period,

(4) % =- (B .CcrHC) Y(E _coHa)
T =17 Y

T Pe1ToT -1 = Cp¥po

(Without the assumptions a, = 0 and bt = 0 , the solution (4) would contain




an intercept I .)  The minimum expected loss for the last period associated

with the optimum policy is obtained by.substituting (4) for X into (3):

- - - _l -
- vo_y (BAZEC.) (BCSH Co)  (EC_H, A

(5) Vp = Yooy (FAGHAL)Y T UTITT

T oo Y-l ) Yooy

+ Eu’ .
oty

To solve the problem for the last two periods, we apply the principle

of optimality in dynamic programming to minimize with respect to Xn_1 the
expression
(6) Vo1 = Bpop g Kpo1¥pay + V)

The rationale for (6) is that whatever XT—l is chosen, which will affect

the outcome Yooy 1 Ve shall choose the optimum policy % according to the

T

A

feedback control equation (4) to yield the minimum expected loss VT . The
optimal policy for both periods can thus be obtained by minimizing (6) with

respect to X ;, given that x

] will be optimally chosen. Substituting

T
(5) into (6) and letting

- - - i
= + - E ,
(7) Hp_, = Ko + (EAZH A (EAEC.) (ECH C) 7 ( CrHAL

we rewrite (6) as

(&) Vg1 = Bpop WpogBpoy¥py) + Bugfply -



Note that, except for a constant, (8) has the same form as (3) with the

subscript T-1 replacing T . Therefore, by the same argument, the optimum
QT—l will be given by equation (4) with T-1 replacing T ; the minimum total
expected loss VT—l for periods T-1 and T will then be found as in (5) .

~

The process continues until %l and Vl are obtained. Vl is the minimum

total expected loss for all T periods. It can be computed by equation (5)

with the subscript 1 replacing T , where H is obtained by solving

1

the difference equation (7) for Ht backward in time. In these calculations,

the approximation has been made that all expectations involving the unknown
parameters At and Ct in the future are based only on data available at the
beginning of period 1. Otherwise, the derivation will be more complicated

because the expectations in equation (4) are functions of the data Yoo ¢

Yy etc. We have just demonstrated how the optimal feedback control policies

T-2 '
and the associated expected loss for all periods can be obtained analytically.

The above derivations can be extended to deal with nonlinear econometric models

with unknown parameters, as described in Chow (1976a).

ITI. Applications to Macroeconomic Policy Analysis

Having elaborated on the two major concepts in optimal stochastic control,
namely, the minimum expected loss and the feedback control equations, we will
illustrate their applications to the analysis and formulation of macroeconomic
policies.

Using the minimum expected loss, one can compare various policy proposals
as described by different feedback control equétions or reaction functions.

The candidates for comparison include such control equations as the ones pre-
cribing the policy variables to grow at constant percentage rates, reaction

functions estimated from time series data as descriptive of the historical



decision making process, and policies which rely exclusively on a subset of

active instruments while keeping the remaining passive instruments to grow

at some constant rates in order to study the .relative effectiveness of fiscal

and monetary policies. The minimization of expected loss can also be used

to measure the trade-off possibilities for inflation and unemployment implicit

in an econometric model. Without using the techniques of optimal control,

one can experiment with different policies using an econometric model and

observe the resulting rates of inflation and unemployment, hoping to trace out

the trade-off possibilities. However, this approach is defective because the

inflation-unemployment combinations generated by the experiments may not be

the best possible. By varying systematically the parameters of the loss func-

tion in an optimal control formulation, one can trace out the best combinations

pf inflation and unemployment that can be achieved according to a given econo-

metric model. Finally, the minimum expected loss can be used to measure the

value of information and the costs of délays. The amount of information can

be described by the variances of the estimated pafameters and of observation

errors; the variance-covariance structure, when incorporated into the analysis,

will affect the minimum expected loss. Delays in information and in carrying

out the decisions can also be modeled in the framework of stochastic control and

the resulting minimum expected losses can be compared, Chow (1975, pp. 182ff, 202).
Secondly, the feedback control equations are extremely useful for policy

analysis. When combined with the other econometric equations, they become

a part of a stochastic model whose dynamic properties can be studied by analyti-

cal technigues. For the analysis of any policy, optimal or not, one would

like to ascertain the means, variances and covariances of the important time

series generated by an econometric model given the policy. Spectral properties
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of these time series can also be deduced analytically, as described in Chow
(1975) . Since automatic stabilizers can be specified by feedback equations,

one can study the dynamic properties of an economy subject to different stabili-
zation schemes. One can even optimize with respect to the parameters in the
automatic stabilization schemes by the techniques of stochastic control for
nonlinear systems in order to find a good scheme. Various dynamic policy multi-
pliers, including the impact, delayed, interim, and long-run multipliers, can
be calculated from a nonlinear econometric model after appropriate lineariza-
tions; they are by-products of the optimal control calculations for nonlinear
models which I have proposed. The tools of stochastic control can also be used
to compare econometric models, in terms of the optimal feedback control equa-
tions which they imply, of the degrees of stability under the optimal stabili-
zation policies, and of the sensitivities_of the control solution to changes

in the parameters of the models or the loss functions. In short, the techniques
of stochastic control can be used to deduce the policy implications of econo-
metric models systematically and efficiently.

Let me conclude this paper by a proposal to deal with the third kind of
uncertainty in econometric models, the uncertainty associated with the speci-
fication of the model itself. The decision maker, when faced with a serious
choice between two or three competing models, is advised to calculate the
optimal policies based on these models, and to examine how these and other
proposed policies perform under the assumptions of the different models. A
payoff matrix should be used, with different columns corresponding to the
different models and different rows corresponding to the different policies
to be examined, each element in the matrix being the expected loss associated

with a combination of model and policy. Such an analysis might uncover policies
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that are superior to the inactive policies for all models. This finding would
be extremely important. If no such active policies could be uncovered which
dominate the inactive policies for all the seriously competing models, much
useful information would have been obtained on the degrees of differences in
these econometric models, the needed areas of econometric research for macro-
economic decision making, and the empirical basis for current policy recommen-
dations or decisions. A Bayesian would assign probabilities to the competing
econometric models and choose that strategy which minimizes the expected value
of the entry in the above payoff matrix. To any rational economic decision
maker, Bayesian or not, the technigues of optimal stochastic control are impor-
tant not because existing econometric models are nearly perfect but because
how imperfect the models are, what imperfections matter for policy analysis,
and what areas require most research can be ascertained efficiently only by

the use of these techniques.
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