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1. Introduction

A problem which occurs in a wide variety of disciplines is that of
separating the components of a probability density function which is the
mixture of two or more normal densities. The problem occurs in engineering
(Young and Coraluppi, (1970), Yakowitz (1970)), where it is referred to as
"unsupervised learning," biology (Bhattacharya (1966)), physiology (Medgyessy
(1953)), and economics (Quandt (1972), Ramsey (1975)). For the sake of
simplicity we shall restrict the subsequent discussion to the case in which it
is known a priori that the number of components is two. The simplest possible

such case is when a sample of observations x crX is given on a random

17"

variable x where it is known that

X ~ N(ul,ci) with probability A
and (1-1)

x ~ N(u2,0€) with probability 1-) ,

2 2 . .
;y M., © o] being unknown. A more complicated case

the parameters A, My 5 17 95

arises in the switching regression context in which observations are given on

a random variable y and on a vector of nonstochastic regressors x and

where
]
- + . ‘o
Y xiBl up with probability A
. (1-2)
v, = xi82 + Uy with probab}llty 1-A
h N (O 02) ~ N(O 02) with A the vectors B8 B and 02
where uli ’ 1 ’ u2i ’ 2 ’ ’ ec ll 2 ll

*
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2.

03 being unknown. In an economic context a switching regression systen such

(1-2) is equivalent to assuming the presence of structural change. Frequently
structural change may be posited to depend deterministically on some observable
variables; formulating it specifically as in (1-2) implies that the investigator
is ignorant concerning what moves the system from one structural form to another.
The history of attempting to solve the problem is a long one and for the
earlier portion of it the reader is referred to Cohen (1967). 1In attacking
the problem the following well-known propositions may be kept in mind: (1)
Unlike mixtures of some other densities, the parameters of mixtures of normal
densities are identified (Yakowitz (1970)). (2).There exists no sufficient
estimator for the parameters of a ﬁormal mixture (Dynkin (1961)). (3) If a
priori information is available which states that oi = ko; (in either (1-1)
or (1-2)), with k a known number, then maximum likelihood estimates are
consistent and may ordinarily be computed by numerical methods without too
much difficulty. This is the case treated in detail by Day (1969). (4) If

k is not known in 02 = kcg » then the likelihood function corresponding

1
to either (1-1) or (1-2) is unbounded and the attempt to determine
the location of a global maximum leads to inconsistent estimates.

The purpose of the present paper is to investigate an estimating method for
the case in which no prior information is available concerning the o's. The
method makes use of the sample moment generating function and can be applied
in reasonably straightforward, "mechanical" manner. It is useable with
relatively small samples in contrast to some of the methods relying on graphical
techniques (Bhattacharya (1967)) where illustrations with sample sizes of
several thousand are given. Finally, it can be applied to the regression case
with no more difficulty than to the case of a siﬁple, constant-parameter mixture.

In Section 2 we state the principal notions of (1) the method of moments (Cohen

(1967)) which appears to be one of the most easily implemented techniques for

estimating constant-parameter mixtures and (2) of the method employing the sample




3.
moment generating function. In Section 3 we report the results of some
comparative sampling experiments and in Section 4 we extend the results to the
regression case. This section also contains a specific economic application.
Section 5 contains some brief conclusions.
2. Some Methods for Estimating Normal Mixtures
with Constant Parameters

As indicated before, we shéll restrict our attention to the case of a
mixture of two normal distributions with unequal variances. In the absence
of prior information about the variance ratio maximum likelihood estimation is
not feasible; however, there are at least two easily computed nongraphical
methods that can be employed in this case. These are the method of moments
and the method of the sample moment generating function.

Method of Moments. The method of moments has been discussed by Day (1969)

and Cohen (1967). In the case of two components the density function the

parameters of which are to be estimated is

- - 2
e N 17
2 2 A -
f(x;A,ul,uz,cl,dz) = —— e 2 % +-—L4L~— e 2 % (2-1)
vam ol v 2m 02

Equating the sample mean to the theoretical first moment of (2-1) and the second,
third, fourth and fifth sample moments about the mean to the corresponding

theoretical central moments we obtain five equations from which it is possible

to solve for A, ul, uz, of, Og. The solution requires the negative root of
the nonic equation
9 8 7 6 5 4 3 2
+ = -
ayz + agz + a,z + a2 agz + a,2 + ajz + a,z + az + agy 0 (2-2)
2 2 2
where a9 = 24, a8 = 0, §7 = 84k4, ag = 36m3, a5 = 9Ok4 + 72k5m3, a, = 444k4m3 -
18k2 = 288 4 108m k k. + 27k3 a, = —(63k2 + 72m_k% )m2 a, = —96m4k
57 B3 T <°°T3 3%4%s5 4" %2 T 4 3%5/M3r 8 = 3%’
ay = —24m§ and where m, denotes the ith central sample moments and kj is
. . _ _ 2 _ _ .
the Jjth sample cumulant, i.e., k4 =m, 3m2, k5 = mg 10m2m3. It is further



shown in Cohen (1967) that if we define the differences

d, = u - E(x)

1

d = U —E(X) ’

2

~

V 1
Z the negative root that solves (2-2) and «r as

"3 "2 - 3
-8m3z + 3ksz + 6m3k4z + 2m3

r = A A

3 ~ 2
z (22" + 3k4z + 4m3)

then we obtain as estimatesg of dl and d2

dl = (r - Vr2-4z)/2
A 2 ~
d2 = (r + Vr-42)/2

We then have

. =d. + x

X

=
]

Q
+

where x is the sample mean. The variances are shown to be estimated by

dl(2r-m3/z)

I\2 A2
"1f“‘“37"“‘”‘ tmy, -y
;2 ) dg(Zr—ms/z) o _.52
2 3 2 2

and the mixture coefficient by
~ d
A= 2
d2-d

1

The various formulas can be simplified if prior knowledge exists to the
effect that either the means or the variances of the components are identical.
No estimates of the Sampling variances of the estimates are provided by the

technique.. We shall refer to the moment method as MM in the subsequent sections.

lSee below for possible difficulties in this regard.
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Method Using the Moment Generating Function. From (2-1) the moment generating

function is

22 2,2
+
0x ule+cle /2 uze 026 /2

E{(e ™) = e + (1-N)e (2-3)

The sample characteristic function has been used successfully by Arad Wiener
(1975) to estimate the parameté:s of symmetric stable Paretian distributions
with characteristic exponent other than 2. In that case the estimation is
relatively simple since the logarithm of the characteristic function is linear
in the parameters.

In the present case the method involves a nonlinear optimization problem.

Let a sample xl,...,xn be given and choose k .values of 96, el,...,ek,
in some small interval (a,b), a < 0 < b. For any given value of 8, the
0.x n e.xi J
quantity E(e 1) may be estimated by z e’ /n ; moreover since the
B.Xi i=1 n 6.x,
quantities e J are distributed identically with common mean, Z e J l/n
0.x i=1
converges to El(e ] )  with probability one by the Strong Law of Large Numbers.
n 8.x, U 0. +0£02/2
Since z e J /n is, except for sampling error, equal to Ae J J +
j=1
2
u20.+0§6./2
(I-))e J J + we shall estimate the parameters by minimizing
n ejxi
K i__z_le b 6. +0202/2 b8 4026272 \?
s. = ) ~xem ) 2T L ganye 27 2 (2-4)
n j=1 n

This method of estimating will be referred to as the MGF method. Let

2 e
(X ’uln'Gln'u2n’02n) be the parameter values that minimize Sn. Then, by

n n e.xi 6.x
the convergence of z e /n to Ef(e ] ) and by the uniqueness of the
i=1 A N A A
. . . _ . 2 _
moments it follows that pllm(mlnSn) = 0 and pllm(kn,uln,oln,u2n,02n) =

(A,ul,ol,uz,cg) and the estimates are consistent.

It is possible that (2-4) may be difficult to minimize since it involves
sums of exponentials which occasionally create problems of slow convergence.
In such a case it may be worth while to replace the second and third terms in

(2-4) by their Taylor series approximations of desired degree. This will clearly
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introduce some truncation error and the consistency argument above no longer
holds; nevertheless such an approximate technique may be worth while under
some circumstances. In the sampling experiments described in Section 3 we
report some experimentation with 3rd, 4th and 5th degree expansions;
minimizing the corresponding expressions (2-4) will be denoted as the MGF3,

MGF4 and MGF5 methods. Letting A, = A, A_ = 1-X, the 5th degree expansion

1l
which multiplies X2(2=l,2) is

02+ 2 Lo 2 A 22 8
z z 3 %% Mg 4 °g MO Wy
1+ ejul + e (——=) + 07 ¢ 3 + 6) + ej( A + " + 24) +
- u302 5 G6 W24 42 6 3.4
oSk, 2% e e ) p, Be% ) 2, 67(“2 g Mgl L,
;'8 12 ' 120 16 a8 48 28
B8 .25 y c8 410
g % M9 9 3% 10, %
°;G8z * o) %G1 % a1 (2-5)

3. Sampllng Experiments with Normal Mixtures
with Constant Parameters

General Discussion of Experiments. Sampling experiments were carried out
employing (1) the method of moments, (2) the method employing the sample moment
generating funcﬁion, i.e., consisting of the minimization of (2-4), and (3)
approxiﬁations to (2) employing third, fourth and fifth degree Taylor series
expansions of the right hand side of (2-3), i.e., formulas such as (2-5).
These latter approximations were computed in only a subset of all the
experiments and are not considered the principal procedures.

Samples of size N of the random variable X were generated according to
the pdf (2-1); the true parameters of the pdf in the various experiments and
the value of N are given in Table 1. Each exXperiment was replicatéd as
many times as was necessary to produce 50 successful matched replications of
all five estimating methods in Cases 1 through 5 and of the two principal

estimating methods in the remaining cases. A replication would be counted as
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a failure for any of the following reasons: (1) The numerical minimization of
(2-4) for the MGF methods may have failed, either because of continual
straying of the algorithm into prohibited regions in the parameter space
(e.g., A <0 or X >1 or cf L0 or 6; < 0) or because of lack of
positive definiteness of the matrix of second partials of (2-4) at the point
deemed to be stationary by the minimization algorithmz; (2) the computation of
the estimates by the method of moments may have failed because (a) (2-2) had
more than one negative root and no admissible solution; i.e. one satisfying
0<XZ<1, Gi > 0, 03 > 0; (b) it may have had-more than one negative
Yoot with more than one admissible solution; (c) it may have had no negative
root at all.3 The failure rates of the various methods are exhibited in
Table 2. No results are presented for MGF3, MGF4 and MGF5 in Cases 6 through
9 since these were not computed. The non-positive definiteness of the matrix
of second partial derivativeg for MGF in these cases was disregarded since it
occurred so freqguently that it would have required a very large number of
replicaéions to produce 50 successful ones.4

A crucial question for the MGF-type methods is the choice of the values of
ej in (2-4) and in the approximations to it. In the basic set of nine experiments
50 values of Gj were employed (k = 50 in (2-4) with ej = 273/25m,

where j = -25, -24,...,-~1, 1,...,24, 25 and m = 10. Some additional

experiments reported at the end of this section consider variations in both

2Minimization was performed with the Davidon-Fletcher-Powell algorithm and
computations were terminated if either the proportionate value of the step size
or the proportionate change in the function value or the length of the gradient
fell below .0001. :

3 cq s .
In te Appendix we exhibit two samples corresponding to (b) and (c)
respectively and the corresponding solutions derived from (2-2).
Lo s -6
The value of Sn at the minimum was characteristically 210 ; the
failure to exhibit positive definiteness was due the difficulty of determining

sufficiently accurately the eigenvalues of the matrix of mumerically computed
Second partials.
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k and m. The particular choices for the basic experiments represent a
compromise between coﬁflicting considerations. Large values of k make for
finer resolution but increase the cost of computations. Small values of m
exaggerate the effect of atypical sample values but large values of m reduce
the width of the interval about zero over which the sample moment generating
function is evaluated. As the width of this interval goéé to zero, Sn goes
to zero and, more importantly, the matrix of second partials of Sn approaches
singularity, thus making positive definitenegs at the minimum harder to ascertain.
The compromise selected was clearly not fully successful in steering an optimal
middle course between these dangers.

Basic Results. Table 3 contains the mean estimates and Table 4 their

mean square errors. Table 5 displays the fraction of times, for each Case (and
aggregated over all coefficients) that a particular method produces the least
absolute deviation of the es£imate from its true value. Some of the

relevant comparisons are as follows. Cases 2 and 1 differ only in sample size
and represent a situation in which the component normal densities barely
overlap; Cases 4 and 5 also differ only in sample size but the component
densities have a substantial overlap. In both sets of cases the mixing
parameter is .5. Case 3 is the same as Case 1 but has strongly unequal mixing.
Case 6 is similar to Case 1 except one component has a large variance making
for more overlap in the densities; Cases 7 and 8 have even larger variance

for one component and highly unequal mixing. Case 9 is one in which the

two component means are identical.

Comparing the MSE's across Cases 1 through 5 for MGF3, MGF4, MGF5 and MGF
we note that MGF3 generally produces inferior results. There are 25 possible
comparisons (5 cases x 5 coefficients); MGF produces the lowest MSE's of all
four methods in 10 instances. Not considering MGF5, MGF has the lowest MSE's

in 19 instances whereas MGF5 beats MGF3 and MGF4 in 17 instances. On the whole
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therefore MGF5 is quite comparable to MGF. The corresponding comparisons in
terms of mean bias are much less sharp although MGF and MGF5 still beat the
other two methods on the average. In terms of the fraction of smallest absolute
deviations produced by the methods over the replications (Table 5) the conclusion
is slightly different: MGF is notable better than MGF3, MGF4 and MGF5, but
the latter does not clearly dominate MGF3 and MGF4. Since the results of
Table 5 (unlike those in Table 4) are not affected by outliers, this suggests
that the relatively poor performance of MGF3 and MGF4 is due to the presence of
a few very bad estimates. Henceforth we shall concentrate on examining the
behavior of MGF and MM.

Consider first Cases 1 and 2 in which the overlap of the components is
small. The MSE's diminish with larger sample size for both MGF and MM, by
roughly a factor of 2 for all but one coefficient for MGF but for only two
coefficients in the case of MM. The MSE's are smaller for MGF estimates in
seven out of the ten possible comparisons. In terms of the fractions reported
in Table 5 MM appears to be slightly superior to MGF; however, if we disregard
MGF3, MGF4 and MGF5 and compute just the fraction of times that MGF beats MM
in terms of mean absolute deviation, the winning fractions for MGF for the
five coefficients are .48, .62, .62, .78 and .96 yielding an average of .69.5
Comparing Caées 4 and 5, the MSE's decline (again roughly by a factor of 2) for
all coefficients for MGF; in the case of MM they actually increase in two
instances and decline only slightly in the other three. In absolute terms MGF
wins the comparison of MSE's in every one of the ten possible comparisons.

Table 5 confirms this result. The slight asymmetry introduced in Case 3

Pooling results for different coefficients induces lack of independence
among subsets of trials for which methods a re being compared; hence the
outcomes are not binomially distributed. For any individual coefficient the
reader may test the null hypothesis that the true fraction is .5.
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in which A = .75 has no major effect on either MSE's or mean biases or on the
fraction of best results achieved in Taﬁle 5: all of the relevant statistics
change in rather minor ways. Case 6 has a substantial amount of ovérlap, with
one of the component densities having a very much larger variance than the
other. MGF is again superior ﬁo MM by all criteria. The mean square errors
for all coefficient estimates except A increase markedly, however, and tend
to increase more for the component witﬁ the larger variance. The true variance
of one of the components is increased even further in Cases 7 and 8; moreover
the true mixing parameter is alternately.sét at ﬁhe extreme values of .1 and
-9; thus in Case 7 the component with small Variénce is selected on the average
10 percent of the time and in Case 8 90 percent of the time. It is uniformly
true for both methods that the MSE's of estimates of the parameters of the
components associated with large values of ) afe small and conversely; in
general, however, all MSE's‘as well as mean biases (except for A} are large.
It is still true in Case 7 that MGF is overwhelmingly superior to MM (with MGF
having an aggfegate winning percentage for absolute mean deviations over the
replications of 80 percent); however, this is no longer true in Case 8 where
MGF beats MM in terms of MSE's only for the parameters of the seldom selected
component. In Case 9, in which the true means of the components are
identical, MGF again does substantially better than MM on all counts (although
for one coefficient the MSE is slightly smaller for MM than MGF).

Variations in k and m . Some experiments were performed in order to

examine the sensitivity of the MGF results to variations in k and m. Case

1 was repeated four times with the combinations (k =24, m = 10); k =74, m = 10),
(k = 50, m =5}, (k = 50, m = 20). The general conclusion that emerges is

that the results have'a moderate sensitivity to Qariations in k but a

somewhat more significant sensitivity to variations in m . Within the ranges

examined the reduction in k from 50 to 24 reduced MSE's by anywhere from 1 to
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about 70 percent the increase in k to 74 increased dl but one MSE. Changes
in m had a fairly marked effect: m = 5 made MSE's substantially larger for
one coefficient (by a factor of over 10) and about 50 percent larger for three
others; m = 20 reduced all MSE's, some by more than a factor of 10. Essentially
similar behavior was noted wheﬁ base 8 was repeated with k =24 and m = 10
(slightly larger MSE's for two coefficients, noticeably smaller ones for the

remaining three) and with k = 50, m = 20, where all MSE's declined markedly.

Concluding Remarks. On the whole the MGF method proved superior to MM.
In most cases it had smaller MSE's and tended to beat MM in pairwise
comparisons over the replications of the absoluté deviation of the estimates
from the true values. Increasing the sample size had the expected effect on
the MSE of the MGF estimates but did not have a comparable effect on those of
MM. Computational failures were also much more numercus for MM than for MGF with
the former failing 223 times throughout the basic experiments for one reason
or another while the latter failed on 33 times.6

There are two cautionary remarks in order. (1) The computation of a positive
definite matrix of second partials at the optimum created serious difficulties
in a number of cases; these failures were disregarded in the above
géneralization about failure rates. Even more serious is the fact that no
estimates of sampling variability are produced by the MGF technique, and hence,

on these grounds there is nothing to choose between the two methods. The

reasons for this are as follows: (a) The least squares estimates obtained

by minimizing (2-4) are not maximum likelihood estimates, even if we assume
n

6.x,
that the dependent variable z e J l/n is approximately normal (by the Central
o1

Limit Theorem) since the variance of this variable (conditional on X) is

6The sequence of computations was that MGF was first computed and MM second.
Thus, if MGF failed, the corresponding MM computation was never performed. If
MGF succeeded and MM then failed, the successful MGF computation was discarded.
Thus the overall MGF failure rate is 33 out of 706 tries ( =.047) and the
overall MM failure rate is 223 out of 673 ( =.331).
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clearly a function of 6 and hence we have a case of heteroscedasticity for
which no provision was made in estimation;7(b) Even if an approximation to the
appropriate variance-covariance structure were explicitly employéd, the
negative inverse of the matrix 6f second partials of the corresponding log-
likelihood function (which is a scalar multiple of the inverse of second
partials of the weighted sum of least squares) evaluated at the estimates
cannot be guaranteed to provide even a consistent estimator of the Cramer-Rao
bound since no sufficient statistic exist. (2) The MGF estimates are
considerably affected by variations in m and k and we have at present
only superficial knowledge of the range of effecfs which variations in these

parameters may produce.

4. Estimating Mixtures of Regressions

Basic Notions. Consider the case when

y; =a; * blxi + ug with probability A

i
and
y; =a, + b2xi + Uy, with probability 1-A
, .. 2 .. ' 2
where uli (i=1,...,n) is i.i.d. as N(O,cl), u2i is i.i.d. as N(O,oz), and

where the ¥; are nonstochastic and assumed identical in repeated samples.

The pdf of the random variable y is

2
_ (y~ al 1 X ) _(y a2—b2x)
2 ; 2
20 20
A 1 1-A 2
h(y) = e + ———e¢ (4-1)
v2m o v2m o ‘
1 2
n 6x, n 20x,
2
7'I‘he variance of 2 e l/n is approximately 0282 z e l/n where
i1 o1
02 = Aoz + - A)oz - A weighted least squares approach would consist of

dividing each term of (2-4) by this approximation. This is almost certain to
create difficulties 1n minimization since the denominator will contain weighted
sums of g2 and 02 it is characteristic of such problems that minimization
algorithms™ attempt %o set one or both 0 's at negative values. 2as a compromise
the 02 term might be omitted altogether. 4
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and one could think of developing estimators based on the method of moments as
in Section 2; however, the number of parameters is increased here by two (and

in the case of %k independent variables in the two regressions it would be

increased by 2k ) and this necessitates employing moments of order even higher
than fifth. The results are likely therefore to be fairly unstable.

The method employing the moment generating function can be applied in the
present case with one additional approximation. The moment generating function

is a function of the regressor x since

5 (al+blx)e+ezci/2 (a2+b2x)6+820§/2
E(e Y) = le + (1-2)e - (4-2)

0.y
1
We again select a set of 0.'s and replace E(e 17 by oy

e.bkx i=1
the same time we replace e’ (k=1,2) by

Il t~13
(]
',_J

RURS . '
L z e’ * .8 We estimate the parameters by forming the obvious analogue
i=

to (2-4) sad minimize it with respect to all unknown parameters.9

Sampling Experiments. Some very modest sampling experiments were performed

to verify the workability of the procedure. The independent variable x was
chosen once and for all from the uniform distribution from O to 10. Twenty-
four values of Jj were used and m was set to 30 throughout the experiments.
The additional basic characteristics of the experiments are given in
Table 6, the mean estimates in Table 7 and the mean sguare errors in Table 8.
In all cases the regression equations are so chosen that the scatters of
points generated from the two regressions overlap one another substantially.
Cases 1 and 2 differ in that in Case 1 the two pairs of true regression
coefficients are more distinctly different from one another than in Case 2.

Cases 1 and 3 on the one hand and Cases 2 and 4 on the other differ only in

n 9.,b x,
) k
We assume that the Z e J l/n converges to a finite limit as n »> «
et}

The resulting optimization problem will in most instances be of a
dimensionality that is routinely soluble.
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the value of X; Case 5 is the same as Case 4 except for sample size. Only
30 successful replications were generated for each experiment; the number of
failures in computiné the minimum was 0 in Caée 1, 4 in each of Cases 2 and 3,
13 in Case 4 and 18 in Case 5. The mean biases are quite small although both
bl and b2 are slightly biased toward zero in nearly all cases. The MSE's
behave at least parﬁly as expected. Specifically, (a) they are uniformly larger
in Case 2 than in Case 1; (b) they ére uniformly larger in Case 5 than in
Case 4; (c) the MSE's of the estimates'for the coefficients in the first
regression are uniformly smaller in Case 4 than in Case 2; (d) the MSE's
of the estimates for the coefficients of the secénd regression are uniformly
larger in Cése 3 than in Case 1; (e) The values of the MSE's for the b's are
of the general order of magnitude-that we would expect for their sampling
variance if we had (i) prefect sample separation and (ii) indefinitely large
samples with the x's drawn from the uniform distribﬁtion (the true sampling
variance for bl and b2 under those circumstances being .0072 and .0048
respectively). However the MSE's of the coefficients in the first regression
are not all smaller in Case 3 than in Case 1 and the MSE's of the coefficients

of the second regression are actually all smaller in Case 4 than in Case 2.

These anomalies may be due to the omission of failed replications from the
summary statistics and to the relatively small number of replications.

An Economic Example. Hamermesh (1970) examined the determination of wage

bargains from a pooled cross-section time-series sample of 180 Observations on
wage changes (w), changes in the consumer price index (&) and unemployment (u)

The null hypothesis is that
w = BO + Blc + Bz(l/u) + €
with Bl and 82 both greater than zero and where e is the error term.

- The alternative hypothesis entertained by Hamermesh is that the effect of ¢

on w is of a noticeably positive magnitude only when ¢ exceeds some
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critical figure; this critical figure is selected a priori by Hamermesh to be

2 percent per annum. Accordingly, the alternative is

W BlO + Bllc + Bz(l/u) + €1 if ¢ < 2
and (4-3)

w=2 + lec + Bz(l/u) + €, otherwise

20
The inclusion of 1/u in the regression is the obvious Phillips curve notion
that increasing levels of unemployment make it increasingly difficult for
unions to drive hard wage bargains; the inclusion of ¢& reflects the
assumption that the wage bargain will (at least for some large values of ¢)
reflect increases in the cost of living.lO Hamermesh estimates his switching
model (i.e., Equations (4-3) by introducing suitable dummy variables which
alter their values from one level to another at the point at which c = 2.0
and restricts B8 to be identical in the two equations. In terms of the

2

formulation given here he finds

810 = 2.3576 820 = 2.4525
Bll = -0.0424 821 = 0.5345
82 = 7.3539

that is to say, for low levels of ¢ this variable has a negligible (and
negative) effect on wage changes but a more sizeable and positive one for
larger values of ¢ .

We shall assume here that we have no prior information as to the critical
value of ¢ below and above which different regression regimes are at work.
We may continue to aséume that nature chooses between the two regressions for
any particular data point by comparing ¢ to a critical value (known only
to nature); thus, if this critical value is ¢ » and the fraction of observations
with & < ¢ is A, then nature chooses the first equation of (4-3) with

probability A and the second with probability 1-A. If we then assume that

10 For more detail on the theory as well as the data the reader is referred

to Hamermesh (1970).
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the e's are normally distributed we are dealing with the case discussed in
Section 3, differing_from that only in that here we have two regressor
variables.
Only point estimates are obtained by the method of the sample moment
generating function; we computed the estimates both on the assumption that

is identical in the two regimes and that it may assume different values.

8

In the restricted case we have

>
I}

.4904
BlO =‘2.l4ll 820 = 2.3947
811 = -,1760 821 = 1.0797
82 = 7.3062
In the unrestricted case we have
A = .,4905
810 = 2.1398 820 = 2.3929
Bll = -.1781 821 = 1.0783
812 = 7.3097 822 = 7.3498

Not only are the coefficients nearly identical betwéen the two cases,; but the value
of the . sum of squares at the minimum is 9.095:-210-8 and 8.955x10—8 respectively;
differing by a negligible magnitude. What is interesting about the estimates

is particularly twofold: (1) the coefficient of & in the second equation

is much larger than as estimated by Hamermesh; in fact it is slightly greater

than unity, suggesting "overcompensation" in wage bargains of changes in the

cost of living; (2) if we order the sample valyes of & and compute the value

of the cutoff ¢ implied by A =A.49, we obtain by interpolating between

the 88th and 89th largest observations a critical value of 1.35, considerably

smaller than Hamermesh's a priori value of 2.0. The conclusion thus is that
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changes in the cost of living begin to matter at an even lower value of ¢

than employed by Hamermesh and when it matters, wage bargains overcompensate for

it.

5. Conclusion

We have adapted the technique of using the sample moment generating
function to estimating mixtures of normal distributions and contrasted it
with the well~known method of moments. The method employing the sample
moment generéting function appears to work well in providing point estimates
in the case of mixtures oﬁ components with constant means as well as regression
mixtures in which the mean value of the random variable depends on the
regressors. The method can be successfully applied to realistic data and has
in one instance provided a novel interpretation of a sample. Along with some
other methods it fails to give estimates of the sampling variance of the
estimates; how best to compute such sampling variances is an open question

for future research.



Table 1

SUMMARY CHARACTERISTICS OF EXPERIMENTS
WITH CONSTANT PARAMETER MIXTURES

18.

Case .

1 2 3 4 5 6 8 9
.5 .5 .75 .5 .5 .5 1 .9 .5
-3.0 -3.0 -3.0 -1.0 -1.0 -3.0 -3.0 ~3.0 3.0
3.0 3.0 3.0 1.0 1.0 3.0 3.0 3.0 3.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
3.0 3.0 3.0 3.0 3.0 16.0 36.0 36.0 9.0

50 25 50 50 100 50 50 50

50



CAUSES OF FAILURES IN COMPUTING ESTIMATES
FOR CONSTANT PARAMETER MIXTURES

Cause

Co

nvergence

MGF3
MGFL
MGF5
MGF

Po

sitive Definiteness

MGF3
MGFL
MGF5
MGF

Moment Method

Negative Root(s) without
admissible solution

Multiple Negative Roots

with multiple admissible

solutions

wo Negeative Root

NA:

Not Applicable

Table 2

19.

1 2 3 N 5 6 7 8 k)

0 2 6 0 1 NA NA NA NA
1 0 2 1 1 NA NA ©NA NA
0 0 0 0 0 NA NA ©NA NA
0 0 2 3 1 3 13 5 6

13 19 0 0 O ©NA ©NA ©NA ©NA
13 21 0 0 0 NA NA ©NA ©NA
6 T 0 0 0 NA NA ©NA HNA
7T 6 0 0 0 NA NA NA ©NA
0 0 0 N b 2 5 4 23
0 0 1 1L 4 5 I 8 15
0 1 22 23 15 22 O 5
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MGF3
MGF4
MGFS
MGF
Method of Moments

22,

Table 5
OVERALL PERCENTAGE WINS FOR CONSTANT PARAMETER MIXTURES
Case
1 2 3 L 5 6 T 8 9
.196 .196 124 .260 212 - - - -
.1L8 .128 212 .056 076 - - - -
.136 .120 .148 .200 .228 - - - -
24l 276 .2L48 .324 .34k .TL8 .800 468 .728
276 .280 .268 .160 .1k4o .252 .200 .532 272
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Table 6

SUMMARY CHARACTERISTICS OF EXPERIMENTS
WITH REGRESSION MIXTURES

Case
1 2 3 Y 5
5 5 .8 8 8
-1.0 ~1.0 -1.0 -1.0 =-1.0
5 5 .5 5 5

L.0 -3.083333 L.0o -3.083333 -3.083333

-.7 1.0 -.7 1.0 1.0

3.0 3.0 3.0 3.0 3.0

2.0 .2.0 2.0 2.0 2.0

50 50 50 50 25
Table T

MEAN ESTIMATES FOR REGRESSION MIXTURES

Case
1 2 3 L4 5
.5030 L5791 .8332 L770h .TT700
-1.0035 -.9754  -.,987L  -1.0120 -1.0483
L4657 .4885 oo L4800 AT

L.0027  -3.0627 L.0063 -3.0842 -3.1018
-.6627 9222  -.6521 1.0207 .9997

2.9979 2.9846  2,9901 3.0070 3.0470

’_l

1.9978 1.9861 .9986 2.0018 2.0084



Table 8

MEAN SQUARE ERRORS FOR
REGRESSION MIXTURES

Case
1 2 '3 4 5
.0007  .o4T3 0077 L0117 .0283
.0002  .0096  .0015 .0020 .0k19
.0099  .0312 ,0019 .0051 .0079
.0001  .0089  .0003 .0001 .0061
.0078  .0262 .0165 .00k42 .0062
.00002 .0024  ,0009 .0006 .0k457
.00002 .0018 .00002 .0OOO4  .0O12

2k,
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APPENDIX

Sample 1 was generated from density function (2-1) with A = .5, u, =

-3.0, = 3.0, o, =1, 02 = 16. The sample values are listed in Table A-l.

Y2
The roots of (2-2) are 4.35492, 13.6424, 37.7525, -8.24T1Lk + 6.097011,
-27.6368 + 6.29641, 8.00902 + 31.96500i and no negative root exists.ll
Sample 2 was generated with A = .5, My ® -1.0, By = 1.0, o = 1.0,
og = 3,0 and the semple values are listed in Table A-2. The roots of (2-2)
are -0.82929, -1.68893, 0.85453, 3.35794 + 1.92864i, -2.70269 + 0.450691,
0.17660 + 5.39189i. Two négative solutions exist>and the corresponding

estimates for the parameters are

X = 0.42698 A» = 0.80570
Wy = -1.71763 Wy = -1.30087
= 1.23416 Wy = 1.983Th
oi = 0.06128 cf = 3.16491
og =  0.907107 cg = 1.28267

Tn a case such as this there is no way in which the method can choose among the
several admissible solutions; a difficulty that does not arise if (as happens

often) all but one of the negative roots have inadmissible estimates associated

with themn.

~

B‘Roots were located by employing subroutine POLRT from the IBM Scientifiec
Subroutine Package. On & variety of test problems this routine based on the
Newton-Raphson algorithm, strongly dominated alternatives based on the Bairstow
factorization and on the quotient-difference algorithm of Rutishuiser.



1.02
6.31
2.26
~2.49
-2.20

2.00

-2.46
1.78

-2.52
6.66
8.69

-2.99

-3.03

-2.11
-2.81
-2.28
-1.87

0.02

.76

2.92

15

-1

.02
.93
.38

.31

1.53

.10
L2
.15

Table A-1

VALUES OF x IN SAMPLE 1

k.92
9.06
-3.55
1.66
-k .56

-b.65

-2.26

-1.80 -1.42
-2.89 0.15
10.62 -1.29
T.8%  10.17
Table A-2

0.75
2.5k
5.29

-4 .08

-3.14

VALUES OF x IN SAMPLE 2

-0.39

0.19
~1.03
-0.91
-1.ko

~0.54

1.05
-2.65
-1.23
-0.27

~0.85
-2.57
2.30
0.02
-0.44

-0.68

-1.80

-0.96
-0.8%L
-2.40

2.62
-3.90
~-0.95

5,01
-5.09

-0.49
0.24
-0.91
0.32
-2.37

26.

6.23
3.65
-2.143
-k .ok
7T.20

-1.59

3.71
-2.17
-2.k2
-0.73

-2.69
L .68
~-0.80
5.80
-3.58

3.08 -

3.52
-0.91
-0.78
-2.95
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