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USEFULNESS OF IMPERFECT MODELS

FOR THE FORMULATION OF STABILIZATION POLICIES

By Gregory C. Chowl

1. Introduction

Econometric models are widely used to forecast the national economy. Are
they accurate enough to be used by the government authorities for the formulation
of macroeconomic policies? What kind of accuracy is required for them to be
useful as a guide to policy? This paper provides a theoretical framework to
answer this accuracy question, and applies it to ascertain the usefulness of two
sinplified models in the determination of stabilization policies.

Recently, through the efforts of the participants of the NBER-NSF seminar
on the comparison of econometric models, interesting results have emerged on the
comparative forecasting abilities and the multiplier effects of the major U.S.
econometric models currently in use. Some of these results have appeared in the

June and October, 1974, and the February, 1975, issues of the International Eco-

nomic Review. According to the appraisal of Carl Christ | 5, p. 54], "though the

models forecast well over horizons of four to six quarters, they disagree so
strongly about the effects of important monetary and fiscal policies that they
cannot be considered reliable guides to such policy effects, until it can be
determined whieh of them are wrong in this respect and which (if any) are right."
Christ goes on to exhibit in tables and charts the different multiplier effects
of government purchases and unborrowed reserves based on the various models.

The method of this paper can be applied to decide whether two models disagree
significantly in terms of their policy recommendations. The existing models

which imply different multiplier effects do "forecast well over horizons of four



to six quarters." They do contain useful information, however imperfect, which
can be exploited to make forecasts. Therefore, one cannot automatically assume
that the same information is useless for the formulation of economic policy.
In fact, sound economic policy is based on good economic forecasts made under
the assumption of alternative policy proposals. Fuithermore, just as two sﬁructures
having diiferent multiplier effects méy prodﬁce similar forecasts in contrast with
a naive forecast, they may also produce similar policy recommendations as least
in comparison with some version of an inactive policf. It is necessary to find
out how the entire set of dynamic multipliers is combined to yield a policy
recommendation.

To show that two different models may yield the same or similar policy

recommendations, consider the univariate difference equation

. . = + '
(1.1) Yo T av._g ox, + u,

where Yo is a dependent variable, X, is a policy instrument or control

variable and u, is a serially independent random disturbance with mean zero

and variance v . If the objective is' to minimize the expectation Eyi , then

2
equal to zero, so that Eyt

the optimal feedback policy is to set ay,_, + cX,

: . A 2 . .
achieves its minimum Eut = v . The policy is therefore

) 1
(102) xt = (_ C a)yt_l .

~

Another model, which has cbefficients a and c¢ instead of a and ¢ , will
yvield the same policy provided that the ratio ;/E is the same as a/c . The

multipliers akc of Xy in the final form of model (1.1) could certainly be



very different from those of the alternative model, as illustrated by a = -9 ,
¢c =1, ; = +09 and ¢ = *1 . Thus an imperfect model, with coefficients 09 and
"1, may yield a policy close to being optiﬁal, if the true coefficients are °9
and 1 respectively.

The key question concerning the usefulness of imperfect models, however, is
not whether they will yield nearly optimal policies which could be obtained only
by having perfect knowledge of the economic structure, but whether they can yield
policies which are superior to an inactive policy allowing for no feedback. In
the above example, an inactive policy is to set xt-= 0 . Under this policy
and assuming (1.1) to be the true model with |a| <1l , we can easily find the

variance of Yy, as t increases to be

(1.3) Ey, =

~

If the government authority uses the inaccurate coefficients a and ¢ and

the resulting feedback policy, the system (1.1) will become

(1.4) Y,

~._l~
= [a.+ c(- ¢ a)]yt_l tu

which has the steady-state variance

2
(1.5) Ey. = A4 )

1o a4 (- o132

This variance is smaller than the variance (1.3) prevailing under the inactive

~e] ~ 2 .
policy provided merely that [a + c(- ¢ la)] is smaller than a2 . Given a

and c¢ , a wide range of values for a and ¢ will produce this required result.



Hence very imperfect models can still be better than using no models for the
determination of macroecohomic policy.

We will generalize the above discussion in section 2 to treat dynamic econo-
metric systems involving many variables and higher-order lags. Section 3 provides
two illustrative models to be used for stabilization policy. Section 4 applies
the method of section 2 to evaluate the usefulness of one of the models of
section 3, assuming that the other model is the correct one. It illustrates
how an imperfect model performs for the determinatiqn of policy as compared with

using no model at all. Section 5 contains some concluding remarks.

2. Evaluation of Imperfect Models for Policy Analysis

Let the economy be governed by a time-varying linear system

(2.1) : yt = Atyt-l + Ctxt + bt + u,

where Y, is a vector of p endogenous variables, X, is a vector of ¢
policy or control variables with q < p , and u, is a random vector independent-

ly distributed through time, having mean zero and covariance matrix V . The

true parameters At P Ct ' bt and V are of course unknown to the policy maker.
We will assume that the policy maker has available an imperfect model explaining

a subset of the endogenous variables Y - Written in the form (2.1), with

-~ ~

appropriate zeros added, this imperfect model has coefficients AL o C, and

bt . The guestion is how well a pdlicy based on these inaccurate parameters

would work, as compared with a policy of using no feedback, for certain hypo-

thetical values of At P ct and bt . High-order lags in both the endogenous



and policy variables are subsumed under the notation of (2.1) by suitable
definitions, és illustrated by (3.2) in section 3 below. Nonlinear systems can be
approximated by time-varying linear systems of the form (2.1) for our analysis,
as will be explained later in this section.

The performance of the economy is measured by the expectation of the loss
function

T

(2.2) tzl (v, - a) 'K (y, - a,)
where a_ are the targets and Kt are diagonal matrices giving the relative
penalties of the squaréd deviations of the different variables from their targets.
If the behavior of the policy variables also matters, they will be included
in the vector Y by appropriate definitions. We will be interested in comparing
the performance of three pélicies. Policy I is the optimal policy assuming
perfect knowledge of the true model (2.1). Policy II is obtained by minimizing
the expectation of (2.2) under the assumption of an imperfect model, with coef-
ficients At ’ ét and Bt . Policy III specifies a smooth time path for the
policy variables which will not be altered by future observations of the economy .

As given in Chow [ 1 , Chapter 7], the optimal policy I is given by a set
of linear feedback control equations

(2.3) ..xt = tht—l + 9. -

The coefficients Gt are obtained by solving

_l
= e ! ' H
(2.4) Gt (CthCt) CthAt ;



' = ! = - .o 1
(2.5) Ht—l Kt—l + (At + Cth) Ht(At + Cth) (t T, T-1, s 1)

with the initial condition HT = KT . The intercepts 9, are obtained by

solving

(2.06) | —-(c'Hc)'lc'(Hb -h) ;
: e T £t £t t! 7

(2.7) h

= L -
t=1 = Re1Beo1 ¥ B + €GOy Hob,)

with the initial condition hT = KTaT .

The economy under policy I will follow (2.1) and (2.3) which combine to

yield

(2.8) . Yt = tyt-l + rt + ut

where

(2.9) Rt = (At + Cth) ior, = bt + Ctgt .

The mean path of the economy will follow

(2.10) _'yt = Rtyt—l + rt .
By substracting (2.10) from (2.8) and defining the deviation from mean

* = -
vi Ye yt : We have




(2.11) y* =R +u

*
Y t-1 t

The covariance matrix of the system will therefore be

2. kypk ! = * *1 1 =
(2.12) Eytyt Rt(Eyt_lyt_l)Rt + Vv (t 1, 2, ... , T)

with initial condition EYBYS = 0 since Yo is constant and ya =0

By considering the deviation Y — @

¢ as the sum of Yo T ¥

t

we will decompose the expectation of the loss function (2.2) into two parts,

and ;; - at ’

T T
2. -y -5 v, - 'K (y -
(2.13) E Z (yt yt) Kt(yt yt) + E Z (yt at) Kt(yt at)
t=1 t=1
T T _ _
= *yrk ! — ] -
tr Z KtEytyt + Z (yt at) Kt(yt at) .

t=1 t=1

One part is a weighted sum of the variances of Yo » to be calculated by using
the covariance matrix (2.12). The other is a weighted sum of the squared

deviations of the means §£ from the targets a_ . This decomposition will

t

be used to study the expected losses of policies II and III as well.

Policy II is obtained by minimizing the expectation of (2.2) subject to

a model of the form (2.1) with coefficients At ' Ct and Et . This policy

is given by a feedback control equation of the form (2.3), with coefficients

ét and &t which are computed from equations (2.4) to (2.7) using coefficients

b -]

. 6t and Et instead. The economy under policy II will be governed by
(2.1) and this feedback control equation, namely

(2.14) Yo = Rtyt—l + T + u,



where
(2.15) R, = (A

The mean path and the covariance matrix of this system will be given respectively

by (2.10) and (2.12) with it and ; replacing Rt and r_ . The expected

t t

loss under this regime can be similarly decomposed as in (2.13).

" Policy III allows for no feedback. If one refuses to use‘econometric models
for the formulation of macroeconomic policy, what alternatives are available?
One alternative is still to adjust the policy instruments according to the
current state of the economy by some ad hoc rules which are not derived system-
atically from an econometric model. .Sﬁch rules, once stated explicitly in the
form of feedback control equations, cah and should be evaluated by the method
here proposed. Skeptics of the use of economeﬁric models are under the obliga-
tion to show that their alternatives are no worse. The second alternative ,
which we will further examine, is not to use any feedback. It can always be
written-as X, = gg for some fixed path gg to be specified without regard
to the state of the economy. Under such a rule, yhich implies Gt = 0 in our

notation, the mean and covariance matrix of the economic variables will be

0

given by (2.10) and (2.12) respectively, with Rt =A, and r, = bt + Ctgt .

t t
The two components of the expected loss can be computed by (2.13).
If the true model is nonlinear and consists of random disturbances, one
cannot obtain analytically an optimal policy which would minimize the expectation
of (2.2) under the éssumption of perfecﬁ knowledge of the model parameters.

However, for our analysis, policy I will be replaced by the following nearly

optimal policy, which is described more fully in Chow [ 1, Chapter 121 and



[4]. First, ignoring the random disturbances in the model, one finds an
optimal path to minimize (2.2) using the resulting deterministic model. One
then linearizes the model about this path, producing a system of the form (2.1)
with time-varying coefficients. The analysis suggested above can be carried

out in exactly the same way. The feedback control coefficients Gt and

~

g for policy II are obtained by employing an imperfect nonlinear model which

t

is similarly linearized to yield the coefficients At ’ Et and bt needed for

the calculations of (2.4) to (2.7). Policy III remains to be X, = 92 . The
two components of the expected loss resulting from each policy can be calculated
as before.

In the special case of a linear model with constant coefficients A, C and b,
and of a loss function with a constant target a and a constant matrix K ,
the above analysis may be simplified. Under appropriate conditions as described
in Chow [ 1 , section 7.8], the solution of (2.4) to (2.7) as T increases may
reach steady states G , H , g and h . If the characteristic roots of
R = (A + CG) are all smaller than one in absolute value, the mean and covariance
matrix of the system will reach steady states given respectively by

(2.16) v=(-r"1r;

*xrkt = **l|+ .
(2.17) Eytyt R(Eytyt IR v

It would be of interest to compare the three policies in terms of the two
components of the expected loss per period in the steady state, i.e.,
tr KEy;y;' and (§'— a)'K(§'— a) . The special case here treated is useful

when the target variables are unemployment rate, inflation rate, or the rates
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of change in GNP and its major components, since the assumption of constant
targets for these variables appears to be reasonable. If one employs a linear
model with constant coefficients to explain the level of GNP and the price level,
one may first-difference the model and assume constant targets for the changes

in GNP and the price index. The method of this paragraph would apply if the
residuals in the model explaining these first differences satisfy the assumptions
stated for U, in (2.1). As a generalization of the discussion of section 1,

an imperfect model yielding the feedback coefficients G can be used to stabi-

& + cG)

lize the economy better than using no feedback provided that Rt

entering equation (2.12) will produce smaller variances than Rt A .

In this section, we have suggested some anaiytical methods to evaluate
policy recommendations derived from imperfect models. Without them, one would
have to perform very expensive stochastic simulations to obtain sample paths
of the economy under the assumptions of a hypothetically true model and alter-
native policy rules. The analytical methods can be used to deduce the means

and covariance matrices of the sample paths without resort to the perhaps

prohibitive computer simulations.

3. Fitting Two Illustrative Models

To illustrate the method of section 2, we will employ two hypothetical
linear models. These models are derived from the multipliers reported in
Christ [ 5 1 for the Michigan quarterly model and the Wharton Mark III model.
Given the multipliers of the final form of an econometric model, the following
procedure is applied to construct an appréximate reduced form for policy analysis.

The procedure is based on the well-known relation between the reduced form
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and the final f:orm. Let the reduced form be

(3.1) y. =B

t 1Ye-p t B

+ B + + +
2Yeop T OBgEe T OBgXL ) v BgX 5 byt vy

We will convert it to first order and eliminate the lagged control variables by

writing
_ - . - - - R - -
Ve By By By Bgllveg| [Bylx. by Ve
(3.2) Yeerl = [T 00 0 0|y |, |0 Lo, o
xt 0 0 0 0 xt—l I 0 0]
”Xt—l_ _O 0 I 0 | xt_2— —O ] —O ] _0 |

which will be rewritten simply as

3.3 = + + .

(3.3) Yy Ayt_l Cxt b + u,
Note that the new vector Y of dependent variables includes the original
dependent variables and control variables as subvectors. The matrices A and
C and the vector b in (3.3) are defined by (3.2). By repeated elimination

of lagged y's wusing (3.3), we obtain the final form

2 t-1
. = eee +
(3.4) Yy Cxt + ACxt_l + A Cxt_2 + A Cxl
2 -
+Aty0+b+Ab+Ab+...+Atlb
: 2 t-1
+ + + ...+ .
ut + Aut_l ‘ A ut_2 A‘ ul
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To construct a reduced form from the given final-form multipliers, we first
make a tentative decision on the number of lagged y's and the number of lagged
x's required as the reduced form was originally written in the form of equation
(3.1). The coefficients Bi in (3.1) are related to A and C _in (3.3) By
definitions similar to those given in (3.2). The matrix C of impact multi-

. ' . 2
pliers are known. Denote the delayed multipliers AC , A“C P oeee AkC R

respectively by M1 ’ M2 ¢ oeee 4 Mk which are also known. We will use the

relations

.5 - . = . = . . =
(3.5) AC =My ;oAM= M, ;AN My s eee s AM . =n

or A[C MyM, L Mk_i] = [Ml M, My ... Mk] .

Each row ai of unknown elements in A will be chosen to minimize the sum of
squares of the deviations of ai[C Ml cee Mk_ll from the i_th row mi of

[Ml M2 .es Mk] - By the method of least squares,

— : vl |
(3.6) = e M oM HE oM )T e Moo M Om .

If the fit is poor, as judged by the sizes of the above deviations, we will
increase the numbers of‘lagged y's and/or lagged x's in the reduced form
(3.1). |

For illuéfrative purpose, we have chosen two dependent variables, nominal
and real GNP, and two instruments, Federal government non-defense purchases
and unborrowed reserves. The multiplier effects of a $1 billion increase in

nominal government purchases on nominal and real GNP (in billions of 1958 dollars)
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are given in Table 3 of Christ [ 5 , pp. 66-67], lines 3 and 11 showing the
effects for the Michigan Model and lines 5 and 13 for the Wharton Model.
Similarly, the effects of a $1 billion increase in unborrowed reserves (or
a cut of 50 basis point in the Treasury bill rate) are given in Table 4 of
Christ [ 5 , pp. 68-69], lines 2 and 10 for the Michigan Model and lines 4 and
12 for the Wharton Model. The multipliers from the Michigan Model are based |
on simulations for the 40 quarters from 58.1 to 67.4. From the Wharton Model,
they are based on simulations for the 16 quarters from 62.1 to 65.4. The
results reported are the cumulative effecﬁs of a sustained increase in the
instruments. In the notation of (3.5), they are the partial sums Ml M,

+ Mi for different i . The 2 X.2 matrices Mi have been obtained from
these cumulative effects by differencing. Since the cumulative effects were
given in Christ [ 5 ] only for selected i , crude graphic interpolations
have been employed to obtain the multipliers Mi for each quarter as given
by the figures under the columns Mi in Tables 1A and 1B.

After some experimentation with different numbers of lagged dependent
variables and lagged instruments, it was decided that a reduced form having
dependent variables lagged 3 quarters and instruments lagged 9 quarters would
fit the interpélated multipliers from the Michigan Model reasonably well; and
that dependent variables lagged 3 quarters and instruments lagged 6 quarters
would suffice to approximate the multipliers from the Wharton Model. Because
of our crude graphic interpolation of the multipliers, our linearization of
the models, and our somewhat arbitrary truncation of the number of lagged
variables in the reduced forms, the resulting models, to be called M and W
respectively, may behave quite differently from the original Michigan and

Wharton models, but they serve to illustrate the possible value of the policy
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Table 1A

Final Form Multipliers for Model M

Lag szinal GNP iReal GNP Lag szinal GNP iReal GNP
of x AC ‘Mi AC Mi of x2 AC Mi AC Mi
0 .700  .700 .800 .800 0 .100  .100 .100  .100
1 .556  .556 .528  .528 1 .300  .300 .300  .300
2 .425 425 .302  .302 2 .500  .500 .500  .500
3 .326  .326 .200  .200 3 .700  .700 .700  .700
4 .217 217 .115 115 4 1.552 1.552 1.326 1.326
5 .112 112 .035  .035 5 1.675 1.675 1.549 1.549
6 2045  .045 -.029 -,029 6 1.716 1.716 1.630 1.630
7 ~.005 -.005 ~.088 -.088 7 1.656 1.656 1.547 1.547
8 ~.059 ~.059 -.137 -.137 8 1.437 1.437 1.050 1.050
10 -.108 -.123 -.167 -.175 10 ~.027 -.020 -.280 ~-.274
12 -.096 -.137 -.144 -.185 12 -.264 -.250 -.584 -.573
14 -.075 -,127 -.110 -.173 14 -.346 -.350 -.642 -.663
16 -.053 -.081 -.075 -.130 16 -.314 -.352 -.554 -.621
18 -.033  .000 -.046 ~-.140 18 -.234 -.279 -.414 -.444
20 ~.018 .067 ~.024  .075 20 -.146 -.168 -.274 -.278
24 -.002 <112 -.002 .081 24 -.014 .069 -.075 -.020
28 .003  .059 .004  .034 28 ~.044  .101 012 .030
32 .003  .021 .004  .009 32 .057  .068 033 .00l
36 .002  .004 .002  .002 36 .051  .024 .028

. 000
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Table 1B

Final Form Multipliers for Model M

Lag Niminal GNP iReal GNP Lag szinal GNP iReal GNP
of x AC Mi ATC Mi of X, A C Mi AC Mi
0 1.300 1.300 1.300 1.300 0] 1.300 1.300 1.400 1.400

1 .258 .258 .983 .983 | 1 1.240 1.240 1.330 1.330

2 .205 .205 .750 .750 2 1.180 1.180 1.260 1.260

3 .16l .le6l .529 .529 3 1.120 1.120 1.180 1.180

4 .132 .132 .351 .351 4 1.030 1.103 1.070 1.070

5 .107 .107 .202 .202 5 .930 .930 . 969 969

6 .084 .084 .100 .100 6 .800 .800 .817 .817

7 . 064 . 068 .028 . 037 7 .601 .590 .626 .628

8 . 046 .054 -.019 -~-.022 8 .389 .350 .385 400
10 .012 . 035 -.061 -.092 10 . 068 .075 -.016 ~-.049
12 -.015 .020 -.068 -.128 12 -.106 -,090 -.200 -.181
14 -.029 .009 -.057 -.123 14 -.155 =-.187 -.216 ~-.213
16 -.029 . 000 —;038 "-.083 16 -.131 -.220 -.145 -.171
18 -.022 -.002 -.018 =-.040 18 -.077 =-.157 -.058 ~.086
20 ~.011 =-.003 -.002 .004 20 -.025 ~-.048 .008 ~.027
23 .002 . 000 .010 . 000 23 .020 .000 .045 000
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recommendations from imperfect models. Note the differences between the multi-
pliers in Tables 1A and 1B. For model M , the effects of governmént Purchases
on GNP become negative from period 7 on and are fairly large in absolute value;
not so for model W . The multipliers of the monetary instrument increase in
the first six quarters for model M while they decrease for model W . The
reduced form coefficients obtained by our fitting procedure afe given in Table 2;
they are also fairly different for the two models. The final~form coefficients
Aic of X3 deduced from the reduced form are giyen in Table 1; they resemble
the observed coefficients Mi .

The intercepts of the reduced forms for M and W are assumed to be
linear functions of timg t , which takes the value 1 for 1966.1. Using the
historical data2 from 1966.1 to 1969.4-and the coefficients of Table 2, we
have estimated the trend terms by least squares, as given in the lower right
corner of Table 2. The co%ariance matrix of the residuals are estimated to be

16.605 13.170 22.012 16.914

(3-7) ) V. = ; VW=
1 13.170 11.569 16.914 40.524

The GNP figures are in billions of current or 1958 dollars. The standard

deviations of the residuals are between 3.4 and 6.4 billions.

4. 1Illustrative Evaluation of Two Imperfect Models

The method of section 2 is applied to the models of section 3 to evaluate
the possible usefulness of imperfect models. BRefore applying any stabilization
policy, be it derived from an imperfect econometric model or from some ad hoc

reasoning, the government authorities should examine how it would perform under
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reasonable assumptions about the dynamic structure of the economy. Although
the true structure is unknown,‘it is necessary to assume hjpothetical structures
to test the performance of any policy being seriously considered for adoption.
In this section, we use one of the models of section 3 as the hypothetical
structure and evaluate the policy recommendations derived from using the other
model. The planning horizon T is 32 quarters, with initial conditions given
by historical data up to the last quarter of 1965. The target growth rates
for nominal and real GNP are assﬁmed to be .018 and .008 per quarter respec-
tively; these are their average historical rates frgm 1966.1 to 1969.4. The
diagonal elements of the K matrix are 1 and 1 for these target variables, and
‘2 and "2 for the instruments which are assigned growth rates of .01l and
.013,-their average historical rates from 1966 to 1969. Thus variations in
the instruments will be restricted.

The inactive policy prbvides constant growth rates for the two instruments,
the rates being calculated to minimize the given quadratic loss function.
The method to compute these rates is given in Chow t 1, p. 218]. This procedure

tends to favor the inactive policy. 1In practice, a nondiscretionary policy of

maintaining constant growth rates for the instruments is hard to design partly

because one does not know what growth rates are consistent with price stability

and full employment. This difficult problem is assumed away in our analysis.

A realistic evaluation of a nondiscretionary policy should utilize the érowth

rates proposed by its advocate. Given our loss fuﬁction, the best growth

rates for Fedéfal government non-defense purchases and unborrowed reserQes

are -.057 and .025 respectively for model M; they are -.020 and .026 for model W.
Tables 3A and 3B give the main results of our illustrative calculations. For

Table 3A, Model M is assumed to be true. Policy I is the optimal policy derived

¢

from using Model M. Policy II is the optimal policy for model W. Policy IIT uses
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Table 3A

Components of Welfare Loss Assuming Model M To Be True

Weighted Sum of Variances Weighted Sum of Sq. Deviations

of GNP$ and GNP58 of Expectaﬁions from Targets

Period Policy I Policy II = Policy III  Policy I . Policy II Policy III

28.2 28.2 28.2 2.6 8.7 37.4

1
2 31.1 34.1 74.5 8.3 32.7 88.2
3 32.7 41.5 126.7 18.0 17.3 113.9
4 34.1 43.4 180.3 27.4 63.3 110.5
5 35.5 46.3 232.3 43.2 22,5 86.7
6 37.1 55.9 279.7 42.7 61.5 61.8
7 38.5 64.0 320.6 36.1 29.1 43.7
8 39.5 73.1 . 354.8 29.2 68.2 32.2
9 40.2 74.9 382.6 30.7 15.8 24.2

10 41.0 77.7 ' 404.9 22.1 59.9 19.0

11 41.6 107.3 422.5 16.5 12.6 16.1

12 42.1 178.0 436.6 13.6 40.8 15.0

14 42.9 ' 233.4 457.0 8.2 49.3 16.2

16 43.6 271.2 471.1 2.0 59.3 19.5

20 44.7 624.9 490.1 5.1 119.0 23.8

24 45.5  1,997.7 503.5 23.1 162.4 23.8

28 45.6  4,718.3 513.9 39.8 316.0 32.2

32 41.8 1,649.9 522.2 21.5 137.9 38.3

Sum

to 12 441.6 824.4 3,243.7 . 290.4 432.4 648.7
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Table 3R

ng Model W To Be True

Weighted Sum of Variances Weighted Sum of Sqg. Deviations
of GNP$ and GNP58 _ of means from targets

Period Policy I Policy II ‘Policy IIT Policy I Policy II Policy III

1 62.5 62.5 62.5 30.1° 96.0 113.1
2 119.8 326.9 242.0 14.9 50.2 251.0
3 135.6 540.1 420.6 4.4 120.1 297.2
4 138.5 917.6 544.3 1.3 139.6 302.4
5 139.2  1,349.7 627.1 0.5 73.8 289.6
6 139.4  1,693.8 680.9 0.3 24.9 267.5
7 139.5  1,909.9 714.2 .1 111.3 250.9
8 139.5  2,108.5 736.2 .0 121.6 246.5
9 139.5  2,438.9 753.3 .0 ' 303.8 251.6
10 139.5  3,332.8° - 767.4 .1 303.3 262.0
11 139.5  4,577.6 778.7 .2 349.6 274.2
12 139.5  6,313.0 787.0 3 464.7 285.6
14 139.5  8,843.6 795.6 .5 264.4 302.4°
16 139.5  13,495.4 797.9 .6 1,700.8 311.4
20 139.5 62,353.7 800.8 .3 670.1 300.8
24 139.5 262,446.2 802.8 .0 17,938.4 - 225.5
28 139.5 2007,462.9 803.1 .3 40,839.7  102.2
32 136.3 930,934.7 803.2 31 25,677.3 35.5
Sum

to 12 1572.0 25,571.3 7,114.2 52.2 2,167.9 3,091.6
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the optimal but constant rates of change for the two instruments. For each policy
and each period, we show separately the loss due to the variances of the variables
and to the deviations of their means from the targets, as indicated by expression
(2.13). Table 3B gives analogous results, assuming W to be the true model, with
policy II being the optimal policy derived from model M. Without the stochastic
control theory of section 2, one would have to solve an optimal control problem for
32 periods using the true model or the imperfect model as the case may be, and ob-
tain the optimum values for the instruments in period 1; apply these values, together
with a random drawing of the résiduals ul in period 1 from the true model, to
generate a set of dependent variables Yy for period 1; using y, as the initial
condition, solve a second optimal control problem for 31 periods, and obtain the
optimum values of the instruments in period 2; apply these values to generate Y,
stochastically and so forth. This tedious. process only provides one observation,
covering 32 periods, of the‘stochastic time path for a hypothetically true model
and a given strategy. The process has to be repeated many times in order to esti-
mate the mean vector and the covariance matrix of the multivariate stochastic time
series describing the economy under control. The analytical method of section 2
was used to calculate thg means and variances for Tables 3A and 3B in lieu of such
stochastic simulations and countless optimal control calculations.

Because the end of the time horizon is fixed, the policy recommendations for
the later periods are subject to the weli—known limitations of being myopic, and
should therefore not be taken seriously. Furthermore, to evaluate the policy re-—
commendations>from an imperfect model realistically, one ought to allow for possible
revisions of model parameters through time. For these two reasons, we consider
the dynamic behavior of the economy described hy Tables 3A and 3B only for the first
12 periods. The losses for selected later periods are shown partly to indicate

how the economy would behave if the policy maker were to become more and more myopic
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and the model used were not to be modified at all according to future observations.
The partial sum of each component of the loss function over the first 12 periods
are given at the bottom of Tables 3A and 3B.

For each combination of the true world and the policy, the total expected loss

due to both the variances and the squared deviations of means from targets is given

in the following payoff matrix (negative sign omitted).

True Model
M W
Optimal Policy Derived From M 731.0 27,739.2
Optimal Policy Derived From W 1L,256.8 1,624.2
Best Inactive Policy M . 3,892.4 10,205.8

Thus the policy based on quel W-would be much bettér than the best inactive poli-

cy even if the true world were model M, and in spite of the apparent differénces in
the multipliers and the reduced form equations for the two models. The coefficients
Gl of the optimal feedback control equatioﬁs derived from the two modeis for period

1 also differ, as partially shown below.

Y1,6-1 Y5,e-1 Yi,t-2 Ya,e-2  Yi,t-3 Y2,t-3
y -.267 -1.264 -.165 .564 -.200 .236
“1 .250 -.628 -.323 .504 -.025 .065
. .074 -1.366 .985 .937 ~.768 -.061
% -.896 .858 ~.231 -.861 .568 .123

However, the policy derived from model M wou;d be much worse than the best inactive

policy if the true world were model W. The policy maker facing only these two
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possible states of the world should formulate his policy according to model W rather
than following an inactive policy, which is dominated according to the payoff matrix.
Note that our analysis favors the inactive policy because we have applied the best
rates of change for the instruments accofding to the true model. In reality, these
best rates would not be available without knowing the true model. Also, for the
payoff matrix, the same policy (or the same rafes of change in this case) should

be applied to both of the hypothetical states M and W. For instance, simply apply-
ing the average historical growth rates of the iﬁstruments from 1966 to 1969 to

both models M and W would yield much larger expected losses than given in the last
row of the payoff matrix.

The calculations of this section are merely illustrative of the method.of
section 2. The results are not intended to apply to the original Michigén and
Wharton models for obvious reaéons; The method, however, applies to nonlinear models
as pointed out in section é, by - using the (nearly) optiﬁal feedback control equations

of Chow [1, Chapter 12] and [4] for nonlinear models.

5. Concluding Remarks

In this paper, we have described é method to evaluate the performance of the
optimal policy derived from an econometric model, and iilustrate it with two simpli-
fied models. Although modélAW differs a gréat deal from model M in terms of the
reduced forms and the muitipliers, it can still be used effectively as a guide to
policy even if the world is accurately described by model M. We propose to calcu-
late the expected loss associated with an optimal policy defived from an imperfect
model under different assumptions about the true state of the world. Certainly,
from an imperfect econometric model, other rulés can be derived than the optimal

rule given by section 2 above. For example, uncertainty in the parameters can be
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allowed for as indicated in Chow [1, Chepter 101, [2] and [3]. Such a policy may
perform better under the assumption.that a different model is true. One may also
devise a rule by somehow eombining the parameter values from two different models
_so that it will behave reasonably well under both_worlds; These matters are sub-
jects for further research.

Econometric models are not perfect, but policy makers are benefltlng from using
them because there are no better tools to study the consequences of given policy
" proposals. Furthermore, given a loss function, the models themselves can be used
to generate potentially useful policies by optimiéation. The poiicies SO generated,
like any other policy proposal, will have to be evaiuated under hypothetical states
of the world described by alternative econometric models. Hopefully, the method
outlined in this paper will fac111tate the evaluatlons of alternative policy recom-

mendations and econometric models.
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Footnotes

1. I would like to thank John J. Piderit and Ettie H. Butters for excellent
research and programming assistance, and the National Science Foundation for
financial support.

2. The time series used are quarterly data on nominal GNP, GNP in 1958 dollars,

Federal givernment non-defense purchases of goods and services (all in billions of

dollars at seasonally adjusted annual rates, from the Survey of Current Business),
and nonborrowed member bank reserves in billions of dollars, (seasonally adjusted,

from the Federal Reserve Bulletin).
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