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PREFACE

When certain gquantities of various commodities are purchased at
certain prices, the direction represented by the price vectér is interpreted
as giving the direction of the gradient of a preference function at a point
represented by the quantity vector. This interpretation exprésses the main
principle which is involved in consumer theory, when this theory is founded
on the preference hypothesis, or even on the classical, but more obscure,
concept of marginal utility.

In the same way, with data of purchases on a variety of occasions,
there is provided a configuration formed of a set of directions associated
with a set of-points. Any function which is increasing and convex being
allowed as a preference function, such a configuration admits those prefer-
ence functions whose gradients have these directions at these points,
without distinction between them. But in such a class of preference func-
tions admitted by a given configuration, the gquadratic, when admitted, is
distinguished first by adequacy and simplicity, and then by a property,
which is to be examined elsewhere, which sets it in a central position within
the class, and which singles it out as a model in respect to which other
preference functions may be considered through their deviation. Thus the
investigation of quadratic functions admitted by a given configuration
appears with a general importance. A comparison may be made with the role
of the linear function in regression analysis.

With directions prescribed, magnitudes only have to be assigned,
for gradients to be completely specified. So there has to be considered
the existence, and the charactey of quadratics with gradients given at

certain points; and this is the problém for treatment now. In the four-



ii

fold case, the magnitudes of the four gradients may always be chosen, in an
essentially uniqﬁe fashion, in order that quadratics be admitted. Elsewhere
it will be shown how analysis involving quadratic preference function arises
in a natural fashion within a comprehensive analysis which enbraces the
totality of consistent preference systems compatible with given data. It is
particularly important in theory underlying certain index-number constructions.
In consumer theory, quadratic functions have already made an

appearance in the work of R. Frisch, R.G.D. Allen, A. L. Bowley, A. Wold,

A. A. Konls, S. S. Buscheguennce, H. S. Houthakker, H. Schultz, and others.

A description of the role of quadratics in this subject, those uses already
made, together with further elaborations in which the material presented here

has application, will follow in another account.

Princeton, N. J. S. N. Afriat
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1. Quadratics

Let ¢ = ¢(x) denote a real single-valued, continuously twice
differentiable function, defined on the n-dimensional Euclidesan space C of
vectors x of order n with real elements. The gradient of ¢ 1is given
by the vector g = P of first derivative @Ei = %%; of ¢ with respect
to the elements €, of x , and determines a vector field g =g(x) on C .

a2

. . . . ) . .
The matrix A = of second derivative = is symmetric, b

XX

the assumed continuity. If A is constant, then ¢ is a quadratic function,

with A as characteristic matrix; and it is called regular if A is regular.

THEOREM 1. If g is the gradient of a quadratic with characteristic matrix

A, then

g(y) - g(x) = A(y-x)

og.
i
For sgg = Aij s 80 that dgi

It

2z Aijdxj » whence, by integration,

J
the formula is obtained.

THEOREM 2. If ¢ is a quadratic with gradient g and characteristic matrix

A, then
9(y) - 9(x) = (7-x)"g(x) +5(y-x) Aly-x) .

This follows by integration of the expression in Theorem 1.

THEOREM 3. If ¢ 1is a guadratic with gradient g then

o) - 9(x) = Z(r-x)"(gx) +&(y)) -
Thus, by Theorems 1 and 2,
o(y) - 90x) = (r-x)"elx) +3G-x)"AG-x)
= (7-x)"8(x) +20-x) " ((y)-g(x))

= 50-x) " (g(x) +e(y))
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THEOREM 4. If ¢ is a regular quadratic, with gradient g and character-

istic matrix A , then g(x) =0 at a unique point x = c , and

r———

g(x) = Alx-c) .

For, if B = AT , then, by Theorem 1,

x-y = B(g(x) - gly)) ,

so that if
c(x) =x - Bg(x) ,

then
c(x) = x(y)

A unique point c = c(x) is thus defined, which is, moreover, such that

1

gle) = g(x) + A(c-x)

g(x) - g(x) =0 .

Then
g(x) = A(x-c)

The unique point at which the gradient of a regular quadratic
vanishes defines its centre; and the value which a regular quadratic takes

at i1ts centre defines its initial value. Thus,

g(c) =0, CP(C) =M;
for the centre ¢ and initial value M of a regular quadratic ¢ with

gradient g . A regular gquadratic will be called a central quadratic if its

centre is at the origin, and a principal quadratic if its initial value is

ZEeYro.

THEOREM 5. If @ 1is a regular quadratic with centre c > initial value M

and characteristic matrix A , then

9(x) = M + Z(x-c) "A(x-c)
This follows by combination of Theorems 2 and L, and gives a

normal form for a regular quadratic.

COROLIARY ox) =M + %(x—c)'g(x)



Singular quadratics, which are not of Present importance, have a
more complicated description. Thus, for a singular quadratic, the range and
null-space of the characteristic matrix form a complementary pair of sub-

spaces, defining the characteristic section and axis of the gquadratic; and

they are a pair of orthogonal complements, since the characteristic matrix
is symmetric.
Any manifold obtained by translation of the characteristic section

or axis defines a normal section or axis of the quadratic.

Since g(x) - g(y) = A(x-y) , any two gradients differ by a vector
in the characteristic section; moreover, gradients are equal at points which
differ by a vector of the axis. Accordingly, the gradients determine a par-

ticular section, which may be called the gradient section; and the axes are

the loci on which the gradient is constant.

The gradient section is either identical with, or different from,
being a parallel translation of', the characteristic section. In the former
case, the quadratic will be called cylindrical.

A cylindrical quadratic not only has a constant gradient, but also
has a constant value on every normal axis. For if x, y Dbelong to the game
ax1s, x - y will be orthogonal to the gradient g(x), g(y) which belong to
the section, so that

o(x) - 9o(y) = 5(x-y) " (e(x)+ g(y)) =0 .
So the quadratic will be specified when it is given on any normal section.
The value at any point outside the section being equal to the value at the
foot of the perpendicular from the point to that section. By constraining a
cylindrical singular quadratic to any of its normal sections, the function
obtained is a regular quadratic on that manifold, with a unique centre at
which the gradient vanishes. Thus the gradient of a cylindrical quadratic

vanishes at points of an axis, defining the central axis. For, if




g(c) =0, then
g(x) = A(x-c) ,

so that g(x) =0 if x, ¢ lie on an axis through c¢ , and moreover, g(x)
always lies in the fundamental section, so the quadratic is cylindrical.
Conversely, if the quadratic is cylindrical, so that g(x) lies in the range
of A, so there always exists a vector x - c such that

g(x) = Alx-c) ,
then g(c) =0 . Thus g necessary and sufficient condition that a quadratic
be cylindrical, having its gradient always in the characteristic section, is
that its gradient vanishes at any one point, and therefore on the normal axis
through that point. For a non~cylindrical singular quadratic, therefore, the
gradient never vanishes; and for such, the gradients lie in a normal section

different from the characteristic section.

2. Iinear fields

A set o = {ar] of k 4+ 1 numbers o, (r =0, ..., k) will be

called a distribution if

QO+... +C1/k=l.

The combination of a set X = {xr} of elements of C by a set of numbers
& , is denoted by
Xo@o + .0 + zkak = X .

A linear manifold in C is a set % of elements of € which contains every

combination of its elements by a distribution. Thus,
XC#%, and a a distribution, implies Xx € % .

The linear closure of any set X of elements of C 1is formed by

the set [X] = {Xx} of combinations X& of those elements by all possible
distributions « . The linear closure of any set of elements is a linear

manifold, which is said to join those elements or to be spanned by them.



A base for a given linear manifold is a minimal set of spanning elements.
A set of elements form a simplex if they are a base for the linear manifold
in which they join; for which the condition is that none lies in the Jjoin

of the others, or, if they are k + 1 1in number, then that they span a

manifold of dimension k . Thus {xr} is a simplex of dimension X ,
provided
ao + ..+ qk =0 and Xo@o + ... + Xkak =0 dimplies Qg, ceey qk =0 .

For otherwise, if the hypothesis holds, and not the conclusion, say Qb % o,

then there is obtained the relation

XO =XlBl 4+ s +X1§Bk. 3
_ar
where Br = —&; 5 8o that 5l+ coe o+ ﬁk =1 , this showing X to be in the
Jjoin of Xis v X,

Now let X = {xo, e, xk} be a simplex spanning a manifold % of
dimension k . Take the matrix Xb = {xr - xo] ; of order n x k and rank

k , with the vectors X o= X for its columns; and form the matrix

-1 .
— b 2
Io B XO(XO Xo) Xo ’

this being symmetric and idempotent, of order n and rank k . Tt has the
property
IX =X ,
that is
Io(xr-xo) T XX
from which it follows that
I, (y-2) =y-z

for every y,z € X , that is

i
-
N

1
N

.

Iv-y

or, if

then
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Thus there is a uniquely defined symmetric idempotent J% =1- Iﬁ ; and a

uniquely defined element X € % such that

Iy = X
for every x € % . The idempotent Q% = IO » first constructed by choice of
an arbitrary vertex X of the simplex, is independent of this choice, and
defines the perpendicular projector onto the manifold. The element X € %

is such that

for every x € %, or equivalently, such that
x_|

y =2,

for every y,z € % . Thus it is perpendicular to every displacement on the
manifold, and is the unique vector on the manifold with this property. From
this it follows that it is the unique element on the manifold of minimum

distance from the origin. It will be called the absolute element on the

manifold, with the property that, for all x ¢ X B

I X ].2 l b4 l , and ] x l = ] X l if and only if x =x .

Now let g g(x) De any vector field defined on a linear manifold

¥ in C . Then it is a linear field if

glx o + ... +xa ) = glxJa + ... +elx)a

provided Ay + o0 + ¢ =1 . Thus, with the notation

glx } = (=)},
that is,

g(X) =G, where X = {Xr}; G = {gr}’ g, = 8(Xr) s

the condition is
g(Xa) = g(X)a
for every set X €%, and every distribution o . The linear manifold *

defines the domain; and the values g(x) , also forming a linear manifold G,

define the range of the field. A linear field g 1is defined to be regular



if X and g(¥%) always span manifolds of the same dimension; and otherwise
to be singular.
A set G = {gr} of vectors g, associated with points X, of a

set X = {xrﬁ defines a vector configuration {X,G} , with base set X and

an object set G, spanning its base and object manifolds > G, the

dimensions of which define its base and object dimensions. Tt is called a

simplicial configuration if its base set X is a simplex; and a regular

configuration if corresponding sets of base and object elements join in

linear manifolds of equal dimension, in particular, the base and object
dimensions are equal. Thus, for a regular simplicial configuration, also
the object set is a simplex. A configuration whose base dimension is n is

called complete. A vector configuration is said to be linearly consistent if

it can be embedded in a linear vector field; that is, if there exists a linear
field g whose domain contains its bage set, and is such that
g(Xa) = Ga .,
for every distribution o » Or equivalently,
X
00
If a configuration can be embedded in a field, the field and the configura-

tion are said to admit each other.

THEOREM 1. Any simplicial configuration is linearly consistent.

For, provided G+ -ee + 0 =0, since {Xr} is a simplex,
xoao+ eee + xqu = 0 dmplies that 06’ ceay qk = 0 , and therefore that
goac+ A gqu =0 .

Now the elements of the base and object manifolds ¥ , g of a
configuration {X,G} are of the form
Xy = Xa , 8y = Go

where & is any distribution. In the simplicial case, for every element

o Xkak =0 dimplies goao+ coo gkak = 0 , provided ab+ ces o+ qk =0 .



X € % the distribution « such that Xy =X is unigue, and so it is
possible to define a single-valued vector function g with % as domain
and § as range by taking

(x =x)

glx) =g -

(04
This determines a vector field on X > which will be denoted by [%,g} and

called the linear closure of the simplicial configuration {x,6} .

THEOREM 2. The linear closure of a simplicial configuration is a linear

field containing that configuration, and contained in every linear field

containing that configuration.

Since

Fao+ po T ¥ *gP o Bugy gy T 80T P

where @,B are any distributions, and o + p =1, sothat ao + PBp is also
a distribution, it appears that the linear closure is & linear field, and it

is obviously minimal linear field containing the configuration.

THEOREM 3. Any linear field is the linear closure of a simplicial configura-

tion.

Iet X be a simplex spanning the domain % of a linear field g ,
and let G =g(X) . Then (X,G} is a simplicial configuration; any point
x of X is of the form x, for a unique & ; and g(xa) = g(X)a = Go = 8y

so that g is the linear closure of {X,G} .

THEOREM 4. The gradient of a quadratic function is a linear field, regular

or singular according as the quadratic is regular or singular.

By Theorem 1.1, if g is the gradient and A the characteristic
matrix of a quadratic, then
g(x.) =g(x) + A(x_-x)

so that

f glx o, =g(x) + A(rZ X O -x) = g(f x Q)



provided o =1 . Moreover, the rank of the vectors g(xr) - g(x) is
always the same as the rank of the vectors X, = X if and only if the

matrix A is regular.

COROLLARY Se() +e(y) = gEEY)
COROLIARY P(y) - o(x) = (y-x) g (EEY)

2
It appears thus that if the gradient of a quadratic is given at any
set of points, then it can be constructed at any point of the linear manifold
Joining them. Thus the gradient of a quadratic is fully specified when it is
known at the vertices of any regular n-dimensional simplex, in other words,
at any n + 1 points no one of which lies in the linear manifold Jjoining the

others.

5. Symmetric fields and configurations

A vector field g will be called symmetric if

(x-y) ' e(z) - g(w)) = (z-w)'(g(x) - gly)) ,

and triadic if

(x-y)'g(z) + (y-2)'g(x) + (z-x)'g(y) =0 .

THEOREM 1. The conditions for a symmetric and a triadic vector field are

equivalent.
By putting w =x in the symmetry condition, it reduces to the
triadic condition; for
(x-y) &(2) - g(x)) = (z-x) *(g(x) - g(y))

gives
(x-y)Tg(z) + (y-z)'g(x) + (z-x)'g(y) =0 .

Thus the first condition implies the second. Conversely, the symmetry
condition provides the relations
(x-z) g () + (z-w)"g(x) + (w-x)'g(z) =0

(x-w)'g(y) + (w-y)'g(x) + (y-x)*g(w) =0,
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which, by addition, give the symmetry condition
x-y)"(g(z) - g(w)) = (z-w)'(g(x) - gly)) .
Similarly, a configuration {Xr’gr} (r-s =0, ..., k) is said to
be symmetric if
(xp-xq)'(gr—gs) = (xr-xs)'(gp-gq) ;
which condition is again equivalent to the triadic condition

- % - 1 - )7 - .
(Xr Xs) gt + (Xs Xt) gr + (Xt Xr) gs 0

THEOREM 2. A necessary and sufficient condition for the symmetry of the

configuration {Xr’gr} is the symmetry of the matrix XO'Gb , Where
Xo = {Xr_xo} > G = {gr_go] ’

For the symmetry of this matrix is the condition

- ¥ - = - v -
(epmx ) (ggmgy) = (x-x) (e.-g,) >

which is necessary for the symuetry of the configuration. Also it is
sufficient, since X,» 8, can be eliminated from this condition for the
three pairs from three elements r, s, t to give the triadic condition,

equivalent to the symmetry condition.

THEOREM 3. The conditions for the symmetry of a simplicial configuration

and its linear closure are equivalent.

Since the closure contains the generating configuration, one
- condition implies the other; and the converse implication follows from the
identity
— , - = - -
2 PRy (x ) e meg) = (yrxg) (e mgg)
P,q,r,s

where @, B, 7, ® are any distributions.

- THEOREM 4. Any complete symmetric configuration is linearly consistent.

By the symmetry,

(xr-xs)‘(go;gs) = (xa—xﬁ)‘(gr-gs)
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from which it follows that X, = Xﬁ implies
- H - -
(x-x ) (gymeq) = 0,
which, by the completeness, implies

Thus Xy = XB implies 8y = ga » as required.

THEOREM 5. The symmetry of a field g necessary and sufficient for the

existence of a function ¢ such that

o(x) - o(y) =_él_(x-y)’(g(><) +g(y)) .

The existence of such a function implies that

0 =o(x) - oly) +9(y) - 0(z) +0(z) - ox)

1 1 L
=§&ﬂOWg&)+gW)+§wﬂ’QW)+g@J)+§&ﬂd%g&)+g&H
1 .
=5l (x-7) '8 (2z) + (v-2)'e(x) + (z-x)'g(y))
which is the triadic condition, equivalent to the symmetry condition. Con-
versely, if the symmetry condition holds, then so does the triadic, so that
if
l ?
Alx,y) = 5(x-y) H(g(x) +gly)) ,

then
A(X;y) +A(y,z) +A(Z)-X-) =0,

which, together with
A(X:y) +A(3’:X) =0,
1s necessary and sufficient for the existence of a function o(x) such that

Alx,y) = ¢(X} - o(y)

THEOREM 6. The gradient of a quadratic is a symmetric field.

For if A is the characteristic matrix, then

gx) - gly) = A(x-y) ,
so that

(z-w)"(g(x) - gly)) = (z-w) "A(x-y)

(x-y) "A(z-w) = (x~y)"(g(z)-g(w))

1l
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by the symmetry of A .

THEOREM 7. Any linear vector field which is also = gradient field must be

symmetric.
Thus, let g be a vector field, and let

2, =x + (y-x)t (0 <t <1)

and
g = g(zt)

Then
g, = &(x) + (g(y) - g(x))t

if g 1is a linear field. Now if g is also a gradient field, say the

gradient of some function ¢ , and if

Zt = (y-X)
so that
dzJG = tht R

then, as t ranges between 0, 1 the point z, ranges in the linear seg-

ment L Joining x, y and thus

o(y) - ox) = /g Yaz,

ct

v
g T2 4t

m\ t"f
A

1
F{g( x) + (gly) - g®))t)*(y-x)dat

O

i

(e (x) + (g(y) - gx))t }’(y-X)J

It

So-x)7(g(x) +g@)) ,

whence the symmetry cBﬁdition follows.
é |
i 1 !

THEOREM 8. If a quadratic ® is admitted by a gradient configuration

{X,G)} , then its gradient is completely determined, and its values com-

pletely determined but for an arbitrafy additive constant, at every point

X, of the base manifold % , thus,




-13-

glx,) =g, > Plx,) =9, ,
where
% = Pg = %(on - %5) gy +&g) -

The gradient field of a quadratic is a linear field, so if it
contains a configuration, it must contain the linear closure, and then be
determined at every point of the base manifold of the configuration. Now the
rest follows from Theorem l.3., in view of Theorems 2.2 and 2.3,

While, if a configuration admits a quadratic, then it must be
symmetric, and the quadratic be determined to the extent stated in the
Theorem, it is not yet plain that if a configuration be symmetric then it
must necessarily admit some quadratic, though this will appear eventually to
be the case.

A gradient configuration of a given differentiable function is

defined to be any vector configuration contained in the gradient Tield of
that function.

Given any gradient configuration, one may ask whether or not it
admits a function of a certain class, in particular a quadratic function, a
regular quadratic, or a central quadratic, or further, a positive or nega-
tive definite quadratic.

If a configuration is a gradient configuration of a quadratic, it

will be called a quadratic configuration. Necessary and sufficient condi-

tions are to be found for a configuration to have this property. If one
quadratic is admitted, then, in general, so will be an infinity of quad-
ratics; and investigation is to be made of the class of all quadratics
admitted by a given configuration. Thus, for the regular quadratics, the
locus of their centres is a certain linear manifold, and with each possible
centre there is associated a family of possible characteristic matrices of

admitted quadratics with that centre.
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Should a configuration {xr,gr] admit a central quadratic, having
its centre at the origin, say with charscteristic matrix A, then
gr = AXr s

50 that

x g

=x ¥Ax X "Ax =x ¢ .
B “r 5 Tr T B r Sg

The condition xs”gr = Xr“gs will be called the condition of central Bymmetry.

Now :

THEOREM 9. Central symmetry is necessary for a configuration to admit s

central quadratic.

Moreover:

THEOREM 10. Symmetry implies the equivalence of the central symmetry condi-

tion x ! =x ¥ to the condition x ¥ =x ¥ .
200 X8y s Sp % = r So o Gy

For the symmetry condition gives
- ¥ - ¥ - ¥ =
Ceomx )ey + (emx ) 7e + (x-x )% =0,

which, together with

implies

4, Centre manifold

A guadratic centre of a gradient configuration is defined as a

vanishing point of the gradient of any quadratic admitted by the configurs-

tion.

THEOREM 1. If c¢ is a quadratic centre of the configuration {Xr’gr} s

then

¥ — T = - T
8."%, - gg'x, = (g, gg) e
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For then the configuration formed from {Xr’gr} taken together
with (o,c) must admit a quadratic, and therefore satisfy the symmetry

condition

-c)f (g - = -c)? - .
(x,-c) " (gg-0) = (x,-c) (g -0)
These equations, which must be satisfied by any quadratic centre,

will be called the centre equations for the configuration. Their solutions

form a linear manifold which will be called the centre manifold of the

configuration, which is an orthogonal complement of the gradient manifold.

THEOREM 2. The symmetry condition is necessary for the consistency of the

centre equations, and implies their equivalence to the equation

G '™x -X'gs =Gl
o "o o "o 0

_ _ - ) . . i,
where X {Xr XO} > Gy {gr go} and X G, 1is symmetric

It is necessarily; for if the equations are consistent and c¢ is
a solution, then
(grrxs B gS“xr) + (gs?xt B gtrxs) + (gt'xr B gr‘xt)
= (ggg) e + (g, )" + (g,-8.)7c =0,
which gives the triadic condition, equivalent to the symmetry. Now, addition
of

e - ¥ = - 1 T - T = - ¥
8%, = 8%, = (8.-8,) e, g "%, - g "X, - (g,-8g)'e 5

by virtue of the triadic condition, gives
T - T — - b}
&p %g &s *p (gr gs) ¢

Hence, the centre equations are equivalent to the subsystem

That is,

which is
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Moreover, this symmetry condition for the configuration is equivalent to

the symmetry of the matrix XO‘Gb » by Theorem 3.2 .

THEOREM 3. The symmetry condition is sufficient for the consistency of the

centre equations of a regular simplicial configuration.

For in this case G has k < n independent columns; so there
exists at least one solution of the equation
T - b4
Go *o Xo &

=G'c
o) o) 4

to which the centre equations are equivalent, by Theorem &.

THEOREM 4. The centre equations of a configuration imply the centre equa-

tions for any other configuration which is generated by it.

If «,p are any distributions, multiplication of
4 - v — - ¥
&y %g &s *p (gr gs) ¢
by a}Bs and summation over r,8 gives
¥ - b4 — - b4
8y'%p ™ 8"y = (gy8g) e

COROLLARY. The centre manifold of a simplicial configuration contains the

centre manifold of every configuration contained in its linear closure, and

is identical with the centre manifold of any such configuration which con-

tains that configuration.

THEOREM 5. The symmetry condition is sufficient for the consistency of the

centre equations of a regular complete configuration.

For such a configuration, by Theorem 5.3, is linearly generated by
a regular simplicial subconfiguration; and the two configurations have their
centre manifold identical, by Theorem L, Corollary.

A normal configuration is defined to be one for which the base and

gradient manifolds are completely inclined, there being no submanifold of

which one is perpendicular to the other. Then either one taken with an
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orthogonal complement of the other provides a complementary pair of mani-

folds, intersecting in a single point, and joining in the complete space.

THEOREM 6. A necessary and sufficient condition for a configuration {xr,gr]

. ‘ . 1 - - v - .
to be normal is that the matrix X 'G {(Xr XO) (gs go)} be regular
For 1t is singular if and only if there exists a distribution o

such that for all distributions B

- (g - =
(x, x) (gB g,) =0,
and similarly, the other way around.

A configuration will be said to be centred if its centre equations

are consistent.

THEOREM 7. For a normal centred configuration, the centre manifold cuts the

base manifold in a unigue point € , given by

A -1
= - 4 1
¢ =x XO(GO XO) X g,

and this is the unique point at which the gradient in the linear closure is

perpendicular to the base manifold, that gradient being
-1
)

A N 1 1
& =8, Go(Go Xo Xo & 2

and such that

| 3A T .
XO go 0

Evidently € %belongs to X . Also

| 3A S ] - g
G 'c G 'x XO g

o) o "o o ’

so 1t belongs to I", the centre manifold. Now ,

¢ = xo(l—a) + (XO+ xo)a
where
@ = (Gb,Xo)_lXo’go
and so
g =g,(1-a) + (¢ +g o

)-1

il

- ¥
& GO (GO XO

t
O XO gO
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is the gradient at € in the linear closure. Moreover,
Ty — t - v = .
Xo g Xb S Xo o 0
The unique point € thus defined on the centre manifold of a

normal configuration will be called its principal centre.

The absolute centre of a configuration is defined as the unique

point ¢ which is on and perpendicular to the centre manifold. It is thus
the foot of the Perpendicular from the origin to the manifold, and is the
unique vector on the manifold of minimum length. Since the centre manifold
is orthogonal to the gradient manifold, if ¢ is any centre, then

c=TIc

In particular,

THEOREM 8. The absolute centre is given by

— ..l "
= v fyy YT .
c = 6(G'e) (o x X go)

Evidently, the point ¢ thus defined satisfies the centre equa-

tion. Moreover, IGE =C , 50 1t is the absolute centre. Tt is verified

that

ol

-1
— - ¥ T
IG(Xo Xo(Gb Xo) Xo go)
= IG’c‘ R

so that

C - ¢ = JGc .

Any point of the centre locus is of the form

c=c+k

+ &

o>

where k » R are vectors orthogonal to the gradient manifold, defining

the absolute andiprincipal displacements of any centre ¢

THEOREM 9. Central symmetry is equivalent to the condition ¢ = 0 .
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For ¢ =0 is equivalent to the condition Gb'ﬁ = 0 , which is
¥ - ¥ : 4 = T
GO X, Xo 8, » Or equivalently, 8, "%, 8, "%,

and, with symmetry given, this is equivalent to central symmetry, by

Theorem 3:10.

5. Convexity

THEOREM 1. If ¢ 1is quadratic, and o + B =1, then

Plxot ¥B) = 9(x)a + 9(y)B - (x-y)* (g(x)-g(y)ap .
For
) - 9 = 56-y) (gx)+ g(y))

by Theorem 1.3. Therefore

o(xa+ yB) - o(z) %—(XOH yB-2z) " (g (xa+ yB) + g(z))

3l2)a + (-2)B) ()4 8(2))ar + (gly)+ g(2)p)

1l

[

P(x)a + 9y)p - o(z) - (x-y) (g (x)-g(y))ap .

THEOREM 2. A necessary and sufficient condition that a quadratic with

gradient g %be convex is that

(y-x)"(g(x)-g(y)) <o (v £x) .
For, by Theorem 1, this condition is necessary and sufficient for
Pxa +y8) > o(x)a + ¢ly)p
whenever x % Yo MN4p =1 and A, M > 0 ; and this is the condition for
® to be convex.

COROLIARY (i) A necessary and sufficient condition that a quadratic ¢ with

gradient g be convex is that

(y-x) e (x) > o(y) - o(x)
For, by Theorem 1.3
) - 9(x) - (y-x)'g(x) = Z(y-x)"(g(y)-a(x)) .

COROLLARY (ii) A necessary and sufficient condition that a quadratic be
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convex is that its characteristic matrix be negative definite.

- For, by Theorem 1.1,

M| =

(y-x) " (g (x)-g(y)) = Z(y-x) 'A(y-x) .

The negativity condition for a simplicial configuration {x,6} =

{xr,gr} » with linear closure {X,G) = {xa,ga} » 18 now defined by the

condition Ad < 0 , where

B
— - 4 -
Pap = (xym%g) ey gg) »
for all distributions o, B .
From the identity

or otherwise obviously:

THEOREM 3. Negativity is necessary for a configuration to admit a convex

quadratic.

Since

AdB =rZ;(O}Br)(as-Bs)xr'gs

= (a-B) "X'G(a-B) ,
where 1'a =1 =1'8, so that 1'(a-B) = 0 » the negativity condition
requires that ©'X'Ce be negative definite under the constraint 16 =0 .
There is also the identity

bop = (@-B)5(a-B)

where
- - - ¥ _
A= {A%s] and Afs (Xr XS) (gr gs)

Accordingly:

THEOREM 4. The negativity of a simplicial configuration {X,G} is equi-

valent to the non-positive definiteness of either of the matrices

X'G - 1{1'(X'G)'l}1v , A -1{1%'11}1'
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Now K
X, - %X, =% (x_-x )a_ ,
r=L
k .
since Z a} =1 ; so that

r=0 k
X, - Xz = % (x-x )(a-B ) ;
o4 B po] T O r r

and similarly for gradients. Therefore, with
X6 = {Xr_xo} ? Go - {gr_go} ?

these being matrices of order n x k having the vectors X, - X and

g, - &, (r=1, ..., k) for their columns, and if
a B
o} o]
o _(a ) > B = (b )
o} o
are any distributions, partitioned at their first elements, then
= - ty v -
AdB (ao bo) Xo Gb(ao bo)

Accordingly,

THEOREM 5. The negativity of a simplicial configuration

{x,6} = {xr,gr} (r=0,1,...k)

is equivalent to the negative definiteness of the matrix XO’Gb , Where

Xo = xmx ), 6 = (e~} (r=l,...x)

Now, if XO’Gb is negative definite, it must be regular. Therefore:

THEOREM 6. TFor a simplicial configuration, negativity implies normality.

Consider the matrix
= ¥ -
K={g '"(x;-c)},
for any vector c¢ . Its symmetry is equivalent to the condition that o
lie on the centre manifold of the configuration {Xr’gr} > which provides
XO'Gb symmetric, and alsoc the relation
1 - _ Y .
Go (Xo c) Xo o

Now, partitioning, and using this relation,
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K = go'(X -c) ', go'(x _C) )7 (I‘,S=l,--.,k) »
v - ! ? -
g (xme) 1 g, '(x,-c)
— ' t
- (_ __%%___‘___.§9¥Qfe? ______ >,
7 ! t i 14
XO g, + 20 G XO + XO g +8 'K + 209

where

Therefore, the condition that K be negative definite is that P, be
negative, and
1 -1

v H H . = 1

G X, +X 8, *+ 8, 'K + 29 2(X 8.+ 2@0)@0 (go X + 2@0)
1, . -1

= b4 - =X ¥ v

Gb Xo EXO €% € Xo

be negative definite. But

20 g 'x
lX -1 o] o "o ] -1
t - =V 1 = — ¥ - v 1 1
IGo Xo 2" 85% =2 Xo‘ Xo'go GO'XO !Gb Xo (2@0 S Xo(Go Xo) * go)
- t - B
=26 x| (o-8),
where
"_9; AR _lv f - H
P = E(Xo ¢) & =28 Xo(Go Xo) lXo €
So, with @O negative, this matrix is negative definite if and only if
1 . . s s P ~ - - s v
GO XO 18 negative definite, and ? < P - But 9, 1s negative if GO XO

1s negative definite. Therefore:

THECREM 7. With the matrix {gr'(xs—c)} symmetric, it is negative definite

if and only if the matrix Gb’XO = {(gr—go)'(xs-xo)} be negative definite, and

-1
- T ¥ v v
(XO ¢ ) gO < gO XO (GO XO) XO GO

i
- Now, the last part of this condition is

- H Y
(Xo 9) g, < (xo ¢) &,

's N

However,
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the centre manifold being perpendicular to the gradient manifold. Also
Iggo =8

the absolute gradient. Therefore, since I, is symmetric, the condition

§

becomes

(c-C)7g >0
Now the condition for XK +to be negative definite can be given in a form
which is symmetrical in regard to the configuration elements, in which the

arbitrary distinction of the o-element is removed. Thus:

THEOREM 8. If ¢ 1is any centre of the configuration {xr,gr] s then the

matrix {gr'(xs-c)} is symmetric, and it is negative definite if and only

if the configuration satisfies the negativity condition, and (C-c)'g <O .

Under this condition, c¢ will be called s convex centre of the

configuration.

THEOREM 9. The centre of any convex guadratic admitted by a configuration

is a convex centre of that configuration.

For, if g = A(xr—c) » where A is negative definite, then

g - - v -
8y (gme) = (xre) tAlx me) <0

|

But ‘ i

¥ - = ¥ -
8y (Xq c) rZ;gr (xs C)O%O% <0
2

if and only if {gr’(xs—c)} is negative definite.

What remains to be eventually shown is the converse, that any
centre of a configuration is the centre of]%‘guadratic admitted Dby the
configuration, and that, moreover, amy convex centre is the centre of such
quadratic:which is convex.

If the configuration is normal, so that GOVXO is regular, the

matrix {gr'(xs-c)} is singﬁlar Just if mo = @O . Hence
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THEOREM 10. If [xr,gr} is normal, then a necessary and sufficient condi-

tion that {xr’(gs-c)} be regular is that go'(xo—c) be different from

-1
1 b 4 1 4
gO XO ( GO XO ) XOgO

6. Initial value

A necessary condition that a configuration {xr,gr] admit a
quadratic is that there exist number P, such that
-9 =£&—X)Wg+g)
8 2Yr g r Sg’ ’

P

and such set of numpers defining a level set, being uniquely defined but for
an additive constant. Then {xr,gr,wr) will be taken to define a quadratic
skeleton based on the configuration, admitting any quadratic with levels
mr and gradients 8. at the points X,

It will appear now that any quadratic admitted by a skeleton has

a certain initial value, depending just on its centre.

THEOREM 1. If c¢ is a centre and {Qr} a_level set for a configuration

[Xr,gr} , then

Ly _ L
¢ - 38, (Xr'c) =9y - 58" (x -c)

r

This follows directly from the centre equations, together with the

equations for the level intervals.

THEOREM 2. If a configuration {xr,gr] 'admits a regular gquadratic with

centre c¢ and taking values P, = Q(Xr) then its initial value satisfies

M= - 2(x -c)'g

r r r

for all r .

Thus

P =M %(xr‘—c) A (x -c)

if A 1is the characteristic matrix; and

&, = Alx-c) ;

r
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and the consistency of these conditions on M is given by Theorem 1.
Thus all the concentric regular quadratics on a skeleton

(xr,gr,¢}} have the same initial value, with determination as Just

described.

THEQOREM 3. ir M(c) 1is the initial value for quadratics with centre c

on the skeleton {Xr’gr’¢}} and c* is any other centre, then

~(c-c*)1g .

M(c) - M(c*) = 5

For, immediately,

M(c) - M(c*) = —é—(c—c*)’gr .

But
c - c* = JG(C - c¥*) ,
and
I8y = 8

where J, is symmetric; whence the result.

G

THEOREM 4. The condition that ¢ be a convex centre, if such exist, is

that M(c) < M(Q)
For such exist if and only if the negativity condition holds for
the configuration, and then a necessary and sufficient condition is that

(c-8)¥g >0, which is M(c) < M(C) .

T. Characteristic matrix

It will now be shown that, corresponding to every point in the

4

centre manifold of a @ormal configuration,gthere exists a regular quadratic
admitted by the éonfiguration, with that point on its centre; and the
construction will be made of all such quadratics.

If ¢ 1is a centre of the configuration {xr,gr} » then the matrix

K = {gr'(xs—c)}
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is symmetric. For a regular quadratic with centre c¢ 4o be admitted by the

configuration, there has to exist s regular symmetric matrix A such that

g = A(xr-c) s

r

or equivalently,

r T
where B = A_l - In this case,
XO =BG ,
80 that
T — |3
GO XO GO BGb 5

whence, in the regular simplicial case, in which Gb is of rank k ,
the matrix XO'Gb must be regular symmetric and, therefore, the configura-
tion normal symmetric.

Thus there can be formed the matrix
)—l

B =X (X ¢
o 0

X b 1
o) o o

symmetric of rank k , such that

Now
B=B +8 ,
o) 8]

where SO is symmetric, and such that Son =0 .

And
X, - Bgr =X, - Bgo =c ,
80 that
Xo - Bogo - 38 go =c
But

o]
(e}
[©)

sio this relation is \
, :

1 e
[ i t o\ i

€ -c =5SOgO .
ITet ag be a base for the orthogonal complement of the range of

Go - Then the symmetric matrices SO such that Son = 0 are of the
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form

Since XO'Gb is regular, the partitioned matrix (Xoﬁg) is square and

regular. Accordingly, with p )_l

(XO'Gb , the nullity of

il

| SR oo
B XOpXO + Go o] Go

oa;><z §>(§O:> ?
)

is equal to the nullity of o ; so B 1isg regular provided o is regular.

I
b

Now, for a unique vy 5
€-c = 557 3
So, if the admitted quadratic with inverse characteristic matrix B is to
have the centre e » there must be the relation
- =, 3
Gb o] Gb g Gby 5

or equivalently,

which may be written

OK =17v% , where K = ag’g

o

where
K7 =g,"Cy =g, (8-c) = 8,'Jy(8-c) =g(t-c) ,

since
- c = JG(G—C), g = I8, » and Je 1s symmetric.

Given k and y , such that Kty 0, the symmetric matrices
0 which satisfy this relation are of the form

o =0 o]
o} + 1

where
- 3 -1
o, = 7(k'y) 7y

and o is symmetric, such that
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80 it must be of the form o, =K 7K', where K is a base for the ortho-
gonal complement of the ray on K
If K'Y =0, let
< Kca) ('70 )
K: =1 &
K1lo v =y ) o
the partitions being at the leading elements, where, without loss in gener-

ality, it can be supposed that ko 40 . Then TR, o+ 7l’K = 0, so that

1
l .
= - tK
71 K 71 Now take

o = -1
o) 7lkb 0

this again being symmetric, and such that

ok =7y

Construction has therefore been made of all the regular quadratics admitted
by the given configuration, and it appears that these exist, provided
GO‘XO is symmetric. Moreover, a subclass of these has been characterized

whose centre is any point ¢ on the centre manifold of the configuration.

THEOREM 1. Every point on the centre manifold of & normal symmetric

configuration is the centre of g regular quadratic admitted by that con-

figuration.
Now the condition for B +to be negative definite is that
p = (Gb’Xo)_l > and O negative definite. But, given
CR =7,
the condition that o can be chosen negative definite is that Kiy <0,

or equivalently
(C-c)'g <o .

But this is precisgly the condition that ¢ be a convex centre.

THEOREM 2. Every point c¢ on the centre manifold of a normal negative

symmetric configuration such that (-c)¥g < 0 1is the centre of a convex

quadratic admitted by that configuration.
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In other words, every convex centre is the centre of an admitted
convex gquadratic.
To proceed, again, with another manner of solution: there has to
be found all the symmetric matrices A such that
Go = AXO P

where Gb’Xb is symmetric and regular. Without loss in generality, it

G=(H>,X=(Y>,
O (o] o] o]
H T

1

can be supposed that

where Yb is square and regular, so that

Y = (YO o)
1

is a regular square matrix. Iet

H=<H U)
(o]
BV

Then U, V have to be chosen so that

A =my Tt

is symmetric, an equivalent condition being that Y'H is symmetric.
Now,

1 = ¥ t 3 $
XO Go Yb Hb + Yi Hi being symmetric,

o 1 o}

Hi Vv

Y'H = <Y’H+Y"H Y'U+Y‘V>
o} 1 1
is symmetric if and only if V is symmetric, and

- ¥ ¥
Hi = YO U + Yi V.

Accordingly, with V an arbitrary symmetric matrix, and

UT = (Hl - Wl)YO‘l 2

there is obtained a symmetric matrix A = HY?l with the property that
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Gb = AXO ;3 and all the symmetric matrices with this property are of this

form, 1n one-to-one correspondence with the symmetric matrices 7V .

A = (A U),
o]
ur v

where V is an arbitrary symmetric matrix, U has the value just given,

Explicitly,

and Ao is determined as a symmetric matrix from the relation
Y - vt - ¥ - 1
Yb Aon li VYi Hb Yb 1 Hi ?
since H ‘Yb - .lei is symmetric, which provides the desired value

[¢]

-1
A = (HO—UYl)YO .
Now for A +to be negative definite, it is necessary and suffi-

cient that
V and AO—UV_lU‘
be negative definite, or equivalently, that V and
Y- UNY =6 x - 5oyl
o 0 o) o "o 1 1
be negative definite. But this is the condition that
= - ¥ 1
Y'H (GO X, H )
Hi v
be negative definite.

Thus the general solution when Gb‘XO is regular, in which case

k<n, is

A = A¥ + R

where
-1 , -1 -1
¥ - 1 YT ¥ 1
A YO (Yo H Hy Yl)Yo Yo Hl>
HY -1 0
O

and

R=XVX*®, with X = <Y*"l\r>.
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If k =n , there is s unique solution

If k¥ >n, write

Go - (FoFl) ? Xo - (Zobl) ?
where, in the case of a regular complete configuration, it can be assumed
without loss in generality that FO'ZO is regular. Then, with FOTZb is

symmetric, it follows that

is symmetric and such that

Moreover, with

% T = ¥
: 2,1 = F,'7

there follows

and then

Thus there is found a unique regular symmetric matrix A such that

AX =G .
o o]



