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Introduction

The study qf economic planning has focused almost exclusively on the design
of iterative procedures to achieve the optimal allocation and distribution of
economic goods and resources. Planning procedures of this type explicitly
assume that the iterative exchange of information between the center and the
producer can be continued until the center is sufficiently cognizant of the
technology to choose the optimal production plan. In actuality, however,
constraints on the feasible number of information exchanges limit the infor-
mation available to the center. Consequently, a fealistic model of the
planning process must confront the fact that the center devises a system of
directives or incentives to motivate optimal production decisions in the presence
of what Laffont (1975) has called subjective uncertainty. Subjective uncer-
tainty which stems from information constraints at the center is to be dis-
tinguished from objective uncertainty or real randomness in technological
production possibilities. Objective uncertainty is an inherent characteristic
of the economic environment which planning cannot eliminate, while subjective
uncertainty stems from the decentralization of information which can be reduced
but is not eliminated by planning.

In the presence of subjective uncertainty the center's planning problem
becomes one of devising incentives to permit the delegation of decision-making
authority to the productive agents which have the information required to
make optimal decisions at the time production is undertaken. One way the
center can solve this problem is by structuring a so-called performance
incentive function (PIF) relating the rewards of the producers to certain
characteristics of their performance. The actual form of the PIF chosen by

the center depends on both its allocational and distributional goals.
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In the simplest case, where the distribution of societal profits or rent
between the center and its agents does not matter, the optimal PIF depends
solely on the allocational goals of the center. This simple case is examined
in the first section of this paper. However, once we allow for distributional
objectives, the selection of an optimal PIF becomes considerably more compli-
cated. At first, this result may seem surprising. As long as lump sum
transfers between the center and the producers are feasible, the center should
be able to choose an optimal PIF on allocational grounds and to achieve its
distributional goals by lump sum adjustments once production decisions have
been made. However, several examples analyzed in the later sections of the
paper indicate that in the presence of subjective and objective uncertainty,
the separation of allocational and distributional goals is not always feasible.

For example, to achieve optimal production decisions under conditions of
subjective uncertainty, the center may direct producers to maximize profits
at a gi?en price. However, realized profits may diverge from the profits
consistent with the center's distributional goals. This divergence stems from
the fact that profits actually fulfill two functions: they serve as an incentive
or control tool by which the center can guide enterprise behavior; and they
serve as a distributional tool by which the center can achieve the desired
distribution of societal rent. To achieve its distributional goal the center
may be forced to modify realized profits by some adjustment function. If
producers are aware that such an adjustment function exists, but they are not
cognizant of its form, then they are likely to guess its value, and any mis-
calculation on their part will reduce the efficiency of their production decisions.
On the other hand, if the producers are aware of the adjustment function, then
they will maximize their total rewards, including the adjustment function, and

simple profit maximization at the given price will be a superfluous incentive



tool.

One of the major findings of this paper is that there exists an optimal
PIF which inco;porates the adjustment function needed to achieve both dis-
tributional and allocational‘optimality. The existence of such a PIF is the
major reason why distributional optimality is an important consideration at
the time the center formulates its incentive structure. By announcing the
optimal PIF, the center thereby avoids the potential efficiency losses caused
by producer miscalculation of the adjustment function, and allocational and
distributional goals are simultaneously guaranteed.

Before proceeding to examine the allocationai and distributional consequences
of PIF's in some simple economic models, it is important to realize their
potential usefulness in a variety of circumstances. The idea of a so-called
"contractual incentive function" which specifies a mutually acceptable rule
relating the monetary rewards paid by one decision maker to the subsequent
performaﬁce of another is not new. Most of the existing theoretical work, such
as the studies of Bernhold (1971) and Wilson (1968, 1970), has focused on the
use of incentive contracting to motivate decision makers within a firm hierarchy
to act in accordance with managerial goals or to motivate government contractors
to meet their production commitments in the most efficient possible manner.
Performance incentives have actually been employed in both sets of circumstances.
Numerous enterprises have devised profit-sharing formulae to motivate super-
visory and managerial personnel, and the Department of Defense and NASA have
relied on the use of performance incentives to monitor the work of major con-
tractors. (Ackerman, 1966; Department of Defense, 1969). Recent innovations in
the use of performance incentives have appeared in the new Amtrak contract
which relates payments to the railroads to the quality of services they provide

(Baumol, 1975) and in a contractual arrangement which guarantees a one percent
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increase in the salaries of the policemen of Orange, California to every three
percent decline in rape, robbery, burglary and auto theft.l

Alfhough the existing literature on economic planning does not specifically
mention the usé of performance incentive functions or incentive contracts, the
concept does arise in discussions of "success indicators" in Soviet planning.
The Soviets have become notorious for a system of planning in which enterprise
agents are rewarded according to the degree to which certain plan targets
are achieved. By choosing enterprise targets and a related reward structure,
Soviet planneis implicitly define a performance incentive system. In contrast
to similar systems eﬁployed in the West, the Soviet system is not "contractual"”
in the sense that it is agreed upon by the planners and the enterprise managers.
Instead, the state unilaterally chooses the plan targets and rewards, and the
enterprise managers are expected to comply in an effort to attain their own
maximum reward within the confines of the rules laid down by the planners. This
"non-contractual" incentive system is clearly an example of the use of per-
formance incentives in the implementation of economic planning. Future examples
will be forthcoming as more societies look toward some degree of economic

planning to foster the most efficient use of scarce resources.

I. Performance Incentive Functions and Resource Allocation -—- The Basic Model

Following a recent paper by Weitzman (1974), we begin with a basic model
in which there is only one commodity which is produced by a single producer. We
assume the existence of a cost function relating money costs to the level of
output produced and a benefit function relating aggregate societal benefits
measured in monetary terms2 to the level of output consumed. In the simple
model the planning problem is to achieve the level of production which just

maximizes net benefits defined as



B(q) - C(q) (1)

where ‘Bll < 0; Cll > 0; Bl(O) > Cl(O); and Bl(H) < Cl(H) for H sufficiently
large. As long as the center has complete knowledge of the benefit and cost

functions, it can choose an optimal quantity directive g* according to the

first order condition

Bl(q*) = Cl@q*) (2)

or it can choose an optimal price directive p* according to the first order

condition

p* = cl (q*) = Bl (q*) (3)

allowing the producer to choose the optimal quantity via profit maximization.
Now consider the case in which the center must make its planning decision
in the presence of subjective uncertainty. In this case from the point of view
of the pl%nner the cost function is of the form C(g,9) and the benefit
function is of the form B(qg,n) where 6 and n are independent random
variables reflecting the center's informational uncertainty about costs and
benefits. There are two different interpretations which can be given to © and
n . On the one hand, costs and benefits may be uncertain from the center's
perspective but may be revealed in full certainty to the producer at t1 '
the time the plan is formulated. On the other hand, costs and benefits may
be uncertain for the center and the producer at the time the plan is formulated

but may be fully revealed to the producer at t the time the plan is imple-

2 14

mented and to the society at ¢ the time societal benefits are realized.

3 I
Following Weitzman, we assume that 6 reflects the center's subjective uncertainty

about the cost function at t, and t, . while n reflects objective uncertainty

in the benefit function. The true value of 6 is known to the producer but not
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to the center at t the time production is set, while the true value of n

2 14

is only known by the center at t sometime later.

3 7

In the presence of uncertainty the center must devise an incentive function
to motivate optimal production decisions. Such a function will be of the
general form Tm(g,c) where c¢ represents actual production costs at ty, and
T is measured in the same units as benefits and costs. To maximize earned
rewards, the producer will choose an output level which maximizes the PIF.
Clearly, a special case of a performance incentive function is the use of a
bPrice parameter in a contract which specifies that the producer earns net

profits at that price after the payment of full production costs. The PIF then

becomes

m(g,c) = pq - c . (4)

Suppcse, as seems reasonable, that the center wishes to maximize expected

net benefits at t, , given the actual value of 6 . The center's task at t

2 2

is to find the solution to the following maximization problem.3

Max E {B(qg,n)} - C(q,6) . (5)
g .

The first order condition for the optimal g* from the center's point of view

is therefore
E Bl(q*,n) = Cl(q*,e) . (6)

Because the center cannot cbserve 6 at t2 + it cannot solve this problem

directly. However, it can utilize a properly specified PIF to guarantee

that the producer will choose g* at t. . Recall that the producer at t

2 2

will maximize the PIF. The associated first order condition for the producer

can be written as

n{/ﬂ; = C, (q*,0) (7)
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where nI and ﬂ§ are the two first partial derivatives of the optimal PIF,

and g* 1is the optimal output level for the producer at t Substituting

5 -
this condition into the first order condition for the center's maximization

problem yields the following condition for the optimal PIF:
* = * = qk/TR
E Bl(q /) Cl(q 9) wl/wz . (8)
This condition can be rewritten as

nI = -3 EB, {q) (2)

which indicates that the center has a degree of freedom in choosing the optimal
PIF. It may specify any function whose partial derivatives satisfy condition
(). All such functions geﬁerate the same total net benefits, and therefore

on rent maximization or allocational criteria, one such function is as good as
any other. 1In terms of informational requirements, however, the center may
prefer to’ choose a PIF for which Wg = -1 , thereby forcing the enterprise to
bear total production costs. Any other arrangement would require the center to

measure actual production costs at t in order to make sure that the desired

2
sharing of total costs by the center and the producer is realized.

If the center chooses W§ = -1 to minimize information requirements, then

w{ = EBl(q) and integration yields a general optimal PIF of the form

T*(d,c) = G(g) - ¢ (10)

where G(g) is equal to EB(q) plus or minus some arbitrary constant of integration.
In this simple case the center only needs to know EBl(q,n) to specify the
optimal PIF,

A PIF of the form suggested in equations (9) and (10) has a simple intuitive

explanation. If the center were certain of the actual cost conditions which
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would prevail at ty then it would set an ocutput target at tl such that

expected marginal benefits would just equal actual marginal costs. However,

since the center does not know actual costs at t it cannot specify this

2 [ 4

output target at t Nonetheless, it can still motivate the producer to

1 -

choose this output level at t., by devising a contract so that the producer

2

always operates at the point where actual marginal cost at t just equals

2

expected marginal benefits at t The PIF corresponding to equation (9) yields

1 -
a contract of this form. The producer is motivated to do the job which the

center wants done at t2 by a performance incentive contract specified at

t, . Moreover, the center does not need any information about the producer's

cost function at either tl or t2 to determine this performance contract.

As far as the center is concerned, the producer's cost function is an unknown
function whose first derivative is replaced by .EBl(q,n) in the specification

of the PIF. Thus, the center does not need to know either the cost function

or the di;tribution function for © , and privacy or the guarding of technological
information by the producer is maintained during the planning process.

II. Performance Incentive Functions and the Distribution of Societal Profits:
The Case of Subjective Uncertainty

The rules specifying the optimal PIF in the last section are consistent
with a number of different functions which have different implications for the
share of societal profits remaining with thg producer and the share of profits
flowing to the center. Which of the many feasible PIFs will be chosen by the
center depends on its distributional objectives. Given these objectives, a
particular P;F yielding both allocational efficiency and distributional justice
can be achieved.

To study the distribution of profits it is first necessary to specify utility

functions for the producer and the center. To begin we assume that both possess



risk averse (strictly concave) von Neumann-Morgenstern utility functions which
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depend on the profits they earn. These utility functions can be interpreted

as individual utility functions or as group utility functions. For example,

UC’

the center's utility function, may represent the utility of all consumers

provided they display the same degree of "cautiousness." (Wilson, 1968).

To determine the optimal distribution of profits, the center must have a

normative view about the relative weights to be accorded to its own utility

and to the utility of the producer. Therefore, we assume the existence of

social welfare weights AC

goals. It is simplest to interpret the welfare weight which the center accords

to itself as the welfare weight which arises when the center maximizes a

social welfare function the arguments of which are the utilities of all

consumers and the producer. However, it is also possible to think of the

welfare weights as shadow prices reflecting the fact that the producer must

receive some minimum expected utility at t
a contract to produce at t
tractual nature of the relationship between the center and the producer at t

Given the utility functions and the welfare weights, the center can deter-

1 before it is willing to accept

mine the optimal profit-sharing rule or the optimal amount of profits to be

granted to the producer for a given amount of total profits by solving the

following maximization problem:

where

is

is

is

is

max 2°0%(s€) + 2% (s + WO (r-(sC+sY)) (11)
S84
the amount of profits going to the center;
the amount of profits going to the producer;
a Lagrange multiplier; and

the total amount of profits available for distribution.

and Xd which reflect the center's distributional

5 - This latter interpretation emphasizes the con-

1
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The first order conditions for the optimal rent sharing rule are given by

l * 1 *
AU (576 = 2% (") = O (12)

1 1
" * *
where U° =au¥as'® and v® = avr¥as™? .

Now suppose the center tries to achieve its allocational and distributional
goals in the following stepwise manner. At tl the center specifies a PIF
which is optimal according to the allocational rule given by equation (6).

Profit maximization by the producer at t2 yields the first order condition

(7) which genérates a reaction functional of the form:
g* = F(Wllﬂz,e) (13)

relating the optimal output choice to the PIF and the actual value of 0 .
The output decision at t2 in turn gives rise to a total volume of societal

profits R(g*) = B(g*) - C(g*) at t3 . Clearly, since g* depends directly

on 6 , so will the total volume of profits R(qg*) and the share of profits
allocated to the producer. Given R(g*), the center can solve for the optimal

rent sharing rule and adjust the profits realized by the producer at t by a

2.

lump sum transfer K(8) which satisfies the condition:
*d
T(g*,c) + K(8) = s ~(R(qg*)) . (14)

In this way the center appears able to guarantee allocational optimality at t2 ’
by the selection of an optimal PIF at tl + and distributional optimality at t3 ’
by the selection of the optimal transfer K(8). Moreover, because K(6) can

be expressed in terms of w(g*,c) and s*d(R{q*)) , Vvariables that are

observable by the center, the center need not observe 8 at t2 to guarantee

distributional optimality.

There are two problems with this approach, however. First, institutional
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arrangements may render lump sum transfers from the center to the producer
infeasible. Second, even if lump sum transfers are feasible, they may not be
optimal if the producer modifies his behavior at t., in an effort to increase

2

the transfer réceived at t3 or later. Suppose, for example, that the center

does not announce the adjus£ment function at t2  but that the producer is
aware that an adjustment will be made. In general, the producer will find it
in his self interest to anticipate or guess the adjustment rule at t2 and

to maximize total profits modified according to this rule. Consequently, the
anticipated adjustment rule will influence producer behavior, and to the extent
that the producer miscalculates the adjustment function, losses in efficiency

will occur. Miscalculations of this sort can be circumvented if the center

announces the adjustment rule at t but in this case the original PIF, m(g,c),

l 1
is superseded by a modified PIF of the form m{d,c) + K(6) which the producer
will maximize to choose its production level. The best strategy for the center

under these circumstances is to specify a PIF at t, which achieves both

1
allocational and distributional goals simultaneously. Such a PIF can be found

by solving the following overall maximization problem at tl :

Max E {ACUC(B(q*) - C(qg*,0) - m(g*,c)) + kdUd(ﬂ(q*,c))} (15)

mg*,c)

where g* 1is the optimal choice of the producer given the reaction functional

of equation (13).
Using the reaction functional and a variational calculus technique described in

the Appendix, it can be shown that if w(gq,c) is the function solving equation (15),

then the following first order conditions apply:

the allocational condition: (16a)
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and
the distributional condition: (16b)
1 1

2% =&

It remains to be demonstrated that a PIF of the form T(1,c) can be constructed
to satisfy these conditions simultaneously. First, write the producer's

rent sharing function in terms of g and ¢ to parallel the form of the

PIF:

4 = s%m = %@l - o) = (g0 . (17)

Equation (16b) can be used to solve for the optimal rent sharing function

which must be equal to the optimal performance incentive function to yield:
T*(q,c) = s*d(B(q)-c) . (18)

Taking partial derivatives of this relationship with respect to ¢ and q

provides the following conditions:

m* = 3s%d/5c = -3s5+d /58 (19)

*
2
and

¥ = 3s*d/3q = (3s*d/3B) + (3B/3q) (20)

*
1
which in turn imply that it is possible to construct the optimal PIF such that

¥ = ek
¥ ﬂzBl . (21)

In view of the producer's profit maximization condition given in equation
(7), the allocational condition (16a) is clearly satisfied. In the next section
it is shown that the optimal rent sharing function must be a monotone increasing
function of the total rent generated. The all-around convexity of the function

R(q,6) , plus this monotonicity implies that equating m*(g,c) to s*d ig
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sufficient for distributional optimality to be achieved. The existence of a PIF
which maximizes (15) and satisfies (16a) and (16b) permits us to state the

following proposition which has been proved.
Proposition : When there is certainty at t, , and both the
producer and the center are risk averse, then the

optimal PIF achieves both allocational and distri-
butional efficiency at t2 .

ITI. Optimal Rent Sharing and Risk

The optimal rent sharing functions s*C and s#*d ; identified in equation
(12), play such an important role in the pfevious-analysis that it is appropriate
to review some of their properties which have been derived by Wilson (1968).

In particular, we shall demonstrate their dependence on the degree of risk
aversion incorporated in the underlying utility functions.

Differentiating (12) with respect to R yields:

c cll d dll 0
. *C = . *d =
(A"u ) (sR ) (A7U ) (sR ) uy (22)
cll cl dll dl
where U = dU~ /ds*Cc , U = du /ds*d ’ sﬁc = 3s*®/3R , and sﬁd =

Bs*d/BR . Combining this result with equation (12) allows us to write

u0 UCl
*Cy o] = |=
(sx) .0 11 (23)
R U
and
uo Udl
*dy o 2l o S
(sR ) uo dll . (24)
R U
cl cll dl 11
The terms U /U and U /U have been called risk tolerance functions

pc and pd by Wilson (1968). These functions are the reciprocals of the

well-known risk aversion functions analyzed by Pratt (1964). Summing conditions
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(23) and (24) yields

= ,GO

W O

© ((s20) + (s;;d)) =% + % . (25)

Since (s*C) + (s*d) = R, it follows that (s%°) + (sl’;:d). =1, in which

case (25) can be rewritten as

o

(26)

o Iﬁ
K
1l
kol
+
ol

Using this ‘expression and substituting for pc and pd from (23) and (24),

we can write

C
sE° = 8(s*°)/BR(0) = —E— (27)
p +p
and
i
sad = 3(s*d) /3R (0) = ;;E—;g . (28)

Under the assumption that the utility functions are both strictly concave, pC

and pd are both positive which implies that
*C »d
0 <sf <1 and O0< sFT < 1. (29)

Therefore, we can conclude that for optimal distribution in this case, as total

rent increases so does the actual rent received by both the producer and the
center,

There are circumstances under which it is optimal for each agent to receive
a lump sum amount plus a fixed proportion of the total rent. It is important
to know when this type of linear arrangement is optimal because a linear sharing
rule greatly simplifies the form of the PIF. Furthermore, it will be seen in

the next section that when objective uncertainty exists, the optimality of linear
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sharing is the only situation when it is possible to achieve allocation and

distribution goals simultaneously.

First define pc + pd = po r and rewrite equations (27) and (28) as
o€ = %+ (s20) | (30)

and
pd = 07 - (s29) . (31)

Differentiating with respect to R yields

B Yo 0 *c 0 ac

= + 32
PR°Rr PR ° Srr (32)
and
d =g 0 %3 0 %3
= + .
PrSp P=SR P s (33)
c 0] d . . . . . .
Clearly pR = pR = pR + if and only if the optimal sharing rule is linear.
For if th haring ratio is linear, the * s*d = 0 and if . ,0-
é s ing rati n ' n sRR = Ser ’ DR DR
d *o *d
= =0 .
pR r then sRR sRR
The terms p; and p: have been called the "cautiousness® of the center and

the producer in the face of risk (Wilson, 1968). Thus, the optimal rent sharing
rule will be linear if and only if the center and the producer exhibit the same
degree of cautiousness. There are a number of important classes of utility
functions for the producer and the center for which this condition is satisfied.
For example, if risk tolerance functions are linear of the form pc(s*c) =

*d da

+ b , then p§ = p_=a , and both the center and

as*® + b and pd(s*d) = as R

the producer have the same cautiousness. Special cases of utility functions

which provide risk tolerance functions are of this form include {(Wilson, 1968):

exponential: a = 0

quadratic: a= -1

u
[}
[

logarithmic:

power: a = arbitrary constant. .
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IV. Exponential Utility Functions and the Optimal PIF
Using the general analysis developed in the last section we can now derive
PIF's for a particular set of utility functions. For simplicity, we choose

exponential functions of the form:

c,. C d, d
- -s9/K
o€ = %= /% g v = k%S (34)

which we know will yield a simple linear éharing rule. Substituting these

functions into equation (11) and performing the maximization yields

d, d d c
Ade_s /K _ Ace—(R(e)—s ) /K ] (35)
Taking logs of both sides we obtain:
d c_ d d
*d
= (S )re) + (BE) 10e (A . (36)
K +K K +K A
If we now let
d Kch d
Y = 3 and L = 3 logf —
K™+K K +K A
we can write
*d
s = yR(6) + L (37)
and
s*C = (1-y)R(8) - L . (38)
Since s*d , the optimal earnings of the producer, is generated by the

optimal PIF at t., , it follows that this function should be of the form

2

T*(q,c) = y(B@)~c) + L . (39)

In words, the center contracts to pay the producer the difference between actual
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benefits and costs at t2 plus a particular lump sum L which depends on the
underlying utility functions and welfare weights. In the contract, the center
must specify the entire benefit function B(g) , so that the producer will
know the marginal return from a unit of output at each possible level of out-
put. Given B(g) and actual cost conditions at t, , the producer will select

2

output where B1 = C1 or where the allocational objectives of the center are
fully satisfied. Thus, optimal allocation and distribution will be simultaneously

achieved.

V. Risk Neutrality and the Optimal PIF

In the discussion so far we have assumed that the center is risk averse.
However, since the center's utility function may represent benefits derived by a
very large number of consumers, it may seem reasonable to suppose that it approaches
risk neutrality as a theorem derived by Arrow and Lind (1970) suggests. As risk
neutrality is approached from risk averseness, pc , the measure of the center's
risk tolerance, approaches infinity. As long as the producer remains risk averse,

equations (27) and (28) imply that

. *d_ . *c_
lim sR =0 and lim SR =1

p e p “ren

Thus, in the limiting case, if the center is risk neutral, it should bear all
of the risk, and the amount of profits received by the producer should be some
lump sum transfer independent of 6 . Under these circumstances, the incentive
function of profits is lost, because the reward earned by the producer does not
depend on his actions.4

To relate this conclusion to PIF's, observe from equations (19)-(21), that
Ty = 0 and ﬂl = 0 , when the center is risk neutral. Therefore, the profit

received by the producer is independent of his action, and it is not possible

to use a PIF to achieve efficiency and distributional goals simultaneously. Some
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other method of control or guidance of producer behavior must be devised. One
such method would require the center to set some sharing rule which is indirectly
dependent on © at tl and then to offset the 6-dependent share of the rent

earned by the producer at t, by an additional lump sum transfer. For

2

example, if the center selects a PIF at tl with a sharing rate equal to a
constant w and a lump sum transfer equal to 2 , and if it is optimal for the

producer to receive J for every state of the world, then the adjustment

function V(6) must satisfy
V(8) = J - wR(B) - 2 . (40)

The problem with this approach is that if the producer knows that it will

always receive the same amount of profits at t then it has no incentive to

5 7
maximize profits, and there is no guarantee that allocational efficiency will

be achieved. Therefore, in order to use profits to motivate allocational
efficienc&, the center will have to sacrifice the optimal distribution

required by its own risk neutrality. Under these circumstances, the center

may sometimes decide to act as if it were risk averse, even if it is not, to
sustain efficient decision-making at t2 .

The failure of the profits mechanism as a control tool when the center is
risk averse is analogous to the "moral hazard" problem discussed in the
insurance literature (Spence and Zeckhauser, 1971). This problem concerns the
conflict between obtaining appropriate incentives for "correct" behavior by the
insured and socially optimal sharing of risk between the insurer and the insured.
The problem arises only when a risk neutral insurer cannot observe or monitor
the actions of the insured and therefore cannot guarantee that the insured

has behaved in the "correct"” way. If the insurer can monitor the insured's

behavior, then the incentives problem is eliminated because the insurer can
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structure the insurance payoff function so that the insured will always behave
corractly. The analogy to the central planning problem is obvious. If the

center could monitor production decisions at t or what is equivalent,

2 4

if the center could observe 6 at t2 , then the incentives problem would
be eliminated, and a rewards structure to guarantee efficiency and distributional

equity could be devised.5

VI. Objective Uncertainty and Performance Incentives

In the cases examined so far the producer is assumed to act with full

certainty at t when production decisions are made. Such an assumption

2

is consistent with the existence of subjective uncertainty of the center at t1

and complete certainty of the producer at tl and t, r or with subjective

uncertainty of the center and objective uncertainty of the producer at tl and

complete certainty of the producer at t the

5 - Now suppose that at t2

producer has only partial information about the relationship between output
and costs, so production decisions are made under conditions of objective

uncertainty. At tl there now exists a joint probability distribution £(8,y)

where 6 1is a random variable at tl reflecting the center's subjective

uncertainty about information which will become available at t » and y

2

represents uncertainty about the technological relationship between costs and

output that remains at t2 . At t2 , when the value of 6 is known to

the enterprise, a conditional distribution function g(yle) guides enterprise
decision-making.
At t, , a PIF of the form m(g,c) is announced by the center. At ty

the producer is faced with the following problem

Max E Ud(‘w(q,c(q,y,e))) . (41)
qa yls
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The first order condition applying to the solution of this problem is

gt
E {u - (wl+w2cl)} =0 (42)
v|6

which yields a reaction function of the form

g* = F(,TT,Wl,'TTz,Y) (43)

where 7 has been included because a risk averse producer's behavior will be
1
. d
affected by the level of total profits through its effect on U

At tl , the center's problem is to solve

Max {E{ E [A“0°(B(q*) - C(q*,0, y) - m(q*, clg*,8,y))) +
T 0 yfe

+ 2% (@r e, 0,913 . (44)
Assuming that the producer acts in accordance with (42), the variational calculus

technique’ demonstrated in the Appendix yields the following first order condition

for this problem

1

< . - - k=R —

E [U [B,-C,-m# ﬂzcl]] 0 (45)
vle
and
1 1

e ov€ =2%e ¥ . (46)

v|e y|o

There are two important conclusions to be drawn from these conditions. First,
. , \ *d . . e ‘s
the optimal rent sharing function s which satisfies these conditions specifies

distributional optimality as perceived at t, when objective uncertainty still

2
prevails. Overall ex post distributional optimality under conditions of complete
c 1 d dl
certainty and given by the condition A%U¢ = A% is no longer guaranteed.
1

Second, the presence of Uc in both conditions (45) and (46) prevents the
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separation of an allocational condition at t and a distributional condition

2

at t2 which is possible in the absence of objective uncertainty. Thus,

the fact that there is producer uncertainty at t2 necessitates a balance
between allocational and distributional goals, where a balance simply means
that blend of the two goals which is the most desirable given the constraints
imposed on the problem. It is significant that this balance can be achieved

only when the PIF is properly constructed at t., . When there is objective

1
uncertainty at t2 , then even if lump sum transfers are feasible, and even

if the producer does not miscalculate the center's adjustment function, a step-
wise procedure to achieve optimal allocation and distribution will not work.
The only way to guarantee overall optimality is to incorporate distributional

goals at t when the PIF is structured.

1
The question arises as to why the presence of objective uncertainty at t2
makes the optimal allocational and distributional conditions simultaneous rather
than independent. An intuitive answer suggests itself. At t2 , neither the

center nor the producer knows the actual conditions of production with certainty.
Therefore, the center cannot specify a PIF which is optimal from a distributional

standpoint at t and depend on the producer to independently satisfy the

1
optimal allocational condition at t2 , because the producer does not have the
necessary information to do so at that time. It is the lack of information
which makes the distributional and allocational conditions interdependent and
which constrains the center to search for the optimal balance between efficiency
and equity simultaneously.

Although the center will always be constrained under these circumstances, there
is one special case in which the satisfaction of conditions (45) and (46) will
guarantee ex post distributional optimality as well as distributional optimality

from the vantage point of t when the value of y is not yet revealed. This

2 14
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case arises when a linear rent sharing rule is optimal. We first note that the
c cl d dl
ex post distributional condition AU = AU implies that

C cl d dl
ATU (ﬂl+ﬂ2Cl) = E AU (Wl+ﬂ2

cl) . (47)
y|® AL

Expected utility maximization by the producer implies that the left side of

this equality equals zero, and this permits us to rewrite equation (45) as

vB, = E vc. =0 . (48)
1 1
y|o y| o
Now if the optimal rent sharing rule is linear, then Wz is a constant, and

since both Ty and A% are constants, equation (48) can be rewritten as

1
E 2u® B = 8 261 =0. (49)

vle 271 vlo 271

Now consider the producer's expected utility maximization condition (42)
multiplied by 29 , another constant, to yield

1 1
AdUd T. + E Adud m,C, =0 . (50)
1 271
vi6 y|0

Clearly, if ™ is set equal to —WzBl in the optimal PIF, then the utility
maximization of the producer which guarantees equation (50) also guarantees

that equation (49) will be satisfied, and, consequently, that ex post dis-
tributional optimality will be achieved. Using 7*(q,c) which satisfies Wi =
—WSBl, where ﬂ; is the constant associated with the optimal linear sharing rule,
will therefore yield ex post distributional optimality. Furthermore, since

m*(g,c) is structured so that equation (48) is also satisfied, then the production
level chosen at t2 will be the level which the center would choose if it

directly administered production. We can characterize this conclusion by

stating that when the optimal rent sharing rule is linear, then the output
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chosen by the producer at t is the output which would be chosen under a regime

2
of direct controls in which the center itself made production decisions.

If the optimal sharing rule is non-linear, then the direct control solution and
the solution obtained with a PIF are not the same. This seems to be an argument for

using direct controls when the optimal sharing rule is non-~linear and there is

objective uncertainty at té . To fully analyze this question, however, requires the

analysis of three kinds of costs. There are the transactions costs associated
with setting up, administering and policing the sort of guasi-market environment
associated with PIF's and other indirect controls; the welfare costs associated
with the producer choosing the wrong output undervsuch a regime; and the
administrative costs associated with direct controls. Unless the administrative
costs are less than the transactions and welfare costs, there is no prima

facie case for direct controls.

VII. Conglusions

In this paper we have examined a major problem in economic planning, namely
the structuring of incentives to guarantee optimal decision making by decentralized
production agents. This problem arises whenever the center is forced to forego
direct control over production decisions because of its lack of information about
production technology. Under such circumstances, the center must search for a
contractual arrangement which will motivate the producer to make production
decisions which will be optimal given the center's allocational and distributional
goals. Using a simple one good model, a particular type of contractual arrangement
called a performance incentive function is derived. As long as the producer
chooses an output level in an environment of subjective certainty, the PIF is
demonstrated to simultaneously achieve optimality in allocation and distribution.
In contrast, when production choice is subject to objective uncertainty, the optimal

PIF is shown to involve a balance between allocational and distributional goals.
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Overall, the analysis suggests that in an environment in which information is
decentralized, the construction and transmittal of a complicated set of
messages in thg form of a PIF given by the center to the producer allows the
center to delegate decision-making authority without completely sacrificing

its control over the allocation and distribution of economic goods and resources.
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Appendix
When there is subjective uncertainty, the center's problem at tl is to
solve
c_C
Max = [J[ATU (B(g*) - Clg*,8) - w(g*,c)) +
T(g,c) 8
d_d
+ AU (m{g*,c)1f(B)das (r.1)
where g* 1is the reaction functional for the producer from equation (13). 1In

that this funétional was obtained by inverting the producer's profit maximizing
condition (7), it is assumed that q* is monotone in 6 . The function £(6)
represents the center's probability assessments of the subjective uncertainty.

The calculus of variations will be used to derive the center's first order
conditions (l6a) and (16b). First, a scaled differential functional variation,
et(g,c) , is added to the solution (or optimal) performance incentive

P
function, w(g,c) , yielding a new function

*
T=m+ gt . (A.2)
Simultaneously, one obtains
*
= + .
ﬂl Wl Etl (Ar.3)
*
ﬂ2 = WZ + st2 . (A.4)

The solution strategy is to substitute for = in (A.1) using (A.2), set
the derivative of the center's maximand with respect to ¢ equal to zero,
evaluate the result at € equal to zero (where 7 = ; }, and then determine
the conditions which must be satisfied for ; to solve (A.1). After setting

the derivative evaluated at € = 0 equal to zero, one obtains
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l * *
ST SUC ((B.-C.)dq*/de - (T.+T.C.)dq*/de - t) +
5 1 71 1 271

1

* *
+ 294 ((m,+7,C )dq%/de + £)1£(6)d8 = O . (A.5)
To obtain the distributional condition (16b), select a function t such
*
that tl/t2 = wl/ﬂz . Such a function t implies that variations in e do not
affect the output level selected by the producer, i.e., dg*/de = 0 , and
permits all of (A.5) to be eliminated but the expression
1 1
F12% 9% ye1£(0)a8 = o .
5

* *
As g* 1is monotone in 6 , the class of functions t with tl/t2 = wl/wz is

wide enough to obtain the condition (16b) which achieves pointwise distributional
optimality.
The allocational condition (l6a) can be obtained by using the assumption of

profit maximization (7) and the distributional condition (16b) to write (A.5) as

1
S u® (B,~C,)dq*/del£(6)d0 = 0
6

Now a function t is chosen such that dg*/de is non zero implying that point-
wise optimality requires that the allocational condition (16a) be satisfied

for all values of 6 . Thus, if a function ; is optimal and achieves point-
wise optimality, then the allocational and distributional conditions must be
satisfied.

When there is objective uncertainty at t the reaction functional (42)

2 ?

applies, and the problem which must be solved by the center at tl can be

written
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Max ff[ACUC(B(q*) - C{g*,0,y) - m(g*,c))
ﬂ(qlc) ey

+ 2% (r(a*,c) 19 (v |0)k (6) dyas (a.6)

where k(0) is the marginal density function. The functions specified in (A.2)

through (A.4) are again used as the derivative of (A.6) with respect to e is

equated to zero and evaluated at € = 0 .

This procedure yields

c cl * *
S E (AU UB,-C.-T_-7_C.)dg*/de - t] +
‘ 1711 271 :
6 y|e
1
d d * *
+ AU [(ﬂl+ﬂ2Cl)dq*/de + t1)k(8)d8 = 0 (A.7)

where the inside integral of (A.6) has been replaced with the conditional

expectation operator. Then, the same argument as used in the subjective uncertainty

case is repeated to obtain the first order conditions (45) and (46) which must

. *
necessarily be true if ™ solves the problem (A.6).
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Footnotes

lTrenton Times, Sunday, December 15, 1974.

2A function.of the form B(g) assumes that there is no income effect in
the consumption of good q since the willingness to spend on g does not depend
on cost conditions. This assumption is implicit in Weitzman's analysis.

3It is possible to solve directly for the optimal PIF by setting the
following problem for the center

max E{B(g*(m,0),n) - Clg*(m,8),6)}
T(g,c) '

where g#*(7,8) is the reaction function reléting the producer's choice of out-
put at t2 to the PIF. However, a complicated variational calculus procedure
is needed to solve this maximization problem, and the method of deriving the
optimal PIF presented in the text is much simpler and straightforward.

4It ié interesting to note that as center risk neutrality is approached by
a sequence of decreasingly risk averse functions, the ability of profits to
serve as an incentirve mechanism is retained for all but the limiting function
of the sequence. This discontinuity arises because while only the slightest
variation is needed for profits to influence behavior, the limiting function
exhibits no variation.

5This rewards structure would be straightforward: the center would give
the producer a fixed amount, J, for acting efficiently given the true value

of ® and -» otherwise. This is analogous to Case II in the Spence-Zeckhauser

paper.
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