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Introduction

Models of economic planning have traditionally focused on the design of
iterative procedures to achieve the optimal allocation and distribution of
economic goods and resources. Models of this type generally assume that the
iterative exchange of information between the center and its decentralized
agents, the producers, can be continued until the center has enough informatiqn
to choose an optimal plan. Suppose, however, that constraints on information
exchange compel the center to choose.a planning strategy in the absence of
. complete certainty about the conditions of prodﬁction. What is the best strateqgy
for the center té adopt under such circumstances? In a recent paper, Martin
Weitzman (1974) sheds some light on this‘important question by contrasting the
performance of two planning instruments, ﬁprices and quanfities," under conditions
of uncertainty. Weitzman assumes that at the time the cénter chooses a planning
instrument, it is uncertain about the actual conditions of production and
consumption which will prevail when the plan is implemented. He then examines
whether under such circumstances, the center would do better to set a gquantity
for producers or to set a price and allow the producers to set output according
to profit-maximization.

Our purpose in this paper is to build upon the foundation laid by Weitzman
by ekamining a third policy strategy available to the center, namely, the
adoption of a general performance incentive function (PIF) or contract to guide
the producer's output choice. In Section I, we»define such a function or contract
and demonstrate how it works as a planning tool. Section II.demonstrates the
superiority of a PIF over both prices and quantities in a simple planning model
with a single producer. The analysis indicates that a pProperly specified PIF

guarantees efficiency in production and requires less information processing by
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the dentér than either prices or quantities. Section III extends the examination
of PIF's to cover the case of two or more producers and reaffirms the conclusion
that PIF's do at least as well ;s prices and better than quantities. as incentive
mechanisms ﬁo achieve production efficiency. Finally, Section IV summarizes
" the results.

Before embarking upon a formal analysis of PIF's, it is important to
recognize their potential applicability in a variety of circumstances. The idea
of a “"contractual incentive function" which specifies a mutually acceptable
rule relating the monetary rewards paid by one deciSion‘maker to the subsequent
performance of anothér is not .new. ﬁost of the existing work (see for example,
Berhold (1971) and Wilson (1968)) has'foqused on performance contracts to
motivate agents within an enterprise hiefarchy £Q act in compliance with mana-
gerial goals or to motivate government contractors to meet their productiqn
commitments in the most efficient possible manner. Perférmance incentive
contracts have actually been'épplied in both_sets of circuﬁsténces.

Numerous enterprises have devised profit-sharing plans to motivate super-
visory and managerial personnel, and the Department of Defense and NASA have
relied on performance incentives to monitor the work of contractors in billions
of dollars worth of government expenditure programs.1 Recent innovations in
the use of PIF's have appeared in the new Amtrak contract relating railroad
payments to the quality of various railroad services (Baumol,‘1975) and in a
cbntractual arrangement in Orange, California linking the salaries of policemen
to various indicators of crime prevention and control.2

Although the existing literature on central planning does not specifically
mention the use of performance contracts, the concept does arise in discussions
of “success indicators" in Soviet planning. The Soviets are noted for a system

of planning'in which enterprise agents are rewarded according to the degree to
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which certain plan targets are achieved and, more recently, according to the
accuracy of the plan targets they project (Weitzman, 1974). By choosing
enterprise success criteria and é’related reward structure, the Soviet
planners define a performance incentive system. In contrast fo similar systems
empioyed in the West, the Soviet system is not "contractual" in fhe sense that
it is agreed upon by the planners and enterprise managers. Instead the state
unilaterally chooses success indicators and rewards, and enterprise managers
are ekpected to comply out of self-interest. This "non-contractual" incentive
system is an example of the use of PIF's in central.economiC'planning. Future
examples will be forthcoming as more societies look toward some degree of

planning to foster the efficient use of scarce resources.

I. Performance Incentive Functions in a Simple Planning Model

We begin with Weitzman's model of a single commodity and a single proaucer.
We assume the ekistence of a cost function relating money costs to the level of
output produced and a benefit function relating aggregate benefits measured in
money terﬁs3 tp the level of output consumed. , In this simple model the

pPlanning problem is to achieve the level of production which just maximizes net

benefits defined as
B(q) - C(q) _ (1)

where by assumption, Bu.<Q; pu:>0; BIW)>C1M); and Blm)<clm)

for H sufficiently large; for PIF's, the less restrictive single condition

By = Cyy < 0 can replace the separate conditions on B

11 and C , but

11 11
for comparison purposes, we will assume these conditions to hold throughout

the analysis.

As long as the center has complete knowledge of the benefit and cost functions,
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* . .
it can choose an optimal quantity directive g according to the first order

N * :
or it can choose an optimal price directive p according to the first order

allowing the producer to ~choose the optimal quantity via profit maximization.
Now con51der the more realistlc and therefore more'interesting case in which
the center must make its’ planning dec1910n in the presence of - uncertalnty. From
the point of view of the center, the cost function is of the form C(q,8) and
the benefit function is of:the form B(qg,n) . where © and n are 1ndependent
, random variablee reflecting the center's informetional uncertainty about costs
and benefits at tl .when the planlis forﬁnleted, At t2 , when the plan is
‘implemented, the.value of 6 is reveeledbto the producer, and at t3 , _ when
benefits are realized, the value of n is reéealed to the center. At t1 '
the center's planning problem is to choose an oPtimal plannlng strategy with
certain information at its dlsposa1.~ Since. the optimal strategy depends- on

the center's objective function, it is- f1rst necessary to 1dent1fy the function

to be used. Weitzman.assumes that the center, acting in accordance with the
dictates of the consumer itlrepresents, maximizes the expected value of net
benefits or net social profits or rent at t1 . The optimal guantity directive

~

g 1is then the solution to the following problem:

Max E {B(g,n) - Cl(qg,0)} . (4)
q

The. first ‘order condition for this problem is



EBl(q)v= EC, (q) ‘ (5)

indicating that at the optimal quantity, expected marginal benefits just equal
expected marginal costs.
'In the case of a quantity directive, the producer simply produces the level

of output chosen by the center at t regardless of the value of 06 at t. .

1 2

In the case of a price directive, the producer chooses an output level to
maximize profits given the price announced by the center at tl and the observed

value of 6 at t2 .

A reaction furiction of the form
g = h{p,0). (6)

5 Given

thus links profit-maximizing levels of output to price and 6 at t
this reaction function, the optimal price directive P or the price which

maximizes expected net benefits at t is the solution to the following problem:

1

Max E {B(h(p,8),n)- C(h(p,6),8)} . (7)
p N .

This solution must satisfy the first order condition:
E{Bl(h(ﬁ.e),n)hl(ﬁ,e)} = E{cl(h(ﬁ,e),e)hl(p.e)} . (8)

Because at t, , the producer equates P and Cl(q,e)  this condition can

be rewritten simply as

E{Bl(h(ﬁ,e),n)hl(ﬁ,e)}
P = : . (2)
."J{h1 (B,6)}

Ihstead of specifying a simple price or output target, the center may design
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a PIf, relatiﬁg earned profits of the producer to certain characteristics of his
performance. Such a function will be of the general form ﬂ(é,c), where c
represents actual production c;sts at t,s and T is meésurgd in the same
units as benefits and costs. To maximizé rewards, the_prﬁducer will choose an
output leve; which maximizes the PIF. CLearly, a special case of performance
incentives is the use of the optimél price p ina contract which specifies

that the producer bears full production costs. The PIF then becbmgs
m{q,c) =Bg-c . (10)

To derive the oétimal PIF,4 suppose first that the center could choose an
output level at .t2 when the actual value of 6 is revealed. Under these
circumstances, the center would want to haximize éxpected net benefits at t2
and would fihdjthé optimal quantity by solving the fqllowing maximization
problem |

‘Max E {B(q,n)} - Clq,0) . (11)
q ' ,

: S * ' :
The first order condition for the optimal q from the center's perspective

is therefore
* *
EB, (q ,n) = cl(q :0) . | (12)

This condition characterizes production efficiency at t2 from the éoint of
view of the center. However, because the center cannot observe 6 at t2 '

it cannot solve this problem directly. ‘Instead, it can use a properly specified

*
PIF to guarantee that the producer will choose ¢ at t2 . Recall that the
producer at t, will maximize the PIF. The aséociated first order condition

for the producer can. be written as:

* »* L]
Tr,_/ﬂ2 = cl(q ,0) (13)
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* *
where m, and T, are the two first partial derivatives of the optimal PIF,

*

and q 1is the optimal output level for the producer at t Substituting

5 -
this condition into the first order condition for the center's maximization

problem yields the folldwing condition for the optimal PIF:
* * X (14)
EBl(q (m) = Cy(a ,0) = “1/"2

which can be rewritten as

9.
1]

*
-Tr2EBl (q) . (15)

This condition indicates that the center has a degree of freedom in choosing

the optimal PIF.. It may specify any functidn”whdse partial derivatives satisfy
expression (15). All such functions wili géherate the same total net benefits
or social net rent. In terms of inféimational requirements, however, the center
may prefer to choose a PIF for which ﬂ; = -l," thereby forcing the enterprise
to bear total actual‘production'costs. Any other érrangement requires the
center to measure actual'production costs ;t t2 » to make sure that the desired
sharing of total costs is realized.

%* . ' N . .
If the center chooses T, = -1 +to minimize information gathering, then

* . .
T o= EBl(q) and integration yields a general optimal PIF of the form:
[ - .
T (g,e) = Gla) - ¢ (16)

where G(q) is equal to EB(g) plus or minus some arbitrary constant of
integration. In this case the center only needs to know EBl (@,n) to specify
the optimal PIF. |

A PIF of the‘form suggested in equations (15) and (16) has a simple intuitive

explanation. If the center were certain of the actual cost conditions which would

prevail at t, , then it would set an output target at t, such that expected
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marginal penefits would just equal actual marginal costs. However, since the
center cannot know actual costs at t2 ' it'cannot specify this output target
at tl . Nonetheless, it can still motivate the producer to'choose this output
level at t, by devising a contract so that the producer always operates at
the point where actual marginal costs at t2 jﬁst equal-expected marginal
benefits at tl . The PIF corresponding to equation (15) yields a contract of
this form. The producer is motivated to do the job which the center wants
- done at t, by a performance incentive contract specified at t1 . Moreover,
the center does not need any information about the producer's cost function at
either t, or t, to determine this performance contract. As far as the
center is concerned, the~producer’s cost function is an unknown function whose
first derivative is replaced by EBl(q;n)’ in the specification of the PIF.
Thus,‘the center does not need to know either'the cost function or the distribution
rfunction for 6 , and privacy or the guarding of technoiogical information by
producer 1s maintained during the planning process. In contrast, both equations
5 and (9) 1ndicate that the center must know C(q,e) at t1 to specify either
the optimal quantity or the optimal price. Given the dlfficulties involved in
information flow between the _center ;d the producer and given the premium
placed on "pri?acy“ or the guarding of technological possibilities by the

producer,‘the PIF is undeniably superior to both the optimal price and the-

optiﬁal qﬁantity tools.

II.  The Allocational Efficiency of Performance Incentive PFunctions

. Because the use of an optimal price or quantity at t1 does not yield an
optimai price-output configuration at .t2 , when the value of © is revealed,
both price and quantity directives are second-best solutions to the problem of

maximizing expected net benefits at t2, and both involve a deadweight loss to
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society. In contrast, a properly specified PIF yields fifst—best optimization at
t2 by guaranteeing that expectgd marginal benefits just equal actual marginal
costs at ty oy given the realizéd value of 9 . -The superiority of a PIF
over prices and quantities can be illustrated using a technique suggested by
Weitzman for the measurement of the comparative advantage of prices over
quantities.

Weitzman defines the comparative advantage of prices over quantities as
b = E{(B(§(6),n) - C(4(6),0)) - (B(a,m) - c(q,0))}  (17)

where the loss function which the center wishes to minimize is the expected
difference 'in gains between the two modes of control. Analogously, the com-

parative advantages of performance incentives over quantities can be defined as
A = E{(B(q (8),n) - C(g (6),8)) - (B(g,n) - Clg,0))1}. (18)

To obtain some ihsight into what determines A and A , some additional
assumptions are required:abbut the shapes of the underlying cost and benefit
functions. Weitzman assumes that the slopes of the margiﬁal cost and marginal
benefit functions are non—stochastio.‘-Given these assumptions, he argues that
it is reasonable to use stochastic linear approximations of the marginal cost»
and marginal benefit functions around & » the prescribed quantity, Using
thesé approximations and fhe associated stochastic quadratic approximations of

the cost and benefit functions around q , Weitzman derives the following

approximation for A .

2
o (B)1%Cy,)

A = > (19)

2(Cll)

where 02 = E(Cl(q,e) - E(Cl(q,e)))2 and represents the variance of pure random
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shifts in the marginal cost function.

To'compute the coeffiéient of . comparative advantage of the PIF over the
quantity control tool, it is necéssary to further assume that a second order
approximation of the optimal PIF of -equation (16) is reasonably accurate.
ComBining this assumption with the Weitzman assumptions, a few simple manipu-
lations shown in the Appendix yield the following approximation for A :

2

g _
2( ) °

g (20)
C117B11

A&

Since C.. >0 and B,, < 0 by assumption, it follows that A > 0 or that

11 11.

the PIF is always sﬁperiér to the quantitf control tool. In fact, the analysis
in the Appendix reveals that A 1is a measure of the deadweight loss caused by
using a quantity contrpl target instead of a PIF.

To compute the comparative édvantage of‘the.PIF over prices, A mustlbe

subtracted from A yielding the following relationship:

. o2 9By
A-AS e BT 2 (21)
11781} ac

- | 11

Again, as long as C,, > 0 and ‘Byy < 0 , or, less restrictively, as long as

11
By, - G <O , this expression is positive indicating that a PIF is also
superior.to a pricg_cpntrol‘tool. The coefficient A - A is itself -a measure of
the déadwéight loss caused by using a price control mechanism instead of a PIF.

The superiqrity of the PIF aver prices and quahtities can be graphically
illustréted for the case in which the beﬁéfit'function is deterministic and in
which there are only two ppssible values for- 9 , ei and 62 , each occurring
with probability equal to 1/2.°

Consider Graph 1. The optimal quantity tool ’qf is chosen such that EC, = B,



- — 3

Graph 1

11
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at tl . If at t2 , 9 = el , then the optimal point for the producer is

point D ; if at t 6 =20 then the optimal point for the producer is

2! 2’
A . The expected deadweight loss resulting from the fact that givén a quantity
target, thg producer must always produée at éoint C is éiven by 1/2(area ABC) +
l/2(area CED) . '

In ‘the case of an optimal price tool, pictured in Graph 2, if 61 is the

value of 6 at t the producer chooses point L when point D is optimal.

2 ’
If, instead, 62 is the value of 8 at ty the producer chooses point F
when point A is optimal. The expected deadweight loss in this case is
1/2(area FKA) + 1/2(area DHL). The Weitzman A can be calculated from the

graphical analysis as

A=-~;‘-(FKA+DHL-ABC-CED1 . (22)

. ' -
In the case of the PIF, shown in Graph 3, the producer will operate at D

when 6 = el and aﬁ A when 6 = 92 . ThéreAis_no deadweight loss and
optimality is achieved at t, for the actual value of 6 .

Summarizing the results dérived in this section, we may conclude that an
optimal PIF structured by the centér at tl yields first best allocational
decisions at t2 when the true value of eb‘becomes known. Moreover, in
structuring the optimal PIF, the center does nqt need to know the cost function
of the producer. Thus, the PIF emerges as a powerful planning tool which
satisfies the criteria of privacy and efficiency identified in the literature

as desirable properties of planning procedures.

III. Performance-Incentives and Two Producers
Suppose the center is trying to coordinate the activities of two producers,

each of which produces a single output. In this case the benefit function is of
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Graph 2
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Graph 3
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the form B(ql,qz,n) where »Bll < 0 and B22 < 0 . Each producer in turn
has its own cost function of the form Cl(qi,ei) » i=1,2, such that
i 5 '
> .
Cll 0
To find the prescribed quantity for each producer, the center will maximize

the total expected net benefits from the production of both goodé. Thus, the

center will solve the following maximization problem:

Max E{B(q,,q,,n) - 'f ci(qi,ei)} . (23)
- 4y09, 4 i=1

To find the optimal price signal for‘éach‘prodﬁdef, the center will maximize
the total expected net bgnefits from the production of both goods given the
reaction functions hi(pi,ei), relating profit-maximizing output to price
and 6 values for each producer. With these reaction functions, the optimal
price directive p; for each pfoducer orfthe price which maximizes expected
net benefits from the production of both goods at tl is the solution to the
following problem:

¢

' 2
‘ | i
Max E{B(h, (p,,0,),h, (p,,0,)) - lc (h, (p,,0.),8,0} . (24)
PerZ l=l

As derived by Weitzman, the coefficient of comparative advantage of prices over

quantities in the two. producer case can be expressed as:

N 2 : A ~
A, = E[(B(§,,d,/n) - izlcl(qi.ei>)- (B(q) ,q,,m) -

2 ..
1
izlc (@;,6,0)] . (25)

Using an approximation approach analogous to the one used in the single good case,

v
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this coefficient is estimated by

2 2 Bi.ci. 2 o?.
R e i s i -~ (26)
i=1 j=1 2¢7.cd. i=1 2¢

11711 11

where Gij is the covariance of pure random shifts in the marginal cost functions
of the two producers.
If the center wants to use PIF's to guide production decisions, then by

analogy with the one‘good case, we can show that it must specify functions of

the general form:

i, A0 i i

m (qi,C ) =G (qi) -C (qi,ei) i=1, 2'. (27)

Profit maximization for each producef at t2 implieé:
'Gi * i » ' . ' '

l(qi) = C] (q;,6,) i=1,2 | (28)

which in turn yields a reaction functional
* 44 .
9 = F ‘Gl’pi) i= 1,»2 (29)

relating the optimal output choice to the PIF and the actual value of ©

To f£ind the optimal PIF for each producer, the center must. solve the

following maximization problem:

Max E(B(F,F

1 2
€1

/a) - cl(Fl.el) - Ao . (30}

The first best solutipn to this problem is éharactérized by the following relation-
ships: ‘

LI 1, *
E(Bl(qi,qz,n)) - cl(ql._el) =0 @

and
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* * 2 * 0 ( 2)
E(Bz(ql,qz,n)) - cl(q2’62) = . 3

These'conditions imply that uﬁless the benefit functionlis separable so EBi
does not depend on qj(i#j) , the optimal PIF for producét i will depend on
the'output level of producer 3j . Realistically, of course, thé center will
never choose to make the reward structure for one producer contingent upon the
performance of another unrelated producer. Consequently, the center's choice
of a PIF is restricted by the constraint that the performance incentives offered
to one producer do not vary with the.other producer's output. This constraint
renders the "first-best" optimal PIF's charactefized by (31) and (32) infeasible,
and the center mﬁst adopt alternative functions Whichffail to achieve efficiency
at t2 .

One possible "second-best" solution under these conditions can be obtained
by iﬁtegrating ej out of the center's first best optimélity condition for

producer i . The relevant first order conditions for this solution then become:

E (EB, (g, ,F2(G2,0.),n) - ctiq*,6.) = 0

o po1idrF (G 0)m) = Cile,8)) = (33)
5 . .

and
1.1 x 2
g (EBZ(F (Gl,el);qz,n)— Cl(q2'92) =0 . (34)
n

. |

‘The constrained second best solution for the PIF's can then be achieved if

we substitute Gi " for Ci + thereby obtaining
1 * 2
G = E (EB, (q,,F~(G2,6,) ,n)) (35)
1 1771 1772
6. n )
2
and
2 _ 1,1 *
ql =E (EB2(F (Gl,el),qz,n)) . (36)

81 n
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The relevant marginal benefit functions used in these conditions are obtained
by averaging for each producer the output level chosen by the‘other producer.

It is significant to note that the center must have information about
the reaction functionals Fl and F2 to find the second—bést solﬁtion. Since
the reaction functions in turn dépend on the undetlying cost functions, it is
necessary fo¥ the center to have knowledge of each producer's cost conditions
under.these circumstances; ' Therefore, we: can conclude that the center requires
considerably more information in the two good case than in the one good case |
where the cost funcfioh need not be known by the center.

The second best PIF'g identified'here can be shown to be superior to
quantities and to perform at least as well as prices on efficiency grounds.
Using guadratic approximations of the cost and“benefit functions and evaluating
the expected benefits of one good at the prescribed quantity target of the
other good, approximations to the second beét PIF's satiéfy the following

conditions derived in the Appendix:

1 " ~ -~ A ~ A
G1 = EBl(ql,qz,n) +‘(ql—q¥)EBll(q1,q2.n) (37)
and
2 ) A~ A ~ ~ ”~
G1 = EBZ(ql,qz,n) + (qz-qz)EBzz(ql,qz,n) . (38)

These rgiationships suggest that in the more general case, when quadratic
approximations are not empldyed; the marginal cost of produqing each good should
be set equal to the expected maréinal benefits of that good, evaluated at the
optimal quantity target for the other gobd.

Using the quadratic approximations of the cost and benefit functions, the
comparative‘advantage of fhe second best ﬁIF's over quantity targets is cal-

culated in the Appendix as
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02 B 02 '02 ‘
Az - — 12‘122 + l11 + 222 > 0. (39)
(cll_Bll)(cllhBZZ) : 2(C11-Bll) _Z(Cll-Bzz)
ti bout the signs of Cl C2 B nd B this
Under our assumptions about e sig 11 ' 11 * 11 2 Bya v

expression is positive indicating that the second besﬁ PIF's are superior to
prescribed quantities.

Subtracting the comparative advantage of prices over quantities in the two
producer case from expression (39) in turn yields the comparative advantage of

the second best PIF's over prices as:

2 , . 2 2
: 912512 11 922
By~ by =3 2 3 ST B
(€117By1) (€1-Byy)  2(CPy-Byy)  2(Cy;-B,,)
2 2 2 2 2
92812 %1187 Y22Ban 917 9o,
12 .1 "~ "2 ~T1 "3 - (40)
c..C 2C - 2¢ 2C 2C

“11711 11 11 . 11 - ""11

Under our assumptions, this expression is always nonnegative, indicating that
PIF's perform at least as well as price signaié. Intuitively, this conclusion
is to be expected since price Signalsvare just special cases of the more general
PIF's. To see this conclusion more clearly, consider the case in which both
producers provide the same-output. In this case, the goal of the center is to
solve the following méximization problem:

' 2
Max E(B(q),+d,,),m) = f C'(q,,,8)) . (41)

Gl,Gz i=1

1771

The résults‘of using optimal price signals are contrasted with the results of
using optimal PIF's for this case in Graph 4. We make the further éiﬁplifying

assumption that Oi takes on only two possible values for each producer
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(eil'eiz’i=l'2) - A priori, the use of a price signal seems‘toﬂbe desirable
in this case because marginal costs are equated to a single price and productive
efficiency is thereby achieved. When a price is used, however, the wrong
amount of output may be produced. For example, in Graph 4, if 912 is the
state of the world for producer 1, the price signal will lead pfoducer 1 fo
output level ql » when the optimal output level is 'qI . Similarly, if 622
is the state of the world for producer 2, prices will lead to an output level
of qz when the optimal level is q; . Although PIF's do not lead to productive
efficiency by obtaining a least cost solution with equal marginal costs for both
producers, they bring total industrial output on average closer to its socially
correct level thén a price signal‘doeé.

Finally, we conclude this section bf noting that>the generalizatién of the
two-good, two-producer case to the n-good, Meproducer case is straightforward.
In this general case, we know that PIF's will do at least as well as prices. For

example, in searching for the optimal PIF for producer 1 the center's maximization

process scans over functions of the form
¢ <

1_ v 1
T o= iZl Pi%y; = C (ayp---q; ,0)

which yield the optimal price signal for producer 1.

IV.. Conclusiens

In this paper we extend Weitzman's analysis of the comparative usefulness of
prices and quantities as planning instruments to include a third planning
instrument, the so-called performance incentive.function. Sﬁch a function relates
the rewards of producers to certain characteristics of their output and cost
performance. Using Weitzman's model we demonstrate the superiority of PIF's

over both prices and quantities as a means for achieving socially optimal output
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deciéions. In the 6ne—good, one~producer case, the PIF is also shown to be
superior in terms of the informational reéﬁirements imposed on the center; When
the analysis is extended to more than one good, the center's problem for all of
the control tools is finding a second best solution. ﬁndér these circumstances,
PIF's are shown to lead to the same informational requirements és prices or
quantities, but as price signals aie a special case of PIF's, they do at least as
well as prices and better than quantities.

It is necessary to realize that the optimal PIF resulté in a more complicated
message being constructed and transmitted by the cehter and responded to by the
producer than is thé case with either prices or-quantities. It has been
implicitly -assumed in the analysis that the construction and transmittal of
messages by the center and the producer'response to ﬁessages take plaée cost~-
lessly. In the real world, however, these ;ctivities carry significant costs,
and only a comparison of these costs with the pbtential.éains in productive
efficiency and the pbtential savings in information gathering can indicate whethef

a PIF is the optimal planning tool under a given set of circumstances.
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Appendix

I. The derivation of "A" , the coefficient of comparative advantage of a PIF
over a quantity tool. ' ’

Start with Weitzman's stochastic quadratic approximations of the benefit and

cost functions around g .

1 ~ 11 a9
B(q,n) = b(n) + (B™+B(n)) (g-q) + - (g~a) (a.1)
1 -
C(q,0) = a(8) + (C+a(0)) (g-q) + =5 (g-q) (a.2)
1 ~ 1 o 11 -0 - 11
where B = EBl(q,n), cC = ECl(q,B) ; BT o= EBll(q,n) = Bll(q) , C7 =

ECll(&,e) = Cll(&) . b(n) "and a(®) respectively estimate ;he effect' of the
random variables on total benefits and total costs at & so E(a(8)) = EC(&,G)
and E(b(n)) = EB(;,n) i B(n) and a(8) respectively estimate the effect of
the random variables on marginal benefits and marginal costs at é ’ andA
Ea(6) = EB(n) = 0 and E(a(8) * B(n))= 0 by assumption.

In addition, we need Weitzman's approximation of the variance of marginal

costs

o = Blc, (q,0) - E(c (2,012 = Ba(0)?) .

Now qonsider a PIF of the form

n*(q,cl =EB(g,n) ~c+k=G(q) -c . (A.3)

Profit maximization by the producer implies that

* * »*
Cl(q ,6) = Bl(q yn) = Gli(q ) . (A.4)

A

The quadratic approximation of this equality around q is

1

* ~
ct o+ a(8) + ctlig-q) = ¢t

+ ¢Mg"-q (a.5)
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~

. . N ~ 11 ~ A
where G1 = EGl(q) = EBl(q,n) and G = EGll(q) = EBll(q,n) = Bll(q)

Now by Weitzman's analysis, it is true that for the prescribed gquantity g ’

Ecl(q,e) = EBl(q,n) which allows us to rewrite (A.5) as
1, * - ® A ‘
a(8) + ctig"-q) = 61 (g"-q) (a.6)

and to directly solve for the approximation of the reaction function as

yvields
* ' 1 N 14:)) -
Clg ,8) = a(8) + (C +0.(6)) (g= ~—~=+ ~q)
C11_G11
11 :
C - a (o) ~ 2 . '

Taking expected values and using the definitions of E(a(9)) andg 02 we derive

.,
Mgl T S T, 2

EC(q,0) = Ea(8)) - (3.9)

Next substituting (A.7) into the quadratic approximation of the benefit function

to yield.
Blg ,n) = b + BM48m) (- Tt
- C =G
1, X
+ 2 o )2 : (a.10)

Cop T —4
2 cll_ 11

Using the assumption that . 6 and n are independent, the expected value of this

expression is computed as

31102

ClleGll

EB(q ,n) = E(b(n)) + @a.11)

2( )
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We now substitute (A.9) and (A.11l) into equation (18) for A to derive

gll_ 11 42 52
A= - + . . (A.12)
2 (Cll—Gll)z Cll_Gll. 4
\ . . 11 11 \ 11 . -
Finally, substituting B for G and recalling that B~ = Bll(q) and
cll = Cll(q) by assumption, we derive expression (20) in the text.

II. Interpretation of the A Coefficient.

"A" can ge iﬁterpreted as the expected deadweight losé caused by using a
quantity directive instead of a PIF. (A.7), the approximatibn of the reaction
function, can be_used to solve for the difference between the quantity target
& and q*:, the quantify chosen by the producer maximizing the PIF. For
an§ a(0) , the deadweight loss involved can be computed as the triangle

a(e)/Z(Cll—Gll) . Taking the expectation of this expression and substituting

Bll for Gll then yields expression (20) for "a"

III. The derivation of "A." , the coefficient of comparative advantage of the
second best PIF's ovel quantities in the case of two producers.

‘Begin with the quadratic approximation of the benefit function taken around

the prescribed quantities.
B( n) = bm) + (B8, (m)) (q—a.) + (B%+8. (n)) (g.~q.)
°9y r9y,n) = bin 1 979, 2 \idyma,

+ 1/2a%8 (a.13)

~ ~

2 ~o 1
where B™ = EBz(ql,qz,n) , B = EBl(ql,qz,n) ; Bl(n) and Bz(n) represent

the effect of random variable n on mérginal benefits of good 1 and 2 at

A A

9 and 49, r respectively. b(n) estimates the effect of random variable n
on total benefits at d; and d, and E(b(n)) = EB(qquzrn) ; and

1 t 222

2 ~ 21 . ~ 12
dB = (ql-ql) B~ + 2(q1-ql)(q2—q2)B + (qz-qzl B .;
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BT B (apaym) = By (q),9,)
822 = BB__(a,,4,,m) = B.. (a0 )
T %2290 9p0) = B,y g ,q,
and 12 - A ’ A ~ )

Taking the derivative of (A.13) with respect to 4, + Wwe obtain
1 " o1l " el2 '
B, =B + By () + (qlvql)B + (q, q,)B"" . (a.14)

From the one good analysis we know that the reaction function for q2 evaluated

at the optimal quantlty targets ql ‘and q2 is

x o~ a(6,)
= - ' - ’ A.l
2 =9 Mz 11z (2.15)

where a(ez) represents the effect of 6. on producer 2's marginal costs at

2
8, - | . 112 2 0 2
9 + 9, and E(a(d 5)) = 0 by assumption; ¢ ¢ = EC) (q2,9 ) = Cll(q2)'
equals the nonstochastic slope of producer 2's marginal cost curve at qz H

112 )
and G EGll(ql’qZ) = EBll(ql,qz,n) = Bll(ql'qz) equals the nonstochastic

~

slope of the marginal benefit curve at ql, q2 -with respect to output of producer 2.

Substituting (A.15) into (a.14) and taking expectations yields:

. 12
1 - 11 a(ez)B
gﬁl =B + (ql'ql)B + ZEEE:;IIE'. . (a.16)

Recalling that E(a(ez)) = 0 by the construction of the quadratic approximation,

we can integrate out 92 to obtain

_ 1 2yell
E (2B)) = B" + (q,-q)8'! . (2.17)

. . 12
This allows us to ignore the cross=partial term B1 and permits us to

structure a PIF by setting
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= E (EB,) = BY + (ql-ql)B11 . : "(A.18)

In words, the approximation of the first derivative of the optimal PIF is
equal to the expected marginal benefit function of the center evaluated at the
prescribed quantity of the other good.

Now to derive A2 , first define it as
* . Lt e.ye.)
A, E(B(ql(el)'qz(ez)'n) - cv q,(6,16;)

2 * ~ A~

- C (qz(ez)'ez)) - (B(ql,qz,n)
l A . 2 ~ (Allg)

-C (ql,el) -C (qz,ez)) .

The own partial derivatives of this expression are the same as in the one good

case, so the only additional computation required is the expected value of the

cross partial term:
E((q,-q,) (q,~q,)B 2 (a.20)
1 71 2 2 ‘ . y

Substituting the reaction functions (A.15), taking expected values, and réplacing

1
G 11 by B11 and G112 by 322 one -obtaing
. A 1o o2 Bt?
E((g,-q,) (q,-q,)B" ") = (A.21)
1 2 *2
A 1 (1 plly (112_522,

2
where 012 = E(al(el) . a2(92)) . Adding this to the results that apply to the

"A" coefficient for the one good case (equation (20)), and using the definitions

of Clll ’ B1l ' Cll? and B22 + we obtain expression (39) in the text.
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Footnotes
lA rough estimate indicates. that during the 1967-69 period, the Department
of Defense used some form of a performance incentives contract in projects

worth at least $27 billion. For more details on the use of PIF's in such

projects see' DOD and NASA Guide, Incentlve Contracting Guide, October 1969,

The Trenton Times, Sunday, December 15, 1974.

3A function of the form B(q) assumes that there is no income effect in
the consumption of good g since the w1111ngness to spend on q does not
depend on cost conditions. This assumption is implicit in Weitzman's analysis.

4It is poss1b1e to solve~directly for the optimal PIF by setting the follow-

ing problem for the center

max E{B(q (r,8),n) - C(q (r,0),6)}
n(q,c)

*
where q (7,0) is the reaction function. relating the producer s choice of output -
at t2 to the PIF. However, a complioated variational ‘calculus procedure is
needed to solve this maximization problem, and ‘the method of deriving the optimal

PIF presented in the text is much simpler and straightforward.

5For performance 1ncentive functions, the conditions on Bll ' 322 and cil
can be replaced by the less restrictive conditions Bl1 - cil <0 and
B, - il < 0 . However, for comparison purposes we retain the more restrictive

conditions throughout the analysis.
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