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I. ©Nature of Econometric Models

This paper reports on the techniqﬁes of feedback control which are
applicable to large-scale, nonlinear stochastic models of national econo-
mies. At the outset, several important characﬁeristics of the existing
econometric models should be mentioned.

First, they are systems of simultaneous stochastic difference equa-

tions. The i-th equation in a structure of simultaneous equations can be

written as

Yie = % (pr¥e grxerv) + 8y (1.1

where yit is the i~th element of the wvector yt of endogenous variables at time

t which are explained by the model, x

- is a vector of control variables, w

t
is a vector of exogenous variables not subject to control and €ie is a random
residual with zero mean, independently distributed through time but correlated

with ejt of equation j. Denoting the vector of functions by & we write the

system of structural equations as

Yt = & (Yt:Yt_l:Xt,Wt) + Et (1.2)

Because the system is simultaneous, with yt appearing on the right-hand side
of (1.1), it has to be solved to obtain yt, given yt_l,xt,wt and et. This

feature is absent from most of the models used in engineering.

Second, the functions ?i are often nonlinear, but not highly nonlinear.



An example from the University of Michigan Quarterly Econometric Model [7] is
the following equation for Y67 consumption expenditures on nondurable goods

in billions of 1958 dollars (the numbering of the variables ours):

Yig = 94.8 + 7.59 (x,/y, ) + .140 v, = 74.2 (v /v,

3 (1.3)
-1.22 ley30'_i/3] + .558 ¥16,-1

The second subscript of each variable is omitted if it equals t, and is

written -i for t-i. This equation includes 4 current endogenous variables,

Yig' Y47 (price index for personal consumption expenditures), (disposable

Y50
personal income in billions of 1958 dollars) and Yo {price index for consump-~
tion expenditures on nondurable goods). The appearance of several current
endogenous variables in one equation makes the model simultaneous. y30 is the
interest rate on Aaa corporate bonds, entering with time lags from 1 to 3
quarters. x1 is government transfer payments to persohs in billions of current
dollars, being treated as a control variable.

Third, the models are frequently large. The version of the Michigan
Quarterly Econometric Model adopted for our control experiments consists of 61
endogenous variables and an equal number of simultaneous equations. Since
there are accounting identities relating the endogenous variables, one could
eliminate some unimportant endogenous variables using these identities and
reduce the number of equations. On the other hand, to write the model as a
first~order system for the control calculations, 71 additional variables

(taking the form Yeo for exgmple) are added to the vector Y to elim-

=Yy,

inate variables with time lags of two or more quarters. This makes a total
of 132 elements in Yoo but a system of only 61 nonlinear simultaneous equa-

tions have to be solved to obtain Yo given Yt— r X, and wt. The Mark III

1 t



version of the Wharton Quarterly Econometric Model (in use until 1972) con-
sists of 201 simultaneous equations. The MIT-Penn-SSRC Model consists of

177 simultaneous equations. Although the number of simultaneous equations is
large, the number of current endogenous variables appearing in each equa-
tion is small. For example, only 4 out of 61 variables actually appear in
equation (1.3) for the Michigan Model. If the equations were linear and

were to be solved by matrix inversion; the matrix involved is a sparse matrix.
This feature can be exploited to economize computations.

Fourth, not only the unknown parameters in the structural equations (1.2)
but the specification of these equations are squecf to a high degree of un-
certainty. The former uncertainty is inherent in the statistical estimation
of a large number of parameters using a limited number of time-series observa-
tions. The latter uncertainty is due mainly to the insufficiency of economic
theory in specifying the time pattern of responses and the suitable degrees
of aggregation for different economic variables. Given these two types of
uncertainty, econometric model builders have paid less attention to the
problem of measurement errors which are explicitly dealt with by the control
engineers. Uncertainty concerning the econometric models has important im-
plications for the application of stochastic control techniques to economic

policy formulation, partly to be discussed in section VI.

IT. Use of Econometric Models for Policy Projections and Optimization

Ever since large econometric models were constructed in the 1950's, they
have been used to make economic forecasts and to deduce the economic conse-
quences of alternative paths for the policy variables X, - To make a one-

pefiod projection of Yoo given Vit X and w,_, the system of equations

t t
(1.2) is usually solved by the Gauss-Seidel method, with et set equal to its



expectation zero. This iterative method 1istsAthe equations in a certain
order, applies the current set of trial values for the endogenous variables yt
to the right-hand-side of the i~-th equation (1.1) to obtain a new trial value
for yit' and continues to use the next equation to revise the next endogen-
ous variable until convergence. A damping factor is introduced if succes-
sive trial values of Yie oscillate. Experience has shown that this simple
method works for nearly all econometrig models. To make a projection of Y
for several periods, the system (1.2) is solved several times and the solu-

tion for each period is used as y in the calculation of Y for the follow-

t-1
ing period.

Although in the 1950's economists began to set up a quadratic loss func-
tion for the purpose of policy optimization and discovered that the certainty

equivalence solution for the current period policy x, is optimal for the

t
multiperiod stochastic control problem of minimizing the expectation of a
guadratic loss function given a linear model with additive random disturbances
[10], [11], multiperiod policy optimization using a laige—scale, nonlinear, simul-
taneous econometric model has occurred only in the 1970's. A popular approach

is to convert a T-period stochastic control problem into a deterministic con-
trol problem by setting the random disturbances equal to their expectations
(partly appealing to the possibly near optimality of the certainty-equivalence
solution for nonlinear models)., One then solves the deterministic control
problem as an unconstrained minimization problem with respect to the policy path
Xir Xgp eeey X since the multiperiod loss function can be regarded as a func-

1
tion of xl, ey xT, given the nonstochastic econometric model. The number
of unknowns equals the number g of control variables times the number T of
periods. Various standard minimization algorithms have been applied [11, [2],

[6]; [8], [9]. An Econometric Model Comparison Seminar composed of the pro-

prietors of the major U.S. econometric models, chaired by Lawrence Klein



and sponsored by the National Bureau of Economic Research with a grant from
the National Science Foundation, is currently comparing the deterministic
control solutions from the different models (Qith the disturbances set at
their historical values) for the 17 quarters beginning with 1971.1, using
the same essentially quadratic loss function with the inflation rate, the
unemployment rate, the GNP gap, and the balance of international payments as
arguments. This exercise should reveal the differences among the econometric
models in terms of their policy recomﬁendations during a crucial historical
period.

If the deterministic control solution is used to make recommendations to
policy makers, one may appeal to the near optimalit& of the first-period solu-
tion Xy and apply it to the first period. ’The policy in period two will be
obtained as the first-period solution to a (T-1)-period deterministic control
problem formulated at the end of period one after yl is observed, and so forth.
Such a procedure may work well, but the dynamic characteristics of the system
under control are éxtremely difficult and costly to ascertain because exten-
sive stochastic simulations would be required. If the policy maker wishes to

know not only the expected paths of yt and x, in the future when the economy

t
is under control, but the covariance matrices of thgse time series and the
expected total loss for T periods, the solution to the original stochastic
control problem in the form of feedback control equations will be desirable.
This paper describes and recommends a solution to stochastic control in feed-

back form using a large, nonlinear econometric model, and assuming the loss

function to be quadratic.

III. A Feedback Control Algorithm

We will describe an approximate solution to the optimal stochastic con-

trol problem in feedback form, i.e., x, = G ¥y + gt where yt incorporates

t Tfe-1

X, as a subvector to eliminate ¥, from the quadratic loss function



H

T t

= L - - = - K + K {3.1)
w t=1(yt a) K (y.-a) tzl (v Ky, - 2y Ka +akKa)

The solution consists of the following steps.

. . 0 .
(1) Starting with a tentative policy path X0 x;,...,x;, and given

wl, w2, ooy WT' we apply the Gauss-Seidel method to the model (1.2) with

et=0 for T periods to obtain a solution path yi, y;, ceey y; of the endogen-
ous variables. Thus for each period t, the following system of equation

holds

0

= & (o] [¢] [¢]
yt yt' yt_ll X

=1,.. 3.2
! wt) (t=1,...,T) (3.2)

(2) Equations (1.2) are linearized about the point yz, yz_l, and

xz to yield

O 3y +B. (x-x°) + e (3.3)

¥ t-1) 3t Tt Tt t

(o] 0
= + -— + -
p T ¥t By vy + By by Y

The i-j elements of Blt' B2t and B3t are respectively the derivatives of @i

in (1.1) with respect to the j-th elements of Ve and x,. They are

' Y t

easily computed numerically by changing the j-th element of Yer Y or x

by a small amount and evaluating the resulting changes in qi' For the
illustrative equation (1.3) from the Michigan Model, the 16th row of Blt

has only 3 non-zero elements, in the 5th, 47th and 50th columns.

(3) The linear simultaneous equations (3.3) are solved to obtain the

linearized state-space model (or the reduced-form equations in the economist's

terminology)

= +
Yt Ay 1 Ctx

+ + : .
Vo + bt u (3.4)

t



where
-1

R = - ; .5
.ut) (T Blt)(B o (3.5)

(A iC 2t 783 %

t
_ .0 _ o _ )
Py =¥ T Ay T X
(4) Using the linear model (3.4) with additive random disturbances
u, and the gquadratic loss function (3.1), we compute the optimal linear
feedback control equations

~

v = + .
¥ T Celee1 T 9 (3.6)

by well known methods [4, pp. 178-179].

(5) A new tentative policy path xi,...,x;
i,...,yg are obtained by solving (3.6) and (1.2) with et=0 consecutively

and solution path

Yy

for xt and y, (t=1,...,T).

t

(6) We go back to step (2) to linearize the model about the new solu-
tion path and then compute the optimal feedback solution for the linear-quad-
ratic problem until the process converges. At the point of convergence, the

solution vectors yt and x, satisfy both the nonlinear system (1.2) with

t
Et=0 and the linearized model (3.3) with et=0 and thus also the linearized

reduced form (3.4) with ut=0.

(7) The stochastic system under control is approximately described

by (3.4) and (3.6), i.e.,



+ + (b, +C ) +u
(A#CG) v |+ (BtCe, t

<
I

. . (3.7)
R¥ip * 0t 9y

The mean path of this sytem is given by §£ = R£§£—l + r s OT equivalently
by the solution vector y: in the last iteration which also satisfies (3.6)

and (3.4) with ut=0. The covariance matrix of the system is computed

* _—
by, for Ye = ¥ = Yor

* %! * t

* U 1]
= + ' 3.8)
By, ¥y = R By, ,v, ) R + Euu, (
1
, -1 -1
= (Tem 1 - .
where Eutut = (I Blt) (Eetst) (T Blt) on account of (3.5). The covari

ance matrix of the random residuals in (1.2) is assumed to have been esti-
mated together with the other unknown parameters in the econometric model.
The expected total loss in T periods when the system is under feedback con-

trol can be calculated by a well-known formula [4 , p. 179].

IV. Further Details Concerning Computations

The first step in preparing the model for control using the computer
program available at Princeton University [3] is to write in Fortran code
the structural equations (1.1). To eliminate endogenous variables lagged
more than one period, such as y30,_2 in the consumption expenditures
equating (1.3), we would introduce nid identities of the form Y(89) = YL.(30)
and Y(90) = YL(89), where YL stands for y lagged one period. These identities
enable us to write y3o’_2 as Y89,-l and y3o'_3 as Y90,—l' Furthermore, the
program automatically makes up an identity of the form y133’t = x1,t for

each of the nx control variables, permitting the user to write the welfare



loss (3.1) as a function of ' alone. These nid + nx identities are combined

with the original ns simultaneous structural equations, making a total of

p = ns + nid + nx equations. In addition to the Fortran coding of the model
the user of the algorithm must provide the variance - covariance matrix
of the residuals, the weighting matrix K, the values of the vector Y and,

for each t in the control horizon (t =1, ..., T), the target wvalues at, the

values for the exogenous variables wt'and the trial values for the nx control

variables xt.

As described in Section III, given the initial vector Y, and the trial

solutions for xt, the Gauss-Seidel method is used to obtain a solution path

y;, y;, ey y; about which_the model will be linearized. Once this solution

path is obtained, the elements of the matrices Blt’ B2t and B3t of equation

(3.3) will be computed. The i,j element of B is obtained by computing

1t

1) _(2)
8% Ve T Vi o (4.1)
Y5y 26jt

(2)
where yii) equals 8 evaluated at Yyt + Gjt' Yi equals % evaluated at

- = dy.vy. dmin). dy and dmin are set by the
Yip = 83y and Oy max (|dy.vy, |, ). dy y

user. The default value for both is equal to .00l. Similarly, we evaluate

the i-k element of B by perturbing Vit and the i-j element of B
’

2t by

3t

erturbing x. ..
P g it

Due to the structure of the model there will be many zero elements in

B.. ., B2t and B_,. In particular, B will be a block diagonal matrix

1t 3t 1t

(4.2)

* : .
where Bit is ns by ns whereas Blt is a p by p matrix. Only the ns simultaneous
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equations, and not the identities introduced, have current values of the
endogenous variables on the right hand side. Frequently there will be

*
columns of zeroes within Blt' This information will be utilized by the pro-

gram and no derivatives will be computed for these columns. The matrix B2t

can also be partitioned:

B
B.. = |D ' (4.3)
0

where B2: is ns by p, D is nid by p and 0 is n# by p. The kth column of
B2t will be a zero vector if yk,t—l does not appear'in any of the ns struc-
tural equations. Again, this information will be utilized by the program.
Each row di of the matrix D will be a vectof with zero elements except for

one unit element:

a..=/1 if vy

ij ns + i Y5

J,-1

0 otherwise.

The user provides a vector which indicates the position of that unit ele-
ment, and the matrix D will be automatically formed. B3t can be represented

in partitioned form as

o

(4.4)

H

—

%*
where B3t is ns by nx, O is nid by nx and I is nx by nx. Only the elements of

*

B3t are computed. Blt' B2t and B3t are used to obtain the reduced form

coefficient matrices At, Ct and bt in (3.4) and (3.5). Because of the special
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form of Blt as given by (4.2), the inversion of I - B requires only the

1t
*

inversion of its upper left hand ns by ns submatrix I - Blt

. A sparse ma-
trix inversion routine can be used for this purpose since, as pointed out
in section I, Bl: is in general a sparse matrix.

Given the linearized reduced form equations (3.4), core space and com-
puter time are saved by treating a smaller dynamic system formed by excluding
those endogenous whose lagged values are absent from the original system and

whose behavior is of no interest. If there are m such variables, the re-

duced form can be written as

— - — — — —_ —
a a a a a
0
Ye A Y1 Ct X P
= * * (4.5)
b b b b b
Ve B O Vi1 e by
l_ —t e R o L e -~ . —rad
where yi is (p~m) by 1 and yt is m by 1. To compute the feedback control
equations (3.6) only the submodel
a a_ a a a (4.6)
= + +
Ye T B¥eop ¥ Cp x T by

is used.

The iterations as described by steps (1) through (6) in section IIT
will terminate if, for each variable i included in the loss function the pro-
portional change of yit in each time period t (t=1, ..., T) between two
successive iterations is smaller, in absolute value, than some preassigned
number. The default value of this number isg .001. There are two ways to
speed up convergence. First, if the values of ' oscillate in successive

t

iterations, a damping factor between O and 1 can be introduced to dampen the

change of each X from one iteration to the next. Second, for some control
i
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problems, the parameters in the loss function can be changed to facilitate
convergence. For example, one may be interested in obtaining the lowest in-
flation rates Yor (t=1, ..., T) that correspond to an unemployment rate Yy
equal to 4%. 1In specifying the matrix K in the loss function, a very large
weight will be aséigned to the unemployment variable whose target is set at
4% and a much smaller weight will be assigned to the inflation variable whose
target is set at some unachievably low réte such as 2% per year (which could
be further lowered if it #¥urned out to be achievable). A Weight combination
of 10,000 and 1 may make the program converge more rapidly than a combination
of 100 and 1.

To complete the optimal feedback control calculations for the Michigan
Quarterly Econometric Model for 17 quarters using 3 control variables, the pro-
gram takes 126 seconds of CPU time in the IBM 360-91 computer at Princeton
University, for each iteration or linearization of the model costing $21.00.
at the delay priority rate. It takes three iterations to converge. Increas-
ing the number of control variables to 6 would have almost no effect on the
computing time because the matrix (CLHtthl required to compute the matrix
Gt in the feedback control equating (3.6) would merely become 6 by 6 instead
of 3 by 3. Increasing the number of time periods T would raise the computer
time approximately linearly because similar calculations are performed for
each period. Doubling the size of the model, as measured by the number ns of
simultaneous equations would increase the computing cost by a factor of about

. Y
4, stightiy—tess—than 2%

V. Application to the Michigan Quarterly Econometric Model

Analysis of a particular control problem will serve as an illustration of

the application of the techniques described above as well as identify the role
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optimal control of econometric systems can play in the evaluation of economic

policy. The loss function, except for the last term involving URS, is one

used by the NBER - NSF Econometric Model Comparison Seminar mentioned in

Section II. For the 17 quarters, 1971.1 through 1975.1 the objective is

to minimize

§7[.75 (ut-4.0)2 + (Pt'dt)2+ (TBt~0)2-

t=1 (5.1)
+.75 (GNP Gapt- 0')2 + .1 (UR$t -Yt)zl

where u = the unemployment rate

P = the annual rate of inflation measured by the
GNP price deflator

o, = 3.0 for t=1, ..., 12
7.0 for t=13, ..., 17

TB= the trade balance as a percentage of GNP in
current dollars

GNP Gap = the percentage deviation of GNP in 1958
dollars (GNP58) from capacity output

UR$ = unborrowed reserves in billions of current dollars
and vy represents a smooth expansionary path for URS. The instruments avail-
able to the policy maker are nondefense government purchases of goods and ser-
vices in billions of current dollars (GFO$) and UR$, representing government
fiscal and monetary policy, respectively. The URS term in the loss function
serves to prevent erratic behavior of the monetary instrument; however, the
deviation of UR$t fromvyt will not count as a part of the loss.

The purpose of this control problem is to determine if some politically
feasible combination of fiscal and monetary policies could have improved the
performance of the economy during the period under consideration by comparing
the optimal and historical paths for the target variables and instfuments.
Examination of the results leads te an affirmative answer. Tables‘l and 2

present the historical and optimal paths, respectively, for certain key
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variables. Excluding the URS$ term, the historical value of the loss is

703.4 whereas the minimum value of 232.7. The -optimal path for GFO$ is
considerably more expansionary than the historical path, though it does fluc-
tuate. The optimal path for UR$ is only mildly expansionary for the first
eight quarters but becomes more expansionary in the later quarters. Monetary
policy affects the values of the listed variables with a lag; thus, much of
the behavior of the variabies, especially during the first half of the control
horizon, is attributable to the impact'of GFOS$. For each of the 17 quarters,
real output, GNP58, is greater in the optimal control solution. This leads

to lower values for the GNP gap throughout and a lower rate of unemployment

in all quarters but one, reducing the loss contribution of the gap term by
421.7 and the unemployment term by 37.8. In the early quarters, however,

the lower unemployment rate is achieved at the expense of a higher annual rate
of inflation. For nine of the first 10 quarters of the control horizon, the
historical rate.of inflation is lower than that obtained under control, though
for six of the remaining seven quarters the historical figure is higher. The
overall contribution of the inflation term to the’ioss is reduced by implemen-
tation of the control solution. In the control solution the trade balance term
deviates more from its target than it did historically but in neither case is
the contribution to the overall loss significant.

In the above calculation, the estiﬁated residuals in the structural equa-
tions were included so that the historical values of the endogenous variables
would result if the actual values of the instruments were applied. The econo-~
mist can use this type of analysis in the evaluation of past ﬁolicies. More
importantly, the po;icyAmakef'éan use the stochastic control techniques as
described in sections III and IV to formulate and evaluate current and future
policies. A number of objective functions could be minimized and the results

compared to determine a policy mix which is politically feasible and would
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TABLE 1

HISTORICAL PATHS OF SELECTED MACROECONOMIC VARIABLES

s U GNP Gap TB GNP58 URS GFOS

1971.1 4.69 5.95 5.01 .278 737 29.5 24.1
71.2 4.85 5.98 5.27 -.006 742 30.1 25.5
71.3 2.58 5.96 5.55 .009 747 30.6 | 27.9
71.4 1.90 5.94 4.99 -.312 759 31.2 28.5
72.1 5.49 5.84 4.45 -.631 771 31.9 29.7
72.2 1.92 5.69 3.44 ~.602 787 32.9 30.0
72.3 3.32 5.57 3.01 -.406 798 32.9 30.1
72.4 4.05 5.29 2.01 -.440 814 30.4 30.5
73.1 5.49 5.04 .75 -.006 833 30.1 31.4
73.2 7.29 4.91 1.17 .033 837 30.6 32.2
73.3 8.26 4,74 1.74 .515 841 32.3 32.0
73.4 | 8.64 4.72 2.12 .696 846 33.8 33.1
74.1 | 12.31 5.20 4.82 .832 831 33.7 35.7
74.2 } 9.36 5.15 6.14 -.101 827 33.7 37.7
74.3 é 11.88 5.49 7.51 -.225 823 34.0 38.8
74. 4 14. 44 6.60 10.54 .123 804 36.2 40.6
75.1 7.96 8. 35 14.06 .375 780 34.7 42.5

i
Contribution
to Loss 214.2 44.5 441.7 3.0 Total: 703.4
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TABLE 2

OPTIMAL PATHS BASED ON THE MICHIGAN QUARTERLY MODEL

D u GNP Gap TB GNP58 URS GFOS

1971.1 6.07 5.08 .48 ~.182 772 26.4 78.6
71.2 3.69 4.61 1.34 -.491 773 26.8 60.6
71.3 2.81 4.56 1.76 -.423 777 26.4 61.9
71.4 3.27 4.23 ~.57 -.902 804 26.8 90.9
72.1 5.43 4.51 1.82 -.977 792 27.2 55.1
72.2 3.84 4.77 1.16 -.847 805 28.2 66.2
72.3 4.21 4.94 1.31 -.619 812 29.8 68.2
72.4 4.85 4.96 1.18 -.548 821 30.7 64.6
73.1 5.93 4.99 .45 -.108 835 32.4 60.9
73.2 7.61 4.96 .68 -.041 842 34.5 61.0
73.3 8.11 4.69 .63 .348 850 36.2 58.6
73.4 8.11 4.54 .71 .458 858 38.9 50.2
74.1 11.75 4.88 2.98 . 485 847 40.9 46.9
74.2 9.63 4.08 .85 -.949 874 41.8 94.8
74.3 11.78 3.31 -.99 -1.660 899 41.8 131.3
74.4 12.62 3.70 1.11 -1.596 889 40.9 118.1
75.1 9.11 4.41 1.18 -1.931 897 40.3 172.2

Contribution
t o Loss. 191.9 6.7 20.0 14.1 Total: 232.7
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lead to desired values for the endogenous variables. It should be stressed
that analyses of both types, for the evaluatioﬁ of historical policies and
the formulation of current policies are based on the assumption that the
model used is a reasonably good approximation of reality. In the next sec-
tion, we will comment briefly on the methods to deal with uncertainty in

the econometric models to be used in optimal control calculations.

VI. Further Research

There are three areas of research closely related to the techniques of
feedback control as expounded in this paper. The first is to improve the com-
putational efficiency and capability of the algorithm to deal with larger
nonlinear econometric models. The second is to modify the control solution
to account for the uncertainty in the statistical estimates of the model
parameters. Although a solution to this problem has already been obtained
[51, we have not completed a computer code for it. One would like to study, the
effect of parameter uncertainty on the (nearly) optimal policy and the associ-
ated expected welfare loss. Third, the problem of misspecification of econo-
metric models has to be attacked by the effective use of two or more models.

The basic framework to deal with two or more models is a payoff matrix
whose elements are the expected losses resulting from the different proposed
policies when the alternative states of the world, or models, are true. The
policies considered may include the (nearly) optimal policies based on the
different models, with or without incorporating uncertainty in their parameters,
and some passive policies of feedback control. The expected loss in each
element of the payoff matrix need not be the expected multiperiod loss when the
policy recommendations from one model are followed throughout all future periods.
Because the decision maker can change the model employed for policy recommenda-

tions after one period, the entry in the payoff matrix corresponding to a
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given true state or model and a given strategy should be the expected loss
resulting from applying the given strategy for only the first period but

the strategies based on the true model for the remaining periods of the plan-
ning horizon. This would show the damage of following the incorfect model

in the first period only, but not necessarily in the future periods. Such

a payoff matrix can form the basis for deriving a Bayesian strategy, a mini-
max strategy and some robust strategies in the formulation of macroeconomic

-

policies in the face of incomplete economic knowledge.

Footnote
1. We would like to acknowledge, with gratitude, the financial support

from the National Science Foundation.
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