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The optimal control of nonlinear systems program (OPTNL) computes the
optimal control policy and the associated welfare cost using a quadratic loss
function for an econometric model whose parameters are assumed to be known. The
algorithm used is described in Sections 12.1 and 12.4 of G.C. Chow, Analysis

and Control of Dynamic Economic Systems (John Wiley and Sons, 1975).

I. Eliminating Second and Higher Order Lags in the Model

Let the model be written as a system of simultaneous structural equations.
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vector of 'ny' endogenous variables

t
X, = vector of 'nx' control variables
w, = vector of 'nw' exogenous variables not subject to control

npd = number of time periods in the planning horizon

o
Il

vector of random error terms, and
where ¢ 1is a vector of possible nonlinear functions.

Since the program does not accept lagged endogenous variables of order
higher than the first, the user should eliminate the variables with lags of
two or more periods by introducing identities. For example, let there be 50

endogenous variables in the model to begin with. The number of simultaneous

equations 'ns' is 50. If the model consists of Vg g_pr 2D identity

y =y should be introduced. This identity permits the user to
51,t 6,t~1

write y6,t—2 as ySl,t—l and get rid of the second-order lag. 1If y6,t—3

is also present, another identity V55 ¢ = can be used, permitting

Y51, 6-1

the user to write Yo +-3 as yg, 1" Let 40 additional identities of this
4 4

kind be required in our example to eliminate all endogenous variables with
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lags of two or more periods. There will then be 90 endogenous variables in

the model, to be included in the vector yt.

If the model consists of control variables lagged two or more periods,

more identities and endogenous variables will be required. Let there be

nx = 4 control variables in our example, xlt,...,x4 £ To eliminate the
' ’

and write x

variable xl,t—z' introduce the identity y9l,t = xl,t—l : 1,t-2

as y9l,t—1' Similarly, to eliminate xl,t—3’ introduce the identity y92,t =

Y91, t-1 and write X| p-3 35 Yoy ¢ 3- If 10 identities of this type are

required, there will be all together 100 variables in the vector Y-
'ny', the number of endogencus variables in yt, will be set egual to 100.

The computer program will automatically make up a vector consisting of the

104 elements of yt and Xy . This augmented vector will serve as the argument

in the welfare function, its last 4 elements in our example being included to
serve the possible need to penalize variations in the instruments or control

variables. The'expanded model takegthe form

= : +
V1,0 = O Wer¥e g r®erx qow) +uy |
. . . ns structural
. : . equations

Y50,& = Pns Wer¥e g r®pr¥qvg) + ugy o

Y51 ,¢

-

nid identities

Yg -1
. of lagged values (2)

-

Y100,t ~ Yo9,t-1

I
M

y =
.lOl't L.t nx identities of

control variables

Y104, = *4,¢

M oeee

There are ns simultaneous structural equations, nid identities of lagged

values, and nx identities for the control variables; altogether the augmented
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Yy vector has p elements, with p = ny + nx, and ny = ns + nid. u, is a
random vector with mean zero and covariance matrix V, to be supplied by the

user. The program calculates a linear approximation of the model explaining

the augmented y vector shown in equation (2)

from which it derives a feedback control equation

= +
X T 6 ¥eq t 9

so as to minimize the expectation of the welfare loss

nﬁd
= - ! -
EW =g t=l(yt 2 ) 'Ky 2 )

where npd is the number of periods, z, is n vector of targets, and

Kt = K =« EXKCAPt is the weighting matrix. npd, Z s EXKCAP and K are to
be specified by the user.

The model in the form shown in equation (2) is coded in FORTRAN statements
in two subroutines provided by the user. The first subroutine, named MODELS,
consists of FORTRAN statements of the ns simultaneous structural equations;
the second, named MODELI, consists of FORTRAN statements of the nid identities
of the lagged values. The last nx identities of the control variables are
not coded by the user, but are 'remembered' by the program. Some knowledge of

basic FORTRAN is therefore required by the user. A description of the two user-

supplied subroutines is contained in section IV.



II. Description of the Program

The general logic of the program, represented in the flow diagram of Figure
1, is taken directly from section 12.1 of Chow's text. A description for some
of the steps follows.
l. Each iteration starts at A of the diagram, and depends on the optimal
path computed in the previous iteration. To provide a tentative path
of 'yt for the first iteration, the program starts yith the given trial

values of x (te=1,...,npd} and solves the nonlinear system using the

tl
Gauss-Seidel method which is described in section 6.6 of Chow. For

the model of equation (2), let yit(k) be the values of Y;e at the

kth iteration of the Gauss~Seidel process. The iterating process
continues until Y;, converges
(k+1) _ (k)

. v,
it 1t ,
®) < g fgr i=1,...,n8.

Yit

The method requires the user to supply an initial Y, vectox, trial
Yy and % vectors in period 1 for the first Gauss-Seidel iteration,
the maximum number, r, of iterations permitted, and the convergence
criterion €.
2. Instead of estimating the tentative path by the Gauss-Seidel method,
the program can, if so directéd by the usér, accept a set of Yy and
% from an output device as the tentative path to be used for the

t

first iteration. These Yt and xt are optimal solutions from a
pfevious job, and are being used now to continue the iteration process.
At the end of each iteration cycle, the program automatically saves
the solutions Yt and Xt in an output device, regardless of whether

or not Yy has converged. The purpose is to safeguard against
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losing all the results of the iterative process before the job is completed
such as when the job is terminated because the estimated time is exceeded
or the system crashes. What has been saved can then be used for the next
iteration in a later job.
The program computes the first partial derivatives of ¢j numerically.

For example, the derivative of ¢j with respect to the variable Yo is

1 2
00, Vi Vi
- ’
Yy 2dy;
where
o= b, ( ' +d iV, L X, L iX W) +
Yig T O3 Wpgroe Yy "Wy ¥y e ¥ PR ¥ Ve T Y
RN a ‘ ; ) +
Yie T PgWqprero ¥y 7y reee Yo o Ve X r %W T 80

dy, = max(|FDFRAC + v, [,FDMIN) .

FDFRAC, FDMIN are provided by the user.
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IITI. Description of Time and Space Saving Procedures

The nonlinear model is constructed in the particular form shown in (2) in
order to save both computation time and core space. In that form the matrices

B B

and B of the model's first partial derivatives where, following

1t’ 2t’ 3t

the notation in Chow,

o
Blt = -By—”"“ ayt>

t
0 1)
B! = oo .
2t Byt_l Byt_l
3¢ 3¢
Bl = o= cueen. ——11}
3t th Sxt,
take the following form:
B! = (8¢1 “ng 0 O)
1t 5y 3y -
t t
3¢ a¢ 3
' 1 ns !
oo vas ..0 ...
Bat <8yt_l 3¥,., 1" ‘nia 0 )
B! = ! *ng 0 01|
N LR

where dk is a vector of all zeroes except a single element of one, and where
I 1is an identity submatrix of dimension nx . Since all except the first ns
columns have only either zeroes or ones, the program computes the partial
derivatives only for the ns structural equations. The location of the
element one in each dk column of Bét is informed by an input vector named
IDENTVEC, where IDENTVEC(k) = j indicates that the dk column has an element
one in its jth row, the rest of the column being zero.

Some more time may be saved by the program in computing the partial

derivatives for the ns structural equations ¢l""’¢ns' If a variable
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such as y8,t—l is not in any of the equat;ons ¢l""'¢ns' the program
will not waste time in computing the numerical derivative with respect to
vthat variable, provided that it is known in advance that the derivative

is zero. Such variables are identified by an input vector named VARBLVEC,
supplied by the user. VARBLVEC has ns + p + nx entries, each being

either zero or nonzero, corresponding to the following variables:

Y X

l,t""'yns,t; yl,t—l"'"yny,t—l'xl,t—l""'xnx,tvl; l,t""'xnx,t

Derivatives of ¢l""'¢ns with respect to these variables.are computed to
fqrm the matrices Blt' B2t and BBt" If a variable in the above list
appears nowhere in the model ¢l""'¢ns' the ﬁser enters the value zero

in its entry in VARBLVEC; otherwise he or she enters a nonzero value as
described in séction V.4. The program computes and utilizes the partial
derivatives with respect to only those variables with nonzero values in their
corresponding entries in VARBLVEC;'it automatically treats the remaining
columns in Blt' th and B3t as columns of zeroes.

Another procedure used by the program to save time and core space is by
'tompressing” the linearized approximation of the first ns equations of the
model. The user does not need to be concerned with this process, since it is
. done entirely within the program without the user's intervention. The program
rearranges the endogenous variables in yi, the first ﬁs elements of Yo into

two catagories which we shall call yi and yi. yg .consists of variables that

have the following characteristics:
1. they are not targetted in the weighting matrix K;
2. they have no lagged values in the model.

Because of these two characteristics, it is unnecessary to compute the optimal
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path for yi. yi consists of all the remaining variables of yi. In this

arrangement the linearized reduced form equations become

- . ﬂa 0 i‘ya e [Xt} X
+ | -

% t ot t-1 t t
i——— T ———— + - — -
| b b b b b

Y B O] ¥ Ce by

a .
The program computes only Ai, Ci and bt of the "compressed" model; it
computes the feedback control coefficients Gt and 9, and the welfare loss

based on the compresed model, as shown in the flow diagram of Figure 1 where

these steps are enclosed by the dotted rectangie.
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IV. User-Supplied Subroutines

To run the nonlinear optimal control program three subroutines must be

provided by the user. They are the main program, MODELS and MODELI.

1. Main Program

The main program has to be coded by the user in order to allocate the

right amount of space for his model, It calls in the optimal control program

package and should be coded as follows:

DIMENSION

MAINAR (m}

REAL*8 DWORD
COMMON/IOBLK/INPUT,LIST,LCNT,NPG,INOUT2,INOUT3,

1 INOUT4 , INOUTS :
EQUIVALENCE (DWORD,MAINAR(1))

INPUT=5
LIST=6
INOUT2=n2
INOUT3=n3
INOUT4=n4
INOUT5=n5
LCNT=99
NPG=0
NDIM=m

MAINAR(2)=2
MAINAR(1)=NDIM
CALL OPTNLI1 (MAINAR,NDIM)

STOP
END

All capital letters and numbers must be coded as shown; the lower case

letters represent variables whose values are to be supplied by the user. The

following explains some of the symbols:

MAINAR

m

INPUT=5

LIST=6

is an array from which the program assigns all storage space.

is the dimension of MAINAR; its formula is given in section
VI; note that the number m appears in two places:
DIMENSION MAINAR(m) and NDIM=m.

device unit 5, which usually refers to the card-reader,
is assigned to the input data set INPUT, If the input
data is on tape or disk instead of in cards, another unit
number  should be assigned to INPUT.

device unit 6, which usually refers to the printer, is
assigned to the output data set LIST. If the printed output
is to be first stored on tape or disk, another device unit
should be assigned.
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INOUT2 the program writes in this data set the optimal solutions
vy and x at the end of each iteration; each new set of
y and x replaces the one from the previous iteration.
This data set should be kept by the user in case the
iteration process is to be continued in a later job.
Three temporary data sets are used by the program to store intermediate

results which are to be read by a later bart of the program; they are INOUTIZ,

INOUT4 and INOUT5 and they should be deleted at the end of each job.

INOUT3 stores the first partial derivatives B B and B

1t’ 2t 3t
INOUT4 stores G,, g for each period t to-be used in the feed-
back control equation X, = tht—l + g, -
INOUTS stores A, + C.G and V for each period to be used for

the compuEation of the covariance matrices Ft.

n2,n3,n4,nb5 are device unit numbers for the temporary data sets assigned
by the user; they should be single digit numbers other than
5, 6 and 7.

LCNT=99 initialize line count and page number

NPG=0

NDIM the dimension of the main array MAINAR.

OPTNL1 the mainline logic subroutine of the nonlinear optimal

control package.

2. MODELS
As described in section I the nonlinear model is coded in two subroutines
MODELS and MODELI. MODELS contains the ns simultaneous equations of the
model, and it should be coded as follows:
SUBROUTINE MODELS(NY,NX,NW,D,Y,YL,XL,X,W,*)
IMPLICIT REAL*8(A-H,0-2Z)
DIMENSION D(NYLY(NY),YL(NY),XL(NX),X(NX),W(NW)

D(1) = ¢1 (Y¥,YL,XL,X,W)
D(2) ¢2 (Y,YL,XL,X ,W)

ns simultaneous equations

RETURN
END
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NY, NX and NW are defined in section V.1, and where

is the array that contains the new values of the endogenous
variables resulting from the calculations,

is the vector of endogenous variables,

is the vector of lagged endogenous variables,

is the vector of control variables,

is the vector of lagged control variables, and

is the vector of exogenous variables; if there are no exogenous

variables in the model, W and NW should nevertheless be
coded as dummy parameters.

The right-hand side of the equations, represented above by ¢l, ¢2,...,

the algebraic FORTRAN statements; for example,

D(1) = ¥(5) + DLOG(YL(l) + XL(3)) - lOO.fW(4)/Y(6) + .085

following rules should be observed in coding these statements:

(a)

(b)
(c)

(d)

All mathematical functions should be written in double precision

since the program is written in double precision.

The order of all lags should be one.

If the lagged endogenous variablé Y6,t—3 is in the original structural
equations, then as illustrated in the example of section I, two
variables of lagged values are defined to eliminate this higher order
lag: ySl,t = Y6,t-l and y52't = y51,t-l' y6,t-3 should then be
coded in the subroutine as YL(52) which. stands for Y52, -1

if y6,t—é is in the original structural model, it should be coded

as YL(51) and not as Y(52). 1In the right-hand side of the

structural equations the subscripts of the Y wvector should be confined

to the range from 1 to ns; in our example, the range is 1 to 50.
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The '*' as it appears in the last argument of SUBROUTINE MODELS is an
optinal facility for non-standard return, and may be used in the following way.
For example, let 10—6 be a poor value for the variable D(2), and if it is
reached then the trial solution is considered too far out. If we would like to
terminate the program at this point, we can add the statements below the listing

of all the equations in the SUBROUTINE MODELS:

IF (D(2).LT.1.D-6) GO TO 31
RETURN
31 RETURN1
END
MODELS is called by two subroutines in the nonlinear program: SOLVE, which
solves for Yy by the Gauss-Seidel method, and FP, which takes the first
partial derivatives of ¢. SOLVE requires that new values of vy be used
for the calculation of yj, j > i, thus it provides one‘array, Y, for the
two dummy variables D and Y in MODEL. FP, however, solves for each yi
after a variable on the right hand side of a structural equation is perturbed,
using the old Y wvector, thus providing separate arrays for the dummy
variables D and Y in MODELS, and it expects the solution from D. To
accomplish the double purposes required by SOLVE and FP the MODELS subroutine
must be compiled by the FORTRAN G compiler.
3. MODELI
The second subroutine for the nonlinear model, named MODELI, consists

of all the identities of lagged values as shown in equation (2); it should be

coded as follows:
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SUBROUTINE MODELI (NY,NX,NW,D,Y,YL,XL,X,W,*)

IMPLICIT REAL*8 (A-H,0-Z)

DIMENSION D(NY), Y(NY),Y(NY),YL(NY),XL(NX) ,X(NX) ,W(NW)
D{(ns+1)=YL(i,)

D(ns+2)=YL(i2)

D{(ny)=YL(i ..}
RETURN -9
END

The actual values for ns+l,...,ny and for il""’inid will be supplied
by the user. For example, using the illustration from section I,

D(51)=YL(6)
D(52)=YL(51)

All parameters are the same as defined in MODELS, as is the use of the '*' feature.
MODELI is used by only one subroutine of the program, SOLVE. As was explained

earlier for MODELS, MODELI should be compiled by the FORTRAN G compiler.
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Data Requirements

The program accepts data in the sequence represented by the diagram below:

&DIMENS
Parameter Cards
SEND

&OPT
Parameter Cards
&END

Header Card

— v - — — o - —

Input Matrices

&DIMENS and &OPT are names for two blocks of parameters to be read in

by the NAMELIST feature of FORTRAN, To illustrate the use of this feature,

consider the following example, taken from the model discussed in section I:

_S&DIMENS_NS=50,NY=100,NX=4
NW=40 , NPD=5

END

All imput cards for a NAMELIST block must start at a column to the right of

column 1. The first card must start with the name, in this case &DIMENS,

followed by the parameters for that list. The parameters are separated by

commas; spaces are allowed between parameters, but no space is allowed on

either side of the '=' sign., A parameter not included in the input is

given its default value by the program, therefore it may not be necessary

to list all the parameters for a NAMELIST block. The block ends with an

&END

card. Note in the example '_' means one or more blanks.

The input matrices are read in blocks, each being preceded by a header card
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which has the following format:

cols 1-8: name of the matrix, left justified. The name must be
' spelled exactly as given in subsection 3 below.
cols 9-40; optional format in FORTRAN convention for the data
following this header card. The default format is
8Flo‘4 .
cols 41-80: _ optional comments describing the matrix.

All data matrices except V and KCAP are to be read in row-wise, following
the format specified in their respective header cards. Detailed description
for each input matrix will be given in subsection 3 below. .The following

example illustrates an input matrix:

col. 1 | col. 9 col. 41
4 v '

ZRATE (5F5.2/2F5.2) GROWTH RATE FOR TARGETS
1.5 1.0 1.35 :

1.0 1.0 1.0

1. &DIMENS

The NAMELIST &DIMENS consists of the following parameters:

NS = number of structural equations in the model; default = 1.

NY = number of endogenous variables of the vector v in equation (2);
i.e., NY = NS + the number of identities of lagged wvalues;
default = 1.

NX = number of control variables in the vector X, in equation (2);
default = 1. :

NW = number of uncontrollable exogenous variables in the vector w
. — S t
in (2); default = 0.

NPD = number of time periods for the plan; default = 1.

2. &0OPT

The &OPT 1list consists of parameters that are options for the program;

they are:
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OSUP = 0 for full print-out of A, ,
at every time period. (Ehes
Chow's book as referenced.)

¢, b, G,

H, g,, h
etsymbgls a%e de%inedtin t

= 1 for print-out of G,, H_, g,, h only at every time
. t t t t
period.

= 2 for print-out of G, Hl' g., hl at time period 1
only; all other time perilods ﬁave no print out.

= 3 same as in OSUP=2 except that the program will also omit
Printing Hl and hl'

GAUSS = 0 will omit the printing of the Gauss-Seidel solution for
Ye used for the first linearization of the model (default
value).

= 1 will print the above Gauss-Seidel solution.
= 2 will print and save the Gauss-Seidel solution and the

program will terminate at that point.

GAMMA

1]
(@]

will omit the calculation of the covariance matrices

Ft (default value).

= 1 when the optimal solution vy converges* the program will
calculate the covariance matfices T of the variables

Y . The program will not print the éntire T but will
print only those rows of T that correspond to the
variables targetted in the weighting matrix K .

= n where 2 <n < ns+nx. As in GAMMA=l the program will
calculate T when the optimal solution vy converges*
the print-out of T is controlled by the Input vector
GAMVAR, which is t6 be supplied by the user; n indicates
the number of entries in GAMVAR.

PLOT = 0 will plot the optimal solution values of the meansof y
against target values =z only for those variables tha%
have nonzero diagonal weights in the K matrix; the means
of the control variables x_ are also plotted (default
value) .

= 1 will plot the means of all the variables of the optimal
solution vy as well as the control variables X, against
their targets z, -

UGZ = T if the targets =z are to grow at constant percentage
rates; in this case the user will supply the initial =z ,
the 20 vector, and the rate of growth, the ZRATE vec%or,
and the program will compute zt = ZO = ZRATE.

= F if the targets =z for all periods are to be supplied by
the user in the input matrix 2z (default value).

* The program will also compute Pt when the iteratim limit ITERL1 is reached.



OFDIAV

OFDIAG

EXKCAP

NROUND

ITERL1

ITERLZ

EPS1

it

I
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if the covariance matrix V of the random vector u in
equation (2) have nonzero off-diagonal elements; in Ehis
case the user must supply the lower triangle of the
symmetric V.

if the 6ff—diagonal elements of V are zero; only the
diagonal elements of V are required for input (default
value) .

if the X matrix in the loss function have nonzero off-
diagonal elements; in this case the user must supply the
lower traingle of the symmetric K matrix.

if the off—diagonal elements of K are zero; only the
diagonal elements of K are required for input (default
value).

discount factor for modifying the K 'métrix for each time
period t according to the formula K_= K (EXkcap) &,
where K is supplied by the user; default = 1.0.

if the tentative path for vy, Trequired in the first
iteration is to be estimated by the Gauss-Seidel method;
this marks the first job run in the iterative process to
calculate the optimal path y, which might require more .
than one job run (default value).

(or 3, 4, etc.) marks the second (or third, fourth, etc.)

job run in the iterative process to find the optimal path
v, ; the solution for vy and x from the previous

job will be read from an output device named INOUT2, to
serve as the tentative path for the first iteration of the
current run. All other input data remain the same as in

the previous job. (See section VII on the use of more than
one job run.) ’

the maximum number of times the model will be linearized
for calculating optimal control path; default = 1. Our
method starts with a guess for =x,,...,X% , which, by
the use of the Gauss-Seidel method, if ﬂg UND=1, implies
a solution for y.,«..,¥ . Around this tentative

path the model is linear?ggd and an optimal control path
is obtained for the linearized model. This optimal path
becomes the initial guess of X.,...,X in the next

linearization. ITERL1 refers to the %ggimum number of times
the model will be linearized.

the maximum number of iterations allowed for solving the
model by Gauss-Seidel; default = 10.

the convergence criterion for optimal policy; default = .001.
k) (k=-1)
Y, TY; :
When < EPS],

(k=1)
i



EPS2

FDFRAC

FDMIN

DAMP

DAMPX
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for each i =1,...,ns that corresponds to a nonzero
diagonal element of the K matrix, k being the iteration
count, the program terminates. The solution vy, will be
plotted against their targets Zoge If the convergence
criterion is not met another iteration will be performed.

convergence criterion for the solution of the nonlinear
model by the Gauss-Seidel method; default = .001. Gauss-
Seidel solves the system of equations (1) until

(k+1) (k)
i Yy
(k)

i

< EPS2
y

for i =1,...,ny, k being the iteration count.

parameter for computing step sizes in evaluating the first
derivatives; the step size for the variable Y. ig dy, =

it i
max (| FDFRAC-y, | ,FDMIN) ; default = .001.

minimum step size allowed in the above formula; default =
.001.

a factor used to dampen the changes in successive iterations
of the Gauss-Seidel solution.

(k+1) (k) ' (k+1) (k)
= + P -
e Yy DAM (yt Y )
' (k+1) , . . .
where yt = solution obtained at iteration k+1, and
(k+1) , ,
yt = solution actually used to compute yt in

the (k+1)th iteration.

'DAMP' may be made small if solution tends to oscillate
from iteration to iteration; default = 1.0.

a factor used to dampen the changes in successive iterations
of the control variables x, .

t
(k+1) (k) ' (k+1) (k)
= + . -
X, X, DAMPX (xt X, )
' (k+1) , , , .
where xt = solution obtained at iteration k+1, and

(k+1) . :
X, = solution actually used to compute the

optimal path Yy for the (k+1)th iteration.

'DAMPX' may be made small if the optimal path vy tends to
oscillate from iteration to iteration; default = 1.0.
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3. Input Matrices

~ The input matrices described below must appear in the input deck in the
order given; the name of the matrix must be spelled correctly in the header
card. IDENTVEC, VARBLVEC and GAMVAR are the only vectors whose eleﬁents
are integers; all other vectors have floating-point numbers as elements. 'The

dimension p is defined as p = ny + nx,

NAME DIMENSION DESCRIPTION

IDENTVEC (nid) A vector where elements are the variables
that appear in the identities of lagged
values in the model; its construction
is described in subsection 4 below.

VARBLVEC (ns+p+nx) A vector that identifies those variables
with respect to which the first partial
derivatives are computed by the program;
its construction is described in sub-
section 4 below.

v (ns) if OFDIAV=F Variance-covariance matrix of u in
(ns (ns+1)/2 equation (2); if OFDIAV=F, only Ehe
if OFDIAV=T diagonal of V 1is entered in the input;
ns if OFDIAV=T, the lower triangle of V
TT— TN is entered by columns, starting with

the left-most column of ns elements;
each succeeding column has one less
. element than the previous one.

ns
The lower triangle
is entered as data
if ODFIAV=T
KCAP (p) if OFDIAG=F The weighting matrix K in the welfare
(p(p+1)/2) function; if OFDIAG=F, only the diagonal
if OFDIAG=T of K is entered as input; if OFDIAG=T,
the lower triangle is entered by columns,
as described for V above.
Z0 (p) Initial values of targets for Ye and
X, i required only if UGZ=T.
ZRATE (p) Growth rate for targets which the program

will compute based on Z0 and ZRATE;
required only 'if UGZ=T.:
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NAME DIMENSION DESCRIPTION

Z (npd, p) Targets to be read in row-wise for all
periods; required only if UGZ=F.

YO (p) Initial values for the vectors Ve and
X, in period t = 0.

W (npd, nw) Exogenous variables for all periods, to
be read in row-wise; required only if
nw > O.

X (npd,nx) A tentative policy for all periods, to

be read in row-wise. This policy will

be used to compute the tentative path

Y. by Gauss-Seidel.

Y (ny) A trial solution of the y vector for
the first period, to be used in the first
iteration of the Gauss—-Seidel solution
for period 1; this vector may take the
same value as YO.

GAMVAR (n) A vector whose elements are the row/column

numbers of T to be printed; required
only if G =n, where 2 < n < ns+nx
and is the dimension of GAMVAR.

4, Construction of IDENTVEC and VARBLVEC

The use of IDENTVEC and VARBLVEC is discussed in section IV. Before
constructing IDENTVEC, the user must first eliminate all higher order lags in
the nonlinear model by adding identities of lagged values to the model, as
discussed in section I. To illustrate, we will use the example from section I.
In this example the model has 50 simultaneous structural equations, 50 identities
of lagged values, and 4 control variables; that is, ns=50, nid=50, ny=ns+nid =

and nx=4, and the identities of lagged values are:

100,
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- 6
Y5q Yo ,¢-1

Y55 % Y51 ,¢-1 2
Y53 = ¥53,¢-1 52
Y91 T *1,¢-1 101
Y92 T Yo1,¢-1 91
Yo3 = *3 ¢-1 103
Y100 T Yo9,t-1 99

The numbers listed on the right are the variable numbers that will appear in
IDENTVEC: for Yy -1 in an identity, the number listed is simply k; for

X e the number listed is ny+k. The IDENTVEC for this model will look
r

like this:
é{,col. 1 col. 9
Header .
Card ——>» IDENTVEC 2014
Data

Card 1 ——> 6 51 52 . . .

Data
Card 3 —> 101 91 103 . . , 99
Note that the data entered are 'wright-justified' because the format is I, and
that the dimension of IDENTVEC 1is nid, the number of identities of lagged values.
The construction of VARBLVEC 1is a bit more involved, but the user should not

have too much trouble if the steps listed below are followed:

(a) List the integers from 1 to ns+p+ns. In our example from Section I,
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the numbers would be from 1 to 158.
(b) Above this list of numbers write the following variables in order,
with one variable corresponding to one number:

yl,t"“'yns,t

yl,t—l"''’yny,t—l'xl,t--l'""xnx,t-l

1,67 " Fnx, ¢

In our example, we would have:

Yy y

1t Y2t © *  ¥s0,¢
1 2 ... 50

1,61 Y2,t-1 0 0t Y100,t-1"%1,6-17 " ¥, 61
51 52 . . . 150 151 ... 154

e 7t *ae
155 ... 158
(c) Look through the right-hand side of each structural equation of the
model. Whenever one of the variables listed in (b) appears, circle the
number underneath the variable in the list. In our example, we might
obtain
(::) (Ei) 3 <Ez>.. 50
6 @)

51

© = O

Any number in the list not circled means the variable above it appears
nowhere in the right-hand side of the structural equations; any vari-~

able of the list in (b), that appears somewhere in the right-hand side
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of the structural equations should have its corresponding number circled.

X are some of the variables

In our example, Y3ir Ysorr Y1,e-17 *2,t

not in the structural model.
(d) VARBLVEC is simply the list of integers from (b), with the uncircled
numbers replaced by 0; thus VARBLVEC has ns+p+nx entries. 1In our

example, VARBLVEC would look like this:

col. 1 col. 9 ' col. 40
Header \Z \[ ' \L
Card VARBLVEC 1014
Data ,
Card 1 1 2 0 4 . i . aeee e .
Data . \/
Card 5 e e e e e T ¢
Data
Card 6 0 52 53 . e e e e e e e
Data .
Card 16 e e e e . .« 155 0 157 158

It is vitally important that IDENTVEC and VARRBLVEC be constructed correctly
since the program depends on them to calculate the optimal solution V- If the
econometric model is not very large or the saving of computer space and time is

not essential, the user may simply fill in the wvector VARBLVEC with wll nonzero

elements.
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VI. Space Requirements

1. The Dimension of MAINAR

The program parcels out all its work space from the array MAINAR.
Since the amount of work space depends entirely on the size of the model and the
number of periods in the plan, the dimension of MAINAR is provided by the
user in the main program. Following is a formula for calculating the dimension,

NDIM, of MAINAR, assuming OFDIAV=F and OFDIAG=F:

NDIM = 100 + 2 x 5p + 2ns + ns(p+nx) + nx + nx2 + nid
* * * * .
+ p (nx+l+nxp) + 2p 2. p (p -1)
+ npd(3p+nw) + 1

where P = ny + nx = ns + nid + nx
ns = number of structural equations in MODELS
nx = number of control variables
nid = number of identities in MODELI
npd = number of periods
nw = number of exogenous variables
nxp = max(2,nx)-1

P = dimension of the 'compressed' model which is discussed
in section III

= number of entries in TABL3, as printed.

* *
The user may find it difficult to determine p . p should take the same value

as p 1in the very first time the model is run, which will produce a print-out

of TABL3; the number of entries of TABL3 (always < p) can then be used for the
*

value of p in the later runs of the model.

Add to the expression within the brackets the following:

(nsz-ns)/Z if OFDIAV=T, and

(Pz-p)/z if OFDIAG=T .
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2. Region Size
The region(or core) size needed to execute the optimal control program
is determined by the following factors:
(a) size of the optimal control program ~ 146K;
(b) size of I/0 buffers * 16K;
(c) size of MODELS and MODELI subroutines = MOD('bytes');
(d) dimension of MAINAR = NDIM('words')

The formula to obtain the value for the REG parameter is

_ | 4 x npIM + MoD
REG = [ 1024

+ 146 + 16:|K

To obtain MOD in 'bytes,' the user should first compile MODELS and MODELI
(to debug coding errors as well as to determine the size), and the size of each
subroutine can be found at the end of its compilation listing, printed after the

words 'PROGRAM SIZE.'
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VII. The Use of Two or More Job Runs.

Figure 2 is a schematic diagram showing the input and output of the optimal
control program and the relationship between two 'continuous' job runs.
Recall from section II that if a model requires a large number of iterations in
the optimal control calculation before the optimal solution path Y is
reached, the user may break up the iterating process into two or more job
runs. At the end of the first job run, where NROUND=1 and assuming ITERL1=3,
the program writes the solution path yt and xt obtained from the third
iteration onto the data set INOUT2. If the printed output from this job shows
that the solution path yt obtained from the third iteration did not converge,
the user may then 'continue' the iterating process by feeding into the program
the same input deck with one change —- setting NROUND=2. The program will read
Ye and X, from INOUT2 and use them as the tentative path for the fourth
iteration. A third or a fourth job run may be required before the solution
path Yo will converge. One may of course obtain the optimal solution yt in
one job run by setting ITERLL (and the estimated computer time) to a high
value, because the program will not terminate until the solution path converges
or until the iteration limit is reached (see Figure 1). However, the user is
recommended to break up a possibly long iterating process into several job runs,
each with a small iteration limit ITERL1. The advantage is that the user may
examine the printed output at the end of each 'small'! job, to determine if any
parameter, such as DAMPX, should be changed to speed up the convergence or to
generate more efficient runs; whereas by giving a high value to ITERLL the
user may look at a printed output only after a lot of computer time has been
used, and possibly wasted.

During the first few times that a model is run, many of the input parameters

such as ITERL2, EPS1, EPS2 and DAMPX are probably given values on the
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basis of trial and error. It then makes sense to keep these runs 'small' in
order to determine what better values to give these parameters without wasting
too much computer time. Moreover, the coding of MODELS and MODELI and the
construction of the vectors IDENTVEC and VARBLVEC are subject to errors that
can be very easily committed. By setting GAUSS=2, the user terminates the
program immediately after the Gauss-Seidel solution for yt is obtained,
printed, and saved on INOUT2, and he/she may then decide what might be 'wrong'
with the model subroutines or with the input data. A good set of Gauss~-Seidel
solutions can be used as the tentative path for the first iteration in a

later run, with NROUND=2. By running 'small' jobs one does not lose except

possible a small amount of labor.
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VIII. Output and Exror Messages

The program prints the following on SYSOUT=A for each job:

(L) A list of the &DIMENS and &OPT NAMELIST options, including the
default values if they have not been overridden.

(2) All the input matrices in the order they are read in.

(3) If GAUSS=1 or 2, the values of the Gauss-Seidel solution for Yy used
for the first linearization of the model.

(4) The A, b, C, G, g, h, H matrices, starting with the last period.
Their frequency of print-out from period to periods depends on the
value of the OSUP parameter (see section V.2),.

(5) The values of the optimal solution Ve

(6) Total welfare cost and its deterministic and stochastic components.

(7) If the convergence criterion EPS1 is met before the number of
iterations becomes greater than ITERLl, a plot of the values of the
optimal solution Ve against the target values z, - Whether all of
the Yy variables or only those that have nonzero weights in the
diagonal of the K matrix are plotted depends on the value of the
PLOT parameter (see section V.2). The control variables x, are
always plotted against their targets.

(8) TABL1l and TABL3. The only useful information these two tables give to

the user is the number of entries in TABL3, which should be used as
*
the value for p .

(9) The Tt matrices if GAMMA > 0. If GAMMA=1, the rows of Ft
corresponding to those elements targetted in K are printed; if
GAMMA > 2, the input vector GAMVAR controls the printing of Ft.

The following is a list of messages that may be printed in SYSOUT=A:

"PROGRAM TERMINATING BECAUSE GAUSS-SEIDEL FAILED TO CONVERGE FOR VARIABLE I,
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PERIOD T, IN K ITERATIONS" -= In calculating the Gauss-Seidel solution for Yo
if any variable Yy ¢ does not converge after ITERL2 iterations, this

14

message appears and the program terminates with a condition code of 29.

"PROGRAM TERMINATING BECAUSE OPTIMAL SOLUTION FAILED TO CONVERGE IN K ITERATIONS,
ROUND NO. N" -- If the optimal solution Y. does not converge after ITERLL
iterations, this message appears and the program terminates with a condition
code of 29. In addition, the optimal solution Ye and X, are saved on the

output device assigned by INOUT2 of the main pfogram (see section V.2).

"STORAGE ALLOCATION TO THIS POINT=XXXX WORDS OUT OF YYYY (2ZK UNUSED)" -- This

message appears throughout the printed output, the user may reduce the value

of NDIM in the main program accordingly.

"% **INSUFFICIENT MEMORY AREA TO ALLOCATE WORK ARRAYS, XXXX WORDS ALLOCATED TO
STORAGE BY MAIN PROGRAM, YYYY WORDS REQUIRED SO FAR, INCLUDING THE FOLLOWING

7777 WORDS CURRENTLY REQUESTED AT THE POINT INDICATED BELO " -- A trace table
follows this message showing the subroutine that led to it. The program will

continue and allocates more space when required but will eventually terminate

after messages like the one following are printed.

"STORAGE ALLOCATION TO THIS POINT=XXXX WORDS OUT OF YYYY (ZZK REQUIRED) " —- When
several messages of this type appear pefore the program terminates, the user
should set NDIM in the main program equal to the greatest value of XXXX in

these messages for the next job.
"TOOKING FOR 'AAAA' DATA, FOUND THE FOLLOWING: - - -

"I OOKING FOR 'AAAA' DATA, FOUND END-OF-FILE"
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"END-OF-FILE WHILE READING DATA FOR 'AARA'"

- These messages appear when the user fails to supply enough data for the
matrix named AAAA or when the entire matrix has been omitted from the input

deck. The program terminates with a condition code of 130, 131, or 132.
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IX. JCL Requirements

The JCL given in this section applies only to the IBM 360 or 370 computers.

Users of other computers must make up their own JCL to run the program and to
assign device units for the four sequential data sets used by the program.
INOUT2, INOUT3, 1INOUT4, and INOUTS5; these data sets are described in
section IV.

Suppose the nonlinear optimal control program (excluding the three user-
supplied subroutines) has been compiled and linked-edited into a load module
named OPTCN as a member of a catalogued partitioned data set named OPTLIB,
then the following JCL may be used to compile and link-edit the user-supplied
subroutines, link them with OPICN and execute the program:

// _EXEC FORTGCLG
//FORT .SYSIN DD_*

Main Program
MODELS
MODELI

//LKED.SYSLIB_DD_DSN=OPTLIB,DISP=SHR

// DD_DSN=SYS1.FORTLIB,DISP=SHR
//LKED.SYSIN DD _*

_INCLUDE_SYSLIB (OPTCN)

_ENTRY_ MAIN
//GO.FTOn2FOOl_DD_pSN=INOUT2,DISP=(NEW,KEEP),
// UNIT=xxxx,VOL=SER=nnnnnn,

// DCB= (RECFM=VS,BLKSIZE=1608),
// SPACE=(CYL, (2,1))
//GO.FTOn3FOOl_pD_UNIT=xxxx,VOL=SER;nnnnnn,
// DCB= (RECFM=VS,BLKSIZE=1608),
// SPACE= (CYL, (5,4))
//GO.FTOn4F001 DD _UNIT=xxxx,VOL=SER=nnnnnn,
// DCB= (RECFM=VS,BLKSIZE=1608) ,
// SPACE= (CYL, (2,1))
//GO.FTOn5F001_DD_UNIT=xxxx,VOL=SER=nnnnnn,
// DCB= (RECFM=VS,BLKSIZE=1608) ,
// SPACE=(CYL, (5,4))

//GO.SYSIN DD _*

Enput dat{
//

Of the four disk data sets, only one, FTOn2F001, is a non-temporary data set;
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in this data set the program stores the solution path yt from each job run.
DISP=(NEW,KEEP) is used for the first job run with NROUND=1, and it should
be replaced with DISP=OLD in the jobs with 'NROUND>2.

The digits n2, n3, n4 and n5 in the ddnames should correspond to
the same numbers in the main program provided by the user, where INOUT2=n2,
INOUT3=n3, INOUT4=n4 and INOUT5=n5. (See Section IV.l). All four data
sets are created by unformetted WRITE statements; therefore they must have
RECFM=V or VS. Their SPACE parameters may take different values depending
on the model. Tape units may replace disk units for these data sets. If
GAMMA=0, the last DD statement, with ddname FTOn5F00l, can be eliminated,
since no intermediate output associated with computing the Pt matrices will
be written by the program.

The user might wish to compile the user—~supplied model subroutines separately
and save the load modules in the same partitioned data set as the one containing
the optimal control program (OPTLIB in our JCL example). Suppose MODELS and
MODELI are link-edited together as a member named MODELA in OPTLIB, then
the following changes should be made in the JCL given above:

(1) Delete the MODELS and MODELT source statements that had been

pPlaced after the //FORT.SYSIN_pD_f card.

(2) Replace the INCLUDE card with _INCLUDE SYSLIB (OPTCN,MODELA) .




