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An econometric model is ordinarily a system of simultaneous, stochastic
difference equations inVolving many endogenous variables, exogenous variables,
policy variables, and parameters. It has many numerical cﬁaraéteristics. To
characterize an econometric model, or to compare two econometric models, is a
complicated task because of the many dimensions involved. Which characteris-
tics are important depend on the particular use of the model. The purpose may
be the estimation of certain structural parameters, the explanation of various
aspects of business cycles, long-term or short-term forecasting, or policy ana-
lysis. 1In this paper, we will first summarize the existing, well-known charac-
terizations of an econometric model (section 1). We will then discuss two sets
of techniques to describe the properties of a model. One is based on the theo-
ry of optimal control for deterministic systems (section 2), and the other on
the theory of optimal control for stochastic systems (section 3). An illustra-
tion of the techniques of section 3 using the Michigan Quarterly Econometric

Model is given in section 4.

1. Existing Characterizations of an Econometric Model

It will be convenient for our discussion to start with a static system of
simultaneous equations, and then treat a deterministic system of simultaneous
difference equations, leaving the problem of characterizing a dynamic stochas-

tic system as the last topic.



A. Static Model

Both general and partial equilibrium models are systems of simultaneous
equations, Two types of characteristics are of interest for such systems. First
are the characteristics of individual equations, as summarized by their parame-
ters, such as the elasticity of demand or the marginal propensity to consume.
Second arekthe properties of the solution to the system. They are the proper-
ties of the reduced-form equations of an econometric model. Rather than charac-
terizing the relationships among endogenous variables, such as the elasticity of
demand and the marginal propensity to consume, they describe the responses of
the solution values of the endogenous variables to changes in the exogenous va-
riables and/or the parameters in the system. They describe the "comparative
statics" induced by the system. They are the "multipliers" of an econometric
model. The number of multipliers is equal to the number of endogenous variables
timesrthe‘total number of exogenous variables and parameters. They are functions

of the latter variables if the model is nonlinear.

B. Dynamic Deterministic Model

Once the model beccmes dynamic, being a system of difference or differen-
tial equations, its characterization will be more complicated, but can sﬁill be
divided into two types. The characteristics of individual equations include
short-run, intermediate-run and long-run relationships between the variables in
an equatién}xsuch as the short-run and long-run elasticities of demand and the
short—-run and long-run marginal propensitiesto consume. The secdnd are the cha-

racteristics of the solution paths of the system and the effects of the exogenous

variables and the parameters on the solution paths. The solution paths may be




damped or explosive; they may oscillate in various ways. The effects of the
exogenous variables and/or parameters on the solutions are the subject of com-
parative dynamics. These effects are partly described by the various dynamic
multipliers, including the impact multipliers, delayed multipliers (measuring
the effects of a change in an exogenous variable in one period on the endoge-
nous variables in a later period), intermediate-run and long-run multipliers
(measuring the cumulative effects of persistent changes in an exogenous varia-
ble for several or many periods on the current endogenous variébles). The
number of different dynamic multipliers is large because the time dimension is
added into the picture. These multipliers are the coefficients of the "“final

form" of an econometric model.

C. Dynamic Stochastic Model

After incorporating stochastic disturbances into an econometric model,
we need further tools to characterize the stochastic solution paths of an eco-
nometric model. The first two moments, if they exist, are of particular inte-
rest. The mean solution paths can be treated in the same way as in the above‘
subsction B; all the dynamic multipliers and the comparative dynamic analyses
are applicable to the mean paths. The variances and covariances may or may
not be constant through time. If the time series generated by a system of sto~
chastic difference equations are covariance-stationary or nearly so, one can
use the autocovariance matrix or the spectral density matrix to summarize many

of the cyclical properties, as described, for example, in Chow [ 4 1. Dynamic

relationships between several variables can be studied by cross-spectral tech-

niques and by observing the leads and lags between their turning points, in the



same way that cycles of individual endogenous variables can be studied by the
spectral density functions and by the times between turning points.

In this brief discussion of the existing tools to characterize econometric
models> we have touched upon the use of structural parameters, reduced-form pa-
rameters and final-form parameters, and the tools to study cyclical properties
of an econometric model. Assuming the model to be correct, we obtain the va-
riances and covariances of the errors of its forecasts of the future values of
the endogenous variables, given projected values of the exogenous variables.
Thus models can be characterized and compared by the variances and cova-
riances of the residuals in the structural equations, in the reduced-form equa-
tions (measuring errors of forecasts one-period ahead) and in the final-form
equations (measuring errors of forecasts many periods ahead, the number of pe-
riods depending on the given initial conditions of the lagged endogenous varia-
bles specified in the final forms). Allowing for errors in projecting the re-
quired exogenous variables and in the estimation of model parameters, one can
measure forecasting errors of an econometric model by comparing its various
forecasts with actual historical observations. The remainder of this paper will
be concerned with the characterization of an econometric model for the purpose

of formulating an optimal economic policy.

2. Characterization of an Econometric Model by Deterministic Control

In the optimal control of a deterministic econometric model (with its
random disturbances set equal to their expected values), a multiperiod loss
function is postulated, and its value is minimized with respect to the time

paths of the policy or control variables, subject to the constraint of the



dynamic model and given the initial conditions. If the econometrician is wil-
ling to choose a loss function, then models can be characterized and compared
by the solution paths of the key endogenous and policy variables. Such compa-
risons have recently been made by the U.S. econometric model builders who are
participants of an NSF-NBER Seminar on Econometric Model Comparison under the
chairmanship of Lawrence Klein. Some of the results are described in Hirsch,
Hymans and Shapiro [14] and in Chow and Megdal [9]. Optimal deterministic
control paths were obtained from the different models for ﬁhe 17 quarters from
1971-1 to 1975-1 using the same loss function which penalizes the squared de-
viatiorns oOf the inflation rate, unemployment rates, real GNP and balance of
trade from their preassigned targets. To illustrate the results, the optimal
solutions for the inflation rate show whether the two-digit inflation in 1974
could have been avoided by suitable economic policy beginning in 1971-1 accor-
ding to the participating models. The answer is mostly negative. The solu-
tions for the unemployment raté by and large show that significant reductions
could have been achieved during quarters of high unemployment without seriously
aggravating the inflation situation. Note that this solution does not take
into account the possible delayed effects of an expansionary policy on inflation
after 1975-1, which was the terminal quarter of the multiperiod optimization
problem.

Similarly, the optimal solution paths for the policy variables can also
be compared to show similarities and differences among models. In the experi-
ments conducted by the participants of the Econometric Model Comparison Seminar,
the policy variables are federal government non-defense expenditures and unbor-
rowed reserves. The optimal solutions for government expenditures according to

several models require fairly sizable increases, in the order of 50 to 60 bil-



lions (at an annuai‘rate) in the later quarters over the actual expenditures.
One can further compare the relative roles played by the fiscal and monetary
instruments across different models. Not only the average deviations of the
optimal settings of these instruments from some norms (such as historical
trends) but their relative fluctuations through time can be compared. In
short, different characteristics of the optimal solution paths for the impor-
tant endogenous and policy variables in a deterministic control problem can
be compared among different econometric models.

A natural extension of above comparison is to vary the parameters in the
loss fuction and to observe the resulting changes in the optimal solution paths.
This is an application of the method of comparative dynamics to deterministic
models. In fact, it has been suggested by Chow and Megdal [ 8 ] that the pa-
rameters in a quadratic loss function should be varied in a systematic way in
order to trace out the best available trade-off possibilities for unemployment
and inflation implicit in an edonometric model. Econometricians have attempted
to derive the trade-off relationships between unemployment and inflation from
an econometric model by recording the behavior of these two variables in simu-
lations using more or less expansionary but still fairly arbitrary paths for l
the policy instruments. Simulations of this type have been.performed by Ander-
son and Carlson [ 1], Hirsch [13], de Menil and Enzler [11], Hymans [16], and
Bodkin [ 3], among others. This method is defective because the unemployment
and inflation rates so obtained without optimization could usually be improved
upon, as demonstrated by the calculations using the St. Louis Model and the
Michigan Quarterly Econometric Model reported in Chow and Megdal [ 8].

In order to determine the lowest inflation rate corresponding to a six
per cent unemployment rate, we solve an optimal control problem using a quadra-

tic loss function with one per cent and six per cent as the targets for the



inflation and unemployment rates respectively (assuming a one per cent annual
inflation rate to be lower than achievable), and 1 and 100 respectively as
the weights penalizing the squared deviations of inflation and unemployment from
their targets. Optimization will insure that the unemployment rate is close to
six per cent and the inflation rate will be made as low as possible. Here we
are dealing with a multiperiod optimization problem. The inflation rates obtain-
ed from the optimal solution will change from quarter to quarter, but the entire
set of inflation rates could not be improved upon in the sense that, given a six
per cent unemployment rate, the sum of squared deviations 6f the inflation rates
in all periods from one per cent is the minimum. If one wishes to depict in a
two-dimensional diagram the trade-off possibilities between inflation and unem-
ployment for many periods, the mean rates of these variables over time, or their
root mean séuared deviations over time, could be plotted. The points in the
diagram are obtained by solving several optimal deterministic control problems

as formulated above, with the target for the unemployment rate varying from four
per cent to nine per cent, or dver whatever range of values required. Thus each
econometric model is characterized by one optimal unemployment-inflation trade-
off curve. This curve permits us to answer the important gquestion concerning

the model,"Can a 4 per cent inflation rate be achieved while maintaining an unem-
ployment rate of 5 per cent during a particular time period?".

Before closing this section, it is necessary to describe briefly some of
the available algorithms to calculate the solutions to deterministic control pro-
blems using an econometric model. The algorithms can be divided into two cate-
gories. The first treats the problem strictly as a deterministic control pro-
blem, ignoring all the random elements in the econometric model. Since the time
paths of the endogenous variables are determined by the time paths of the control
variables through the econometric model, and the multiperiod loss is a function

of the endogenous (and possibly also the control) variables, one can regard the



loss function as a function of the control variables. Various gradient-type
algorithms have been applied to minimize the loss function with respect to the
time paths of the control variables, including the works of Fair [12], Holbrook
(151, Craine, Havenner and Tinsley [10], Kalchbrenner and Tinsley [18], Ando
and Palash [ 2], and Norman, Norman and Palash [12]. The second category is a
by-product of a solution to an optimal stochastic control problem which allows
for random disturbances in an econometric model. The mathematical expectation
of a multiperiod loss function is minimized subject to the constraint of a sto-
chastic econometric model. Since optimal decisions under uncertainty are se-
quential in nature, to be based on the most up-to~-date observations, and not in
the form of deterministic time paths of the control variables which can be £ix-
ed at the beginning of the planning horizon, they will take the form of feed-
back control equations. To obtain a solution to a deterministic control problem,
however, we can apply these optimal feedback control equations to a deterministic
econometric model and calculate the time paths of both the endogenous and the
control variables when the model is subject to optimal control.

One way to obtain a set of optimal feedback control equations to minimize
a quadratic loss function subject to a system of nonlinear structural equations
is described in Chow [ 4, Section 12.1] and [ 5]1. Essentially, tentative paths
X, of the control variables are chosen. The Gauss-Siedel method is applied to
solve the nonlinear equations to obtain the paths Yo of the endogenous varia-
bles corresponding to the chosen paths of the control variables. About these
paths the econometric model is linearized, using first derivatives obtained nu-
merically by perturbing the right-hand-side endogenous variables, the lagged
endogenous variables and the control variables one at a time from the above so-—
lution paths. A set of time-varying, linear structural equations are obtained.
They are solved to produce a set of time-varying linear reduced-form equations.

Given these reduced-form equations and the quadratic loss function, the solu-



tion to the deterministic optimal control problem is easily computed in the
form of feedback control equations. These equations, together with the ori-
ginal nonlinear structural equations, determine the time paths of the endoge-
nous and control variables when the system is governed by the new set of con-
trol rules. The model is again linearized about these paths as before. The

process continues until the solution paths from successive linearizations con-

verge.

3. Characterization of An Econometric Model by Stochastic Control

The feedback control algorithm described at the end of the last section
provides a nearly optimal solution to the original stochastic control problem
when the random disturbances in the econometric model are retained. It can
therefore be used to characterize a stochastic econometric model from the view-
point of optimal economic policy. When the random disturbances of an econome-
tric model are taken‘into account in the formulation of economic policy, two
important consequences should be noted. First, as we have pointed out, the
solution will take the form of feedback control equations. Second, the solu-
tion paths for both éndogenous and control variables become stochastic. 1In
order to characterize them, wevneed at least the expected paths and the auto-
covariance matrices of the variables in the system under feedback control. The
expected paths can be approximated by the solution to the deterministic control
problem obtained by replacing the random disturbances by their expected values.
The autocovariance matrix of the system can be easily computed by using the
time-varying linear feedback control equations and the linearized reduced-form
equations obtained from the last iteration (or linearization) using the above

algorithm. See Chow [4 , Chapter 3] for example on the methods of computing
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the autocovariance matrix. Hence, the dynamic characteristics of the optimal
control paths of the endogenous and control variables of stochastic econome-
tric models can be used for the purpose of model comparisons as in the case of
deterministic models.

When dealing with stochastic models, we can supplement the unemployment-—
inflation trade-off curves proposed in section 2. These curves are constructed
from the deterministic time paths of these variables in the optimal determini-
stic control solution, or from the expected time paths, denoted by §t , of the
(approximately) optimal stochastic control solution. Let ylt ~and Yor stand
for the unemployment and inflation rates respectively. We could vary the weights

in the loss function as suggested in section 2 and plot the resulting combinations

2

21 Y1t 1t

- T -
£ E and E . -
o 21 21 Yor We could also plot the square roots of tEl(ylt a,,)

= 2
and tgl(YZt_ a,.)  where 2;. and a, are some target paths for unemploy-

ment and inflation and may also be set equal to zero. The contribution of the

i-th variable to the multiperiod expected loss is given by

%‘E(—a)2=%(h—)2+%E(——)
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Hence, the sums E E(yit— §it)2 of the variances over T periods for the

unemployment rate and the inflation rate can be plotted. Or the total contribu-

tions, consisting of t§1(§it- ait)2 and gl E(yit— git)2' from the unemploy-
ment and inflation rates can be plotted. The last trade-off relationship was
illustrated in Chow [4, p. 216] for two important economic variables.

The main purpose of this section, however, is to propose some summary
measures to characterize an econometric model for policy purpose, rather than
simply exhibiting the mean paths and the covariance matrix of the major econo-
mic variables prevailing when the model is subject to optimal feedback control.

The basic idea is a generalization of the reduced-form equations of a static

model relating the endogenous variables to the control variables. The multi-
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pliers are the derivatives of these reduced-form equations. Our problem is
complicated because we are studying the effects of the policy variables in
the context of a nonlinear, dynamic, stochastic econometric model which is
being controlled to minimize the expectation of a multiperiod objective func-
tion. Rather than measuring the effects on many individual endogenous varia-
bles, we propose to measure the effects of the current control variables on
the total expected loss for all future periods uﬁtil the end of the planning
horizon. We will choosg a scalar function relating the multiperiod expected
loss to the control variables of the first period. This functibn is derived
directly from the well-known stochastic control theory based on the method of
dynamic programming as follows.

First, assume a quadratic loss function for T periods

T T
(3.1) W = z (yt- at) Kt(yt— at) = ) (ytK

L]
-2y, k + a
£=1 =1 tt

1
Yt 52!

Second, the nonlinear econometric model is linearized about the solution paths
of the optimal deterministic control problem as described at the end of the
last section, yielding the following reduced-form equations

+ C_x, + b, + u

(3.2) Y¢ 7 Ap Y t ¥t t t

where X, is a vector of control variables which may be incorporated as a sub-
vector of the endogenous variables Yy if necessary, and u, is a vector of
serially uncorrelated random disturbances derived from the disturbances of the
structural equations in a well-known manner.

By using the method of dynamic programming to find the optimal strateéy
[4, section 8.1], we first minimize the expected loss for only the last period
T with respect to x and obtain a linear feedback control equation

T

QT = GT Y1 + Iy - We then minimize the sum of the expected losses for the
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last two periods with respect to xT__l » assuming that the last period policy
X shall be optimal, i.e., substitﬁting the minimum expected loss for period
T into the minimand. Continuing the process backward in time, we finally mi-
nimize the sum of the expected losses for all T periods with respect to X,

of the first period, assuming that x ceer X shall be optimal. This sum,

2 T
after all the future minimum expected losses from period 2 onward have been
duly inserted, is the expectation of a quadratic function of the economic va-

riables Yy for the first period only:
o ' o
(3.3) Vl _ E (yl Hl Yy 2l hl + cl)

where the coefficients Hl ’ hl and ¢, can be calculated by standard formulas
[4, p. 179]. Using (3.2) to substitute for Yy in (3.3) and taking expecta-

tions, we have

]

LI | !
(3.4) Vl XlClHlCle 2X1C1(H1Alyo + H bl - h.)

1 1

1 1] t
+ (Alyo + bl) Hl(Alyo + bl) + E u,H U - Z(Alyo + bl) hl + c

171

1

= x5 Qxl + 2x. g + d

Thus, assuming that the pqlicies from period 2 onward shall be optimal, the ex-
pected mulfiperiod loss is a quadratic function of xl ; as given by (3.4). Th
optimal first-period policy ﬁl
2y yielding the associated minimum expected multiperiod loss Gl = Vl(ﬁl).
Note that the subscript of V denotes the fact that this cumulated expected
loss is computed from period 1 onward.

Our proposal is to use the quadratic function Vl(xl) as given by (3.4)

to characterize and compare econometric models. This function gives the total

is obtained by minimizing (3.4) with respect to

1
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expected loss from period 1 to period T in terms of the control variables X,

in the first period, assuming that future policies from period 2 to period T
shall be optimally chosen. It appears to capture the essential information
contained in an econometric model concerning the effects of the current policy
variables on economic welfare as measured by the loss function. It is appli-

cable to deterministic models as a special case where the vectors u, of ran-

dom disturbances for all periods are set equal to zero. The constant term 4

in the quadratic function (3.4) will be affected since Eu]'_Hlul is zero and

its component oy is dependent on future Eui':Htut .

To compare two econometric models A and B, we use the functions

(x7)

Via ¥y
and VlB(xl) obtained by the dynamic programming algorithm applied to these

models respectively, given the same multiperiod loss function. Let ﬁlA and

ﬁlB respectively minimize Vv and V . One can certainly compare the two

1A 1B

models by their first-period optimal policies ﬁlA and ﬁlB . In fact, in

section 2, we have pointed out that the entire optimal solution paths QtA

and ﬁtB (t=1, ..., T) obtained from two deterministic models can be compared.
However, by simply inspecting the values of ﬁlA and QlB , we cannot tell how

different the policy recommendations from the two models are. Perhaps the

) is not much lér—

function VlA(xl) is fairly flat around Xip and VlA(xlB

ger than VlA(ﬁlA)' This means that, as far as model A is concerned, ﬁlB is

(

about as good a policy as % . On the other hand, ) may be much

1a Vis *1a

larger than VlB(ﬁlB) - That is, as far as model B is concerned, its optimal
policy ﬁlB is much superior to the optimal policy ﬁlA derived from model A.
Elsewhere [7], I have recommended the use of the following pay-off matrix

to policy makers who have to rely on policy recommendations from two different

econometric models.
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States of the World

A B
Optimal strategy from A VlA(xlA) VlB(xlA)
Optimal strategy from B VlA(XlB) VlB(XlB)

When we consider the welfare consequence of using the optimal policy from model
A if model B happens to be true, we do not assume that the policy recommenda-
tions from model A will be followed period after period. Rather, we assume
that the (mistaken) policy from model A will be followed only in the current
period and the (correct) policies from the hypothetically true model B will be
followed from period 2 on. The rationale for the above payoff matrix is that
the decision maker is not committed to follow the mistaken policies from an
incorrect model in the future. To measure the welfare loss in adopting ¥

1a
for only the first period while allowing for the possibility to behave opti~

(®..)

mally later on assuming model B to be true, we compare VlB(ﬁlA) with V xlB

1B

as given in the above matrix. In short, the function VlA(-) and VlB(-) can
be used to compare the policy recommendations from models A and B; they are va-
luable tools in the formulation of economic policy using econometric models.

It should also be pointed out that, if we assume a particular model A

to be reasonably accurate, we-can evaluate the actual policy x adopted in

1
any historical period by the difference VlA(xl) - VlA(xlA) : Where the func-

tion VlA(-) is obtained by solving a multiperiod (stochastic or determini-
stic) control problem using the historical period in question as period one.
This difference measures the welfare cost of adopting the historical policy

X1 rather than the optimal policy % The logic is identical with that of

1a °

comparing le(XlB) and VlA(xlA) as suggested in the last paragraph, when
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model A is assumed to be true. This approach to the evaluation of historical

policies is discussed in Chow [7].

4. An Illustration Using the Michigan Model

To illustrate the method of section 3, the Michigan Quarterly Econome-

tric Model [17] has been used to calculate the function Vl(x The optimal

l).
control problem solved is the one posted by the participants of the NSF-NBER
Econometric Model Comparison Seminar referred to in section 2 above. That is,

the number of periods is 17, covering the quarters from 1971.1 to 1975.1. The

objective is to minimize the loss function

17

(4.1) Lo (ét— at)z + .75(u - 4.0)% + .75(eNP Gap,- 0)2
o1 t t

2

2
+ (TBt— 0) + .1(UR$t— Y, )1

t
where u is the unemployment rate, P is the annual rate of inflation measured
by the GNP deflator, at = 3.0 for t=1, ..., 12, ut = 7.0 for t=13, ..., 17,
TB is trade balance as a percentage of GNP in current dollars, GNP Gap is the
percentage deviation of GNP in 1958 dollars (GNP58) from capacity output, URS
is unborrowed reserves in billions of current dollars, and Yt represents a
sﬁooth expansionary path for URS. The policy variables set up for our computa-
tions are government transfer payments GTRPS, unborrowed reserves UR$ and non-
defense government purchases of goods and services GFOS$ all in billions of
current dollars. However, the first-control variable GTRPS was not tréated as
such by the participants of the Econometric Model Comparison Seminar. There-
fore, we simply fixed it at its historical path by using the historical path as

the target path and assigning a large penalty weight of 100 to the square of
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its deviation from target (this part of the loss function not being shown in
function 4.1). The UR$ term in the loss function serves to prevent erratic
behavior of the monetary instrument. The estimated residuals in the structu-
ral equations were added back to the intercepts, at the suggestion of the
Seminar participants, resulting in a deterministic control problem. The opti-
mal control solution paths for the major endogenous and control variables have
been reported and discussed elsewhere [9]. We will study the function Vl(xl)
below.

The quadratic function Vl(xl) = xiQxl + 2xiq +d is givén by the follo-

wing matrix Q and vector g

100.00097 .00003 . 00237 -8270.316
(4.2) Q = . 00003 .10301 . 00100 q = -2.798
.00237 .00100 . 00861 -0.897

The vector of control variables in period 1 which minimizes Vl is

[

(4.3) = [ 82.7005 26.3770 78.3233 ]

The derivatives of Vl with respect to the three control variables are

2Qxl + 29 . They are of course zero at X, = X If the first control varia-

1 -
ble X1 deviates slightly from its minimizing value 82.70 , say xll=83.70

billions, and the other two control variables retain their optimum values, the
derivative of Vl with respect to the first is very large, being equal to
100.0 which is the leading diagonal element of Q. On the other hand, when the
seconé and third control variables are increased by 1 billion from their opti-
mum values, the derivatives will only be .1030 and .0086 respectively. The

function Vl increases very sharply as x deviates from its optimum value

11

because we have put a heavy penalty on the deviation of this variable from its
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historical or target value 82.70; we .are in factbnot treating this wvariable
as a genuine control variable. V1 increases more rapidly when the second con-
trol variable (unborrowed reserves) deviates from its optimum than when the
third control variable (nondefense government purchases) deviates from its
optimum, partly bécause the former variable enters explicitly in the loss func-
tion (4.1)

Since the first control variable is really fixed, we will simplify our
analysis by reducing V1 to a function of only the second and third control
variables. When X1 is fixed at its historical value 52.70, the quadratic

function Vl becomes

.103,013 .000,999 -2.7954
(4.4) Q = q
.000,999 .008,614 -0.7011

If we had computed the function Vl for another econometric model, we would
use its optimum values for the two control variables to evaluate the function
(4.4). and compare the result with the minimum value of (4.4). We would also

use the optimum values for (4.4) to evaluate the function V derived from

1
the other model and compare the result with the minimum of the latter function.
We could also plot the contour maps of these two functions on the same diagram
and compare them. Without the second Vl at our disposal, we will evaluate
(4.4) at the historical values of the control variables which are 29.5 and
24.1 respectively. Note that the second figure differs a great deal from the
optimum value 78.3 given in (4.3). At these historical values, the multipe-
riod loss Vl given ﬁy (4.4) is 26.00 higher than its minimum.

To examine the figure 26.00 more closely, we will compute the difference

between the first-period losses of the two policies. The figure 26.00 is

composed of this difference and the remainder which measures the extra loss from
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period 2 to T attributable to the historical (nonoptimal) policy as it affects
the initial economic condition at the end of period one. The optimum solution
values and the historical solution values of the variables entering the loss

function (4.1) for period one (1971.1) are

By uy GNP Gap, TB, URS,
Optimum 6.07 5.08 .48 -.182 26.4

Historical 4.69 5.95 5.01 .278 29.5

The first-period losses resulting from these two solutions are respectively
11.47 and 24.61, the difference being 13.14. (Note that the target value
for UR$l was set at its historical valué 29.5, accounting for a contribution
of .1(26.4‘—'29.5)2= .961 to the first-period loss of the optimum policy).
The main contribution to the first-period loss of the historical policy is
from the GNP Gap , equal to .75(5.01)2 = 18.83, Although the loss function
(4.1) weighs the inflation terﬁ by 1 and the unemployment term by only .75,

it penalizes low output gquite heavily through the GNP Gap. 1In short, 13.14

or about half of the extra multiperiod loss 26.00 is allotted to the diffe~
rence between the first-period losses. The assumption is that, no matter whe-
ther the first-period policy is optimal or not, the policies from period 2 on
shall be optimally chosen. The nonoptimal policy in period 1 adds 13.14 to
the loss in period 1 itself, as computed from the two sets of solution values
of the variables included in the loss function shown above. It adds an almost
equal amount to the total loss from period 2 to period 17, assuming the. poli-
cies in these periods to be optimal. The 26.00 figure can also be compared
with the total loss of 248.03 for all 17 periods if optimal policies had been

followed throughout.
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The fairly sizable difference between the outcomes of the two policies
is not surprising because the historical value of Federal government non-
defense purchases is 24.1 billion and the optimal Value is 78.3 billion. we
have not considered the political feasability of such a large increase in
government expenditures. To do so would require putting an extra term for
this control variable in the loss function. Several questions are of inte-
rest when optimal control techniques are applied to analyze and compare eco-
nometric models. When the optimal solution deviates so much from the histo-
rical trend, would the model remain to be valid? If not,htw should the model
be changed? Or should we keep the model and pull the solution closer to the
trend by adding extra terms in the loss function? 1In fact; an important use
of optimal control is to reveal the properties of an econometric model under
systematic variations of the control variables. If we adopt a policy closer
to the historical trend, such as 40.0 billion for Federal nondefense purcha-
ses as compared with the optimal value of 78.3 billion, how much would we lose
if the model remained valid at the optimum solution? (The answer is that the
multiperiod loss would increase from the minimum 248.03 by only 12.65, instead
of 26.00,when the two control variables equal 26.3770 and 40.0 respectively.)

In this paper, we have reviewed briefly the existing tools for characte-
rizing and comparing econometric models and surveyed several techniques based
on the theories of optimal control of deterministic and stochastic econometric

models.

Footnote
1. I would like to thank Ettie H. Butters for excellent programming assistance

and to acknowledge financial support from the National Science Foundation.
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