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1. Introduction

The model studied in this paper is

(1.1) y

p
E Bjxij +E + Ny (i=1, ..., n)

j=1

where Yy and xij are respectively the i~th observations on the dependent
and the explanatory variables,and Ei are independent, identically distri-
buted normal random variables as usual. The special feature is the introduc-
tion of the random variable ni. It is assumed that the observations are known
to belong to one of three groups. In group I, ni > 0 ; in group II, ni <0 ;
and in group III, ni = 0 and we are back to the standard normal regression
situation.

This model appears to have important.economic applications. Generally
speaking, it offers an alternative to the use of a dummy variable to represent
the effect of an unusual circumstance on the dependent variable. A dummy va-
riable for the unusual observations implies a constant effect whereas our va-
riable ni implies a one-sided random effect. To the extent that one can
question the assumption of a constant effect in a particular application, our
model may be more appropriate. For example, in a time-series analysis, the use
of a constant dummy variable to representlthe effect of being in a war period,

of strikes, of an oil crisis and the like may be replaced by the use of a posi-

tive or negative random variable ni. In a cross-section analysis, one may



know that certain observations of the dependent variable are either over or
underestimated, but does not know the magnitudes of the errors. To use an
example which has prompted this paper, a study by John Ham of Princeton Univer-
sity attempts to explain the supply of labor by the wage rate and other expla-
natory variables using data on individual households. For many observations,
the respondents stated that they had wished, if given the opportunity, to work
less (or more) hours than they actually did, making the observed dependent va-
riable vy larger (or smaller) than the desired supply ?Bjxij + €, by the
amount ni , according to our model. Thus in many disequilibrium situations
when the desired value of an economic variable differs from the observed one be-
cause of some form of interference, our model is applicable provided that the
effect of the interference is a one-sided random effect.

In section 2, we assume that the distribution of ni is exponential and
apply the method of maximum likelihood to estimate the unknown parameters. In
section 3, we assume that the distribution of ni is one-sided truncated normal
and provide the solution by maximum likelihood. Section 4 deals with rectangular,

triangular, and other distributions for ni.

2. Exponential Distribution for the One-Sided Error

We assume that for group I the additional random residual ni has an expo-

nential density ae_an

for n > 0 , that the residual Ei has a normal distri-
, . . 2 ' .
bution with mean zero and variance ¢  , and that ni and Ei are independent.

The sum ui = Ei + ni has the cummulative distribution function

[ee] u—n
-on 1 - (x2/202)
(2.1) F(u) = P(ui<u) = oe . —_—e dx d4dn
V2mo
O -0



Differentiating F(u) and simplifying we obtain the density function for u,

1 22
2[0 o -20u] 1

(2.2) dafF  _ e G(00~0 ~u)

du

where the function G is defined by

[+4]

_ 1,2
22

(2.3) G(x) = e dz

vV2m

X

Writing (1.1) as u, = y; - xiB » we find from (2.2) the log-likelihood of the

i-th observation in group I to be

2 1 22 -1
(2.4) Ll(yi;B,G,,OL) = 1no + 7 0o - oa(yi-xis) + InG(oa-o [yi—xiB])

Similarly, if for group II —ni has an exponential distribution with parameter

a2 + the log-likelihood of the i-th observation is

2 1 22 -1
(2.5) L, (yi;B,o ,oc2) = 1nOL2 tz0o a, + OL(yi-xiB) + 1nG(GOL2+U [yi—xiB])

For an observation in group III, ni 0 , and the log-likelihood is standard.

Let the 3 groups consist of nl N and n, observations respectively,
with n = n, *+ n, +n,. The log-likelihood function for the entire sample is

2 3

(2.6) L = n_lno + L n 02a2 -a2 (y,-x.B) + I 1nG'(co¢—c—1[y.-x.B])
1 271 \ i 71 . i i
iel 1€l

+ n,lno., + L n czoc?‘ +o, 2 (y,~x,B) + I 1nG(oo +O—l[y.-x.8])
2 2 2 72 2 2, R 2 i 7i
1eII 1eIT
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To compute maximum likelihood estimates of B, 0, o and a2 we recommend
Newton's method since it has been found successful in many similar applications
and since the matrix of the second partial derivatives of I is required in any
case to approximate the covariance matrix of our estimates for the purpose of

statistical inference. To do SO, we obtain the first derivatives of L. Using

the abbreviations

(2.7) U=y, - xiB
-1 1 -3 - 0Tl
vam
-1 1 %'(00‘2 + 0"y
G2i = G(GOL2 + 0 ui) . f2i = - e
vam
we can write the first derivatives as
2. - ~ - - -
(2.8) g%- = ain -0 lzcilfixi - a22 xi + o 12 Gzifzixi + C 2 z uixi
I I II IT IIT
oL 2 -1 -2 2 -1 -2
(2.9) 3G - oo iGi fi(a+o ui) + nzcaz iIGZifZi(a2 o ui)
- n30-1 + 0-3 z uf
IIT
2. - -
(2.10) 3L = n (02a+a 1) - Zu, - GZG.lf.
a0, 1 i i ~7i
I I
(2.11) oL 2 -1 -1
LR = n(coc+a)+2u.—cZG.f.
8a2 2 2 72 1T & TT 21721

Although analytical expressions for the second derivatives of L can be obtained
by differentiation, they are rather tedious to write down and to program in the

computer. We therefore recommend the use of numerical second derivatives which
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can be calculated as the rates of change of the above analytical first deriva-

tives with respect to small changes in the parameter values.

Writing 6' = (B',G,a,uz) + we apply Newton's iteration formula
2 -1
(r+l) (r) _ 9L oL
(2.12) 0 - o (——.aeae,] E ]

where the superscript denotes the iteration number and the derivatives are eva-
luated at B(r). For initial values of B and 02 + Wwe may use the least squares
estimates obtained from the observations in group III only. Given these initial

values, we can set (2.10) and (2.11) equal to zero and solve for o and o res-

2
pectively by any univariate iterative method, including Newton's method where the
required second derivatives can again be obtained numerically. The results can

serve as initial values for o and a.,. As the sample sizes n, . n, and n

2 3

incfease, the sequencies of these initial estimators are consistent because they
are obtained by the method of maximum likelihood. One then has the option of
using the solution of only one iteration of (2.12) as a set of linearized maximum
likelihood estimates, rather than iterating until (2.12) converges. Aan asymptotic

covariance matrix of the parameter estimates is given by _ 32L as usual.
2008

3. Half Truncated Normal Distribution for the One-Sided Error

We now assume that for group I the density of ni is twice the density of
a normal random variable with mean zero and variance o for ni > 0 and is zero
otherwise, and that ni and Ei are independent. The sum u, = ei + ni has

. . . . . . 2 \
the cummulative distribution function, with o written as v ,

) ‘ u-n
2 2
(3.1) F(u) = P(ui<u) = 2 e_(n /20) ——£— e-(x /Zv)dx an
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The density function for u, is

2
(3.2) dF (2/m) "5 (veay ™+ 5e™U /2(wHa) .5

du u)

[v2+va]—
where the function G has been defined by (2.3)

If for group II, the distribution of -ni is half-truncated normal with
parameter az » and if the ﬂumbers of observations in the three groups are again
n, » n, and ny respectively, the log-likelihood function will become, with u,

again denoting Y, - xiBi ’

(3.3) L = const. - -5n; In(v+a) - ,5(V+a)'12ui + ZlnG(-Ot'S[v2+voc]-‘5ui)
I I
- .Snzln(v+a2) - .5(v+o, )—lZ u? + 2z 1nG(a-5[v2+va ]-'Su.)
2 mrt oo 2 2 i

- .5n31nv - .Sv_:L X ui
IIT
Using the abbreviations
2 -1 2
5 2 .5 1 ‘%O‘[V Vol Tuy
(3.4) G, = G(=a " [v +val] ° ui) ’ fi = ——— ¢
V2
2 -1 2
5 2 -.5 1 '% Oy v v, ] lui
G2i = G(aé [v +va2] : ui) ’ f2i = — ¢
Al
we can write the first derivatives of L as
(3.5) L = (v+a)-12u.x! - a7 [vi+va] 'SZG lf.x! + (v+a )—12 u, x!
R i“i i 2 i
I I IT
.52 .5 -1 ,
+ o, [v +va2] 2 Gzif2 x! + v~ I ux




(3.6) L sn (vl s .5 (v+a) "2zu? - .50 (vPavo) "5 (ausay 26T e,
ov 1 . 1+ ii
- .5n, (v+o )-l + .5(v+o )-22 u?
2 2 2 i
II
+ .5a55(v2+va2)-1'5(2v+a2)2 G;ifZiui - .5n3v_l + .5v—2 z ui
IT IITI
(3.7 - - -1.5 ~.5. -
( ) L = = .5n_ (v+a) 1 + .5(v+0) 2Zu? + .5v2(v2+voc) 1 su 5ZG.lf.u.
o 1 i i7i i
I I
(3.8) ELL—= - .5n_ (v+o )_l + .5(v+o, )_22 u? - .5v2(v2+va )'1'5a"52 G—}f . u,
Baz 2 2 2 11 & 2 2 IT 2172171

Again we recommend using numerical second derivatives together with the above
analytical first derivatives of I, and applying Newton's method as suggested at

the-end of section 2.

4, Other Distributions for the One~Sided Error

Three other obvious candidates for the distribution of ni having only one
parameter are the rectangular distribution, with density 1/a for (0 < n <o,
the symmetrical triangular distribution, and the one-sided triangular distribu-
tion, with density (2/a) - (2n/a2) for (0 <n <a). A fourth possibility is
to truncate a normal distribution with mean zero and variance 0 not at the mid-
point zero but at a Y percentage point. If Yy is greéter than 50 per cent
(for the right-tail probability), the effect of the random one-sided error will
have higher densities at some positive values than at zero. For these distribu-
tions, and assuming independence of’ ei and ni » one can work out the required

likelihood functions without difficulty.




One simple, and possibly useful, extension of the methods of this paper is
to allow for both random and non-random differences between the three groups
specified in section 1. The random differences are captured by ni. The non-
random differences may be accounted for by introducing additional dummy and/or -
continuous variables and allowing for differences in subsets of regression

coefficients for the different groups, as is customarily done in regression

analysis.
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