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ABSTRACT

We show that every binary and Paretian method for passing
from preference profiles to lotteries over preferences is associated
with a subadditive function on the set of coalitions of individuals.
This function gives the power of each coalition to secure its

preference for any x over any v .

[4

*The idea of studying mixture social welfare functions grew
out of our familiarity with the work of A. Gibbard [2]. 1In fact,
our initial attempts involved trying to obtain a result of the
type communicated here as a3 corollary to his analysis,



INTRODUCTION

A generalization of Arrow's Theorem on the possibility of
social welfare functions [1] is established. Arrow considered
methods for passing from social preference profiles to social
preference relations. Here we study methods for passing from social
preference profiles to lotteries over social preference relations,
This enlarges the set of objects which are permitted to serve as
outcomes of preference aggregation, while at the same time holding
fixed the domain over which individuals have preferences.

Consider the following method for resolving conflict.
Individuals one and two have different preferences. They agree to
flip a coin; if heads comes up one's preferences are followed,
and if tails comes up, two's preferences are followed. There is no
natural Arrowian dictator. The procedure can be forced into the
framework considered by Arrow by requiring individusls to have
preferences over lotteries on éocial preferences. Then, if the
social welfare function is binary and Paretian, there will be an
individual who dictates the social lottery--at least among those
lotteries for which a free triple condition is satisfied. But such
3n analysis does not capture the intuitively neutral quality of
the above procedure.

We adopt the view that admitting as social preferences lotteries
on preferences over the basic alternatives incresses the possibility
for satisfactory preference aggregation. Nevertheless, we will show
that the dimensions of this increase are severely limited, and that
the force of Arrow's Theorem, which obtains as a corollary to the

present analysis, is not diminished. 1In fact, we view the result



as expanding the Arrow conclusion toc cover a somewhat more general
setting. Loosely speaking, we show that to every binary and Paretian
method for passing from preference profiles to lotteries over
preferences (called s mixture social welfare function), there can
be associated a subadditive function on the set of coalitions of
individuals which gives the power of éach coalition to secure its
preference for any x over any other y . In other words, allowing
lotteries as outcomes, while it permits a wide variety of nondictatorial
- procedures, cannot involve "using a2 coin to decide on whose preferences
to follow when some standérd procedure, such as majority voting,
does not work." Rather, it must be associated with dividing up the
dictatorial power in a subadditive manner.

The introduction is followed by four sections and a postscript.
In section one we take up the case of strict (asymmetric) preferences;
indifference is not admitted in either the expression of individual
preference or in the' (mixed) social preference., It is shown that to
every binary and Paretian mixture social welfare function, there
can be associated a2 subadditive distribution of power among coalitions
of individuals which gives the power of each coslition to secure
its preference for any x over any other vy . The second section
extends the analysis to the classical case of preferences which are
represented by wesk orderings. In the third section, Arrow's Genersl
Possibility Theorem is obtained as » corollary to the preceding

analysis, The fourth section is concerned with the method of
proof. Although the result we present represents a substantial
strengthening of Arrow's Theorem, the astute reader will quickly

realize that our proof follows closely the standard proof of that



theorem (see; e.qg., [lj,rpp. 97-100). Briefly, the statement "the
group E can insure x over y" is replaced by the statement "the group
E can insure x over y with probability p"; with this adjustment
the'steps of the standard proofvare followed in turn. This parallel
is developed more completely in the fourfh section. Finally, it is
not hard to show that there exist binary Paretian mixture social welfare
functions that give rise to distributions of.power which are sub-
additive but not additive. Gerard Butters recently showed that the
converse of the theorem is true when the set of alternatives is less
than or equal to 5. Building on the result presented here, Andrew
McLennan demonstrated that, for the case of sié or more alternatives,
every binary and Paretian mixture social welfare function gives rise

to an additive distribution of power, and also that the converse
statement obtains.

I. THE THEOREM FOR STRICT PREFERENCES - NOTATION AND DEFINITIONS

Let A = (x,y,2,...} be the set of alternstives and

N ={1,2,...,n} be the set of individuals. We assume throughout

that A and N are finite and that the number of elements in A
(denoted *#A), is at least three. Let 3 = (B,B',B,...} be the

set of individual strict preference relations (complete, asymmetric,

. n
and transitive binary relations) on A , and (3 ', the n-fold
cartesian product of & » be the set of social preference profiles.

A generic profile is denoted by B = <31’Bg""’Bn)’

A lottery on & 1is a probability measure on @ : i.e., a
function {,:26 - [0,1] such that 4&(p) =0, #( B ) = 1, and
s UT) = &(s) + &T) - UUsNT) forall s, T C & . et L( B)
be the set of lotteries on & ., For x,ved, let B(xpy) =
(Be B :xBy} . For del( B ), let p(d,xBy) = 4 B (xBy)). cClearly,

. n
for all distinct x,y, p({,xBy) + p(4£,yBx) = 1. Given B e ®"Y,

let @(B,xBy) = (ieN:xB.y} .



L,

A Strict Mixture Social Welfare Function (SMSWF) is a function

g: B " > L(B). a swMswr g is binarv if for any x,yeA, and any

two profiles B,B' ¢ B" |

[o(B,xBy) = o(B',xBy)] implies [p(g(B),xBy) p(g(B'),xBy)] .

A SMSWF 1is Paretian if for any Xx,y<A, and any B ¢ G3n',

"

[o(B,xBy) = N] implies [p(g(B),xBy) = 11 .

Finally; the real-valued function £ defined on subsets of X is

subadditive if f£(sUT) < £(s) + #(7) for al1l s,TCx .

THEOREM 1
Given any binary and Paretisn SMSWF g, there exists a sub-

additive function ug:eN - R, such that

(1) u (o(B,xBy)) = p(g(B),xBy),

for 211 B ¢ B" and x,yeA; furthermore,
= 0

(2) ng(H) ,

(3) ug(c) + ug(N-C) = 1, for all cC N, and

(L) ug(c) > ug(C'), whenever c'C C .

The proof of the theorem follows two lemmas,

Lemma 1 (Neutrality)
Let g be a binary and Paretian SMSWF. Then for any

g,?'.e QBn, and x,y,z,wed,

(5) [e(B,xBy) = ®(B',zBw)] implies [p(g(B),xBy) = p(g(B'),zBw)] .



Proof of Lemma 1

If m(g,xBy) = N, then p(g(g),xBy) =1 = p(g(?'),sz) since g
is Paretian. A similar argument applies if m(g,xBy) = ) . Assume
now that @(g,xBy) is a proper subset of N. We show first that

the Lemma holds when x = z . The proof when y = w 1is identical.

A
Let B be 3 profile such that

xBijjw for j ¢ o(B,xBy), and
yijBjx ~ for j e o(B,yBx) .

Since g 1is Paretian, p(g(B,yBw) = 1. Thus,
A ~
(6) p(g(B),xBw) > p(g(B),xBy) .
Consider now a profile B . such that
xﬁjwﬁjy foy j e o(B,xBy), and
ijyﬁjx for j e o(B,yBx) .

Since g is Paretian p(g(B),wBy) = 1; thus,

p(g(B),wBx) > p(g(B),yBx). Therefore,

(1) p(g(B),xBy) > p(a(B),xBw).

From (6) and (7) and binarity of g , we conclude
p(g(g),xBy) = p(g(g'),ka) 2s was to be shown.

Consider now the case x,y,z, and w distinct, or x,y,w distinct
and y = z. (The proof for w = x is identical to the proof for

Y = 2.) Let B be a profile such that



xﬁjzgjyﬁjw for j ¢ o(B,xBy), and
ijyﬁjzgjx for j ¢ o(B,yBx) .

(If =z = replace the middle B.'s with equalities.) Since the
Yy p 3

lemma holds with x = z,

(8) p(g(B),xny) p(g(B),xBw) .

Since the lemma holds with Y = w,
(9) p(g(B),xBw) = p(g(B),xBw) .

From (8), (9), and binarity of g, we conclude that

p(g(B),xBy) = p(g(B'),zBw), as was to be shown.

With Lemma 1 proved, it is natural to define the function
ug:2N - R promised in the Theorem by ug(c) = p(g(?),sz), where
z and w are arbitraéy distinct alternatives and E is any profile
such that @(g,sz) = C . Lemma 1 and binarity guarantee that

pg(c) is independent of the choice of z,w, as well as the position

in B of alternatives other than =z and w

~

Lemma_2 (Nonperversity)
Let g be a binafy and Paretian SMSWF., Then, for any

X,yeA and any B,B' ¢ [B" ,

(10)  [o(B,xBy) Do(B',xBy)] implies [p(g(B),xBy) > p(g(B'),xBy)].



Proof of Lemma 2

Since g is Paretian, (10) holds when o(B, xBy) = N .
Thus, it is sufficient to show that, it holds when
#o(B,xBy) £ n, and fo(B',xBy) = #o(B,xBy) + 1 . Let

(i} = ®(§§xBy) - m(g,xBy) . Consider § such that for some z
xﬁjyﬁjz for 4§ ¢ m(g',xBy) - (i},
yﬁjzﬁjx for 4§ e m(g',yBx), and
yﬁixgiz .
By neutrality and binarity of g
(11) p(g(B),xBz) = p(qg(B'),xBy) .
Since g is Paretian p(g(?),sz) = 1; thus,
(12) p(s(B),xBz) > p(q(B),xpy) .

From (11), (12), and binarity of g , we conclude that

p(g(B'),xBy) > p(g(B),xBy) as was to be demonstrated.

Proof of Theorem 1 (A remark of G. Butters showed that one-third
- of an earlier proof was unnecessary. )

It is clear from the definition of My which follows Lemma 1
that hgy Satisfies (1), (2), and (3) of the Theorem. Lemms 2
guarantees that (L) is satisfied. It remains to show that Hg
is subadditive. Because of (2), (3), and (L4), it is sufficient
to show that for all disjoint and nonempty C, @nd C2 which do not

exhaust N, ug(c1 ch) < ug(cl) + ug(Cg) .



Let B be a profile such that ) 8
xBiya.z- for 1 € Cl,
- 1 s
yBiZBi“ | for 1 ¢ C2, and

- . [
.XB. = N - A .
zB,xB;y for i e C3 ) (C1~J C2)

1
Then, .
p(g(B),xBy) = ug(c; U c,)
e(a(B),¥Bz) = u(c, Uc,)
p(g(E’)JXBZ)‘: p‘g(cl) .

The set of rankings where x appears over y and y over z

will get at least probability

s

pg(Cl LJC3) + pg(Cl(J Cg),- 1 under the lottery g(g) . Thus
p(g(B),xBz) = po(c)) > u (e, Ucy) + n(c U c,) -1, or
1> ple, U ;) ug(Cl’J c,) - ug(Cl)'

Thus, 1 2 1 —}ﬁgicz) +/A§(C1L)C2) ‘)&é(Cl), which gives the result.

II. - EXTENSION TO THE CASE WHERE PREFERENCES ARE REPRESENTED BY
WEAX ORDERING
NCTATION AND DEFINITIONS
As in the previous section A is the set of slternatives and
N is the set of individuals. TIet & = {R,R",...} be the set

of individual preference relations (complete, reflexive and transitive

binary relations) on A, and R™ the n-fold cartesisn product of &,
be the set of social preference profiles. A generic profile is
denoted by R = (Rl’R2""’Rn) - B lottery on £ 1is 3 probability
measure on d{ . Let L(fﬁ) be the set of lotteries on #{ .

Given R e ¥ , let the associated strict preference B a2nd

indifference I relations be defined as usual.



For x,yeA, let f (xRy) = (Re & sxRy} ,

R (xBy) {(Re f{ :xBy) (Re R :xRy and not YRx}, and

R (x1y) (Re R :xIy} (Re_ﬁ_ :XRy and yRx]} .

For f£eL( A ), 1et p(L,xRy) = £( R (xRry)) R

n

o(£,xBy) = 4 R (xBy)), and

p(4,xIy) = L R (xIy)) .

Clearly, for all distinect X,y ,

p(€,xBy) + p(4,yBx) + p(L,xIy) = 1 = p(L,xRy) + p(4,yBx) .

Given Re £ B » let o(R,xRy) {ieN;xRi.y} s

(R, xBy) [ieN:xBiy}, and
o(R,xIy) = {ieN:iny]

A Mixture Social Welfare Function (MSWF) is a function g: ® N - L(R).

A MSWF is binary if for any X,yeh, and any two profiles R,R' ¢ ® 1 ,

[o(R,xBy) = o(R',xBy) and o(R,yBx) = o(R',yBx)] implies

[p(g(R),xBy) = p(g(R'),xBy) and p(g(R),yBx) = p(g(R'),yBx)]
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A MSWF is poretian if for any x,yeA, and any R e K" |
[o(R,xBy) = N] implies [p(g(R),xBy) = 1] .

THEOREM 2
Given any binary and Paretian MSWF g, there exists a subadditive

function uggzN - R , such that

(152)  u (o(R,xBy)) < p(g(R),xBy)

for all R ¢ ifn and x,yeA ,

and
(15b) tg(®(R,xBy)) = p(g(R),xBy)
for a1l R e # ™ and x,yeA such that
@(B,xly) = P fufthermore,
(16) ng(9) =0,
(17) ug(C) + u (N-c) = 1, for all ¢ ¢ 2%, and
(18) ug(c) > pg(C'), whenever C'C ¢ .
The proof of Theorem 2 follows a Lemma.,
Lemma 51

Let g be 2 binary and Peretian MSWF. Then, for all R ¢ -
and all x,yeA,

[o(R,xIy) = P] implies [p(g(R),xIy) = 0] .
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Proof of Lemma_ 3

Consider any profile R' ¢ i{n such that, for some z e A (x#zfy)

and all i ¢ N,
(xBizBiy) if and only if (xBiy), and

(zBinix) if and only if (yBix) .

Since g is Paretian, p(g(g'), zBy) = 1. Thus,

(19) p(g(R"),zBx) > p(g(R'),yBx) + p(g(R'),yIx) .
Choose 5“ such that, for all i e N,

(xB;yB;z) if and only if (xBiy), and

(yB;zB;x) if and only if (yBix) .
Since g is Paretiap, p(g(B"),sz) = 1. Thus,

- (20) p(g(g"),i§2) > §(g(§"),sz) 2 p(g(R"),xBy) + p(g(R"),xIy) .

Since g is binsry, (19) and (20) vield
(21) 1 = p(g(R'),2zBx) + p(g(R'),xRz) > e(g(R),yBx) + p(g(R),xBy)
+ 2p(g(R),xIy) .

Since 9(9(5),y8x) + p(g(R),xBy) + p(g(R),xIy) = 1, and

p(g(R),xIy) > O, it must be that p(g(R),xIy) = 0, as we wanted to show.



12,

Proof of Theorem 2

Consider g restricted to B" - (R e RP: o(R,xIy) = P for
. all x,yeA}. By the previous lemma the image of g so restricted
is 3 subset of L( f?). Thus Theorem 1 applies and there exists 3

subadditive function hy which satisfies (1), (16), (17), and (18).

Since g is binary, o satisfies (15b) as well, and to complete
the proof it is sufficient to show that ug(m(R,xBy)) < p(g(R),xBy)

for allRe A/ ™ and a1l pairs x,yeA.
Given any profile R, let R be such that, for some zeA (xfziy),
(xBj Z Bjy) if and only if (xBjy) ,

(yBj x sz) if and only if (yBjx), and

(ijysz) if and only if (ijy) .

¢
Since o(R,yIz) = $ and ?(R,xBy) = o (R,2zBy), we have

p(g(g),sz) = ug(m(g,sz)) = ug(m(g,xBy)) .

Since g is Paretian, p(g(R),xBz) = 1 . Thus

p(g(R),xBy) = p(g(g),xBy) > p(g(g),sz) = ng(o(R,xBy)) .

III. THE GENERAL POSSIBILITY THEOREM AS A COROLLARY

A Social Welfare Function (SWF) w is a MSWF such that for

every R € R " , there exists R ¢ ﬂ? » such that [w(R)J((R}) = 1 .

- A SWF w 1is dictatorial if there exists 3 j e N such that for all

%X,yeA and all R ¢ d? n B

[xBjy] implies [p(w(B),xBy) = 1] .



Corollary (Arrow's Theorem)

If w
satisfying (15)-(18).
such that

Since

e

uw((j]) is positive.

13.

is a binary and Paretian SWF, then it is dictatorial.

By Theorem 2 there exists a subadditive function M,

is subadditive, there exists jeN

Let R be an arbitrary profile

such that xBjy. By (15) and (18), p(w(R),xBy) > O: but since w

is a SWF, p(w(R),xBy) = 1 .

Iv.

PARALLEL WITH THE PROOF OF ARROW'S THEOREM

For simplicity we restrict attention to the case of strict

preferences as considered in II.

Outline of the Standard Proof of
the General Possibility Theorem
~ (see; e.g., [1], pp. 97-100)

Let g be a binary; and Paretian
SWF.
(Al) Let B and x and y be

given, and let C = m(g,xBy).
Write dg(c) = 0 or 1 accordingly
as x is preferred or inferior to
y in the social preference
relation g(?). (We write
xg(?)y, V4 g(?)x, etc.) It is
necessary to show that dg is a
well-defined function on 2N, the

set of coalitions. By binarity,

<

Qutline of the Proof of Theorem 1
and Arrow's Theorem as a Corollary

Let g be a binary and Paretian
MSWF.

(B-S1) Let B and x 2nd y be given
;and let C = m(?,xBy). Define
ug(c) to be the g(g) probability
of the event xBy: pg(c) -
;p(g(g),xBy). It is necessary to
show that ”g is a well-defined
function on 2V, By binarity,
8(5(B), x8y) -

whenever o¢(B,xBy) =

p(g(B'),xBy)
CD(?',XBY).

- Thus, it is sufficient to show
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xg(B)y is equivalent to xg(B')y { that the number ug(c) is independ-
whenever m(g,xBy) = ¢(B',xBy). ent of the choice of x and y; i.e.,
Thus, it is sufficient to show rfof all B,B'e 8" and %,Y,2,WeA,

that the number dg(c) is

P

 [0(B,xBy) = o(B',zBw)] implies
independent of the choice of x and [p(g(B),xBy) = p(g(B'),zBw)].
; i.e., for 21l B,B'.¢ B" and | This is Lemma 1.

x,¥,2,wed, [o EJXBY)=CP( E, zBw) ]

3

implies ([xg(B)y is equivalent

e T ———————— DU

to zg(B')w], This is establishedé

If dg(c) = 1, C is called a
weakly decisive coalition; if

dg(c) = 0, C is called 2 losing

coaliticn,

(a2) It is demonstr?ted that (B-s2) It is demonstrated that
if dg(C) =1lsnd CC C', then if ¢ Cc', then p.g(C) < ug(c'),
dg(C') = 1; alternatively, This is Lemma 2.

c C c' implies dg(c) < dg(c').

(A3) It is demonstrated that (B=-S3) The function Mg is

the union of disjoint losing subadditive; i.e., qg(c) +

coalitions is losing: cNcC' = ¢ ug(C') > ug(c Uc') for al1l

and dg(c)
dg(C tc)
dg(c) + dg(C‘) > dg(c Uc') for

dg(C') = O implies C,C' C N. This is the final

0. Aliternatively, step in the proof of Theorem 1.

all c,c' C M.
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(Ak) The proof of the theorem is (B-S4) (Arrow's Theorem as a

completed as follows. The Corollary) Since g is Paretian,
function dg takes only ug(N)=l. The fact that N is the
the values zero and one. Since finite union of its elements

g is Paretian, dg(N) = 1. The together with (B-S3) implies

fact that N is the finite union ug({j]) > O for some j. Since g

of its elements together with (A3) | is 3 SWF, . ({3})=1, and so by
implies dg((j})=lvfor some 7. (B-82), j is a dictator.

By (A2), j is a dictator.

Finally we observe a further parallel with the Arrow Theorem.
An Arrowian dictator who places x indifferent to Y is not guaranteed
that x will be indifferent to y socially; i.e., if g is binary
and Paretian on M ™ and if "j" is an Arrowian dictator, then for
some 5 it is possible that ijy and yet x is socially preferred
to y. Similarly for the case of binary and Paretian MSWF's:
if a coalition places x indifferent to y it will not in general
be the case that the event xIy will have probability equal to the
power of that coalition. As (153) indicates, any coalition C
(with power pg(c)) can assure x over y with probability at least

Hg(c): however, the probability of x over y may exceed ug(C).

CONCLUS ION
Allowing preference lotteries for social preferences does not
diminish the force of Arrow's Theorem. All binary and Paretian

MSWF's are associated with subadditive distributions of the

dictatorial power.
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