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Optimum Control of Stochastic Differential Equation Systems

Gregory C. Chow*

This paper is a tutorial exposition of the basic techniques of optimal
control for stochastic systems in continuous time and of several important
applications in economics. Its main purpose is to introduce these techniques
to readers who already have some familiarity with the techniques and applica-
tions of stochastic control in discrete time, as can be found in Chow (1975)
for example, but wish to avoid a heavy investment in the highly mathematical
treatments of the subject currently available. The basic idea is to construct
a stochastic model in discrete time and let the time intervals between succes-
sive measurements become very small. For readers already familiar with the
analysis and control of stochastic models in discrete time, we will study con-
tinuous-time models using similar tools.

To begin with, we will introduce a system of linear stochastic differential
equations and study its dynamic properties, applying the notions developed for
a system of linear stochastic difference equations. . .We. 'thén describe the method
of dynamic programming in continuous time, formulate a system of nonlinear
stochastic differential equations and derive Ito's differentiation rule for a
scalar function of stochastic processes which satisfy a system of stochastic
differential equations. The major areas of application of continucus time
models are in economic theory rather than econometric analysis. We will use for
illustration the problem of optimal consumption and portfolio selection over time
studied by Robert Merton (1969) and (1971). Dynamic programming will be applied
to solve this optimal stochastic control problem in continuous time. An extension
of the basic model due to Merton (1973) to explain the prices of capital assets
will be discussed. The next application will be the pricing of stock options

originally studied by Black and Scholes (1973). We will then return to



the control problem of minimizing the expected value of a quadratic loss function

subject to the constraint of a system of linear stochastic differential equations.

As the last application, we will study the problem of optimal exploitation of a

limited natural resource when the probability distribution of its reserves is

unknown.

1. Linear Stochastic Differential Equations

As in the formulation of a system of linear stochastic difference equations,

consider the evolution of a vector time series y(t) from time t to time t+h '

where h need no longer be an integer and, in fact, will be assumed to take as

small a value as we please. A reasonable extension of the discrete-time model is

y(t+th) = y(t) = A(t)y(t)h + v(t+h) - v(t) (1)

where the random residual v(t+h) - v(t) , as in the discrete-time formulation,

is assumed to have mean zero and to be statistically independent through time

whatever the choice of h. If the residual were absent, we could divide both

sides of (1) by h = dt, let dt approach zero and obtain a system of linear

differential equations in the limit. We now have the random term in (1) and need

to specify it further.

For h =1 , let the covariance matrix of the vector of residuals be .

For smaller h , we divide the time interval between + and t+l into n seg-

. 1 . . .
ments of equal length, i.e., let h = o time units. Because the n successive

increments v(t+h) - v(t), v(t+2h) - v{t+h),

--, are assumed to be statistically

independent and identically distributed, the co-variance matrix J of their

sum equals n times the covariance matrix of each increment, implying

Covv(t+h) - v(t)] =

L being the covariance matrix of wv(t+l) -

hZ (2)

8-
™
]

v(t). A vector time series v (t)



whose successive ' differences, however divided up, are statistically independent

is called a stochastic process with independent increments. If, in addition,

the successive . differences are normally distributed it is called a Wiener process

or Brownian motion. It has been shown in (2) that the covariance matrix of the

increment v(t+h) - v(t) is proportional to the time h. This means that the
standard deviation of each component of the vector v(t+h) - v(t) is propoxr-
tional to vh . This property is important Qecause terms involving the squares of
the elements of wv(t+h) - v(t) are of order h and not of order h2 ; they do
not vanish as h becomes very small. As h becomes small, we write h as dt

and rewrite (1) as

dy = A(t)ydt + dv (3)

where E(dv) = 0 and Cov(dv) = z(t)dt. (3) is a system of linear stochastic

differential equations. The covariance matrix I can be a function of t in

the more general case, as we write Z(t) in (3). Since Cov(dv) = Zdt, the co-

. . dv -1 . . .
variance matrix of A is I (dt) which increases without bound as dt

at
approaches zero. Therefore, the derivative %% does not exist and one cannot
divide equation (3) by dt to obtain an equation explaining the derivative %%
av
by ac -
To find the solution y(t) of (3) given y(to) , We divide the time inter-
val between tO and t into n egqual segments at points tl<t2<"’<tn =t

and let the length of each segment be h , which can be made as small as we please
by increasing n. If we define dy(ti) as y(ti+h) - y(ti) or y(ti+1) *~y(ti)

I's _ » .
and dv4ti) as v(ti+l) V(ti) » (1) or (3) implies

It

y(t) [I+A(tn_l)h]y(tn_l) +odv(t J) (4)

1

[I+A(tn_l)h][I+A(th_2)h]y(tn )

-2

)

+ [I+A(tn_l)h]dv(tn_2) +av(e o



By repeated substitutions of Y(tn—z) by y(tn ) , etc., and by defining the

-3

state transition matrix

i-1
q)(ti,tj) = H. [I+A(tk)h] i> 3+l (5)
k=3
@(ti,ti) = I
we can rewrite (4) as
n-1
y(tn) = @(tn,to)y(to) + jzo @(tn,tj_l_l)dv(tj) (6)

which is a solution to (1). Note that by the definition (5) the state transition

matrix satisfies the difference equation

d@(ti,to) = @(ti+l,to) - @(ti,to) = A(ti)Q(ti,to)h (7)

The solution (6) provides a heuristic arqument for the following solution

to the linear stochastic differential equation (3) as h »- 0 ,

t

y(t) @(trto)Y(tO) + ®(t,s)dv(s) (8)

t
o

The integral in (8) involving the stochastic process v(s) is a stochastic

integral. Following Ito, a stochastic integral of é“deEefministic or stochastic
function £ is defined as the limit of the sum

t

n
£(s)dv(s) = lim z

£(e,) Iv(t, ) - v(t.)] (9)
nvw § 3 J+1 J

1

t
o

where the limit of a sequence of random variables 9, is defined by convergence



in mean square, i.e.,

ling = g > lim Elg ~g|° = o (10)
n~o n->o
This integral has the property that the operations of taking mathematical expec-
tation and integration can be interchanged. If f(tj) in (9) is stochastic,
say being f(v(tj),tj) r it makes a difference in taking the limit whether f(tj)
is weighted by the forward difference v(tj+l) - v(tj) according to Ito or by

the backward difference v(tj) - v(tj_ ) » When f(tj)

1
is a deterministic function, defined as the limit of a sequence of piecewise
constant functions which are constant over intervals (tj'tj+l)’ as @(tn,tj)
in (6), the resulting integral is the same no matter whether a forward or back-
ward difference is taken. An exposition of this point can be found in Astrom
(1970), Chapter 3, Section 5.

It follows from (7) that the state transition matrix @(t,to) satisfies

the differential equation

d<I>(t,to)

T = A(t)@(t,to) . (L1)

In the special case A(t) = A, we will solve this differential equation by
iteration. Let to = 0 , and let the successive iterations be @O(t,o),
@l(t,O), ees « We have @o(t,O) =TI and

t

<I>l(t,0) = I+ A@O(S,O)ds I + At

t

I+ At + A2 £

Il
I

@2(t,0) I+ A@l(s,o)ds



t
2 1
2 t it
o, (£,0) = I+ A@i_l(s,o)ds = IT+A+A ——+ ... +A i
0
As i increases, @i(t,o) converges to
2 3
2 3
®(t,0) = I+ At + A —§—+A —;,—+ = Mt
The solution to (11) is therefore
o(t,t, ) P EE) (12)

2. Mean and Covariance of Solution to Linear Stochastic Differential Equations

To find the mean path Ey(t) = §(t) of the solution (8), we take expecta-
tions of both sides of (8). Interchanging expectation and integration on the

right-side and using Edv(s) = 0 , we obtain

YO = (e )V () (13)

This result could also be obtained by taking expectations of both sides of (3) to

yield

ay A(t)ydt (14)
the solution of which is (13). Thus the mean satisfies the detexrministic diffe-
rential equation (14) after dropping the stochastic term in (3).

To find the autocovariance matrix, we subtract (13) from (8) and consider



followed from t on. (In the notation of Chow ' (1975), this function was

~

written as V.) By the principle of optimality of dynamic programming, we have

V{y,r t) = Max E__, {u(yt,xt,t) * VA, t+1) } (21)

£e

This maximization problem could be solved beginning from period T and proceeding
backward in time to period to. The method for optimization in continuous time
can be derived by letting the time interval h between successive decisions become

as small as one pleases. The above relation for small h is

t+h
Et{f uly,x,s)ds + V(y(t+h), t+h)}

V{y(t),t) = Max
= Max {u(y(t),x(t),t)h + E_V (y (t+h), t+h) } (22)
b4
t

If we let dv(t) denote V(y(t+h), t+h) - v(y(t),t) , the above equation can

be written as

Viy,t) = Max {u(y,x,t)h + V(y,t) + Etdv} (23)
X
&

Dividing through by h = dt, we obtain

1
0 = M;X {uly,x,t) + E, % av} (24)

which is to be solved. To solve the optimization problem thus requires the evalu-
ation of the stochastic differential 4V where V is a function of y and t

and y satisfies a given stochastic differential equation. To evaluate dv,

a differentiation rule developed by Ito will be used. Furthermore, we would need
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to evaluate the expectation Et gt dv. For this purpose, a differential generator

related to Ito's differential for dv will be derived. These are the subjects of

the next section.

‘4, Ito's Differentiation Rule

We will have occasions to consider nonlinear stochastic differential equa-

tions of the form

dy = f£(y,t)dt + dv = £(y,t)dt + S(y,t)dz (25)

where the vector function £(y,t) replaces the linear function A(t)y in (3)
and the covariance matrix of dv may be a function of y and is written as

Z(y,t)dt. If we let z be a Wiener process with RdAt as the covariance matrix
for its increment, we can write dv as S{y,t)dz where SRS' = 7. Formally,
the solution of (2 ) is
t t
y(t) = y(to) + | £(y(s),s)ds + S(y(s),s)dz(s) (26)
t t
o o
where the stochastic integral was defined by (9). Although we may not need to
express the solution in explicit form, we would like to study the properties of
a stochastic process which is a scalar function of Y , as exemplified by the
function V in the last section on the method of dynamic programming. Let
F = F(y,t) be such a function, assumed to be continuously differentiable in t and
twice continuously differentiable in y . We wish to derive a stochastic differ—-

ential equation for F .

We expand the function F in a Taylor series, with h = dt,



where o(dt)

second partial derivatives of F with respect to y by Fyy

dy and noting that dv

(dy)'F _dy =
Y vy Yy

- 11 -

dF = F(y(t+h),t+h) - Fy{t),t)
5F oF) o . 1 a%F
= 3 dt + [5—};] dy + 5'(dy)-'w dy + of(dt)

denotes terms of order smaller than dt.
Ydt , we have

is of order

(@v)'F__dv + o(dt) = tr(F dvdv') + o(dt)
Yy Yy

Substituting (25) and (28) into (27) gives

oF oF

2

[ %%~+ {——} f]d? + i-tr(Fyydv av') + (——] dv + o(dt)

oy oy

implying, together with Edvdv' = % ,

and

varx (dF)

(30) and (31)

E (4F) [ % + [%} £+ 1., (F, T)lat

2

E[AF - E(dF)]>

- L y -1 QE' 2
= E[ > tr(Fyydv av') 5 tr(FyyZ)dt + {By] dv + o(dt)}
_ oF ' 2 —  |oF ' oF

= EI{ﬁ;} dv]” + o{dt) = f5§] Z(ay]dt + o(dt)

provide a justification for Ito's differentiation rule:

(27)

Denoting the matrix of

, using (25) for

(28)

(29)

(30)

(31)
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o feE), fer) .1 lat s+ [2F
dr = [(at} + {ay] f + > tr(FyyZ)]dt+ [ay} av (32)

where F = F(y,t) and dy is given by (25). Note that (32) remains valid if

the functions f and I (or S) have a third argument X, i.e., they become

f(y,x,t) and E(y,x,t). Here x can be viewed as a vector of parameters of

the functions f and X. It can be used as a vector of exogenous variables

or control wmariables for the system of stochastic differential equations (25).

A related concept to Ito's differential dF is the operation

t

lim E [—-‘il =& [Fly,b)] (33)
h+0 ° b

where dF is defined by the first line of (27) and Et is the conditional expec-

tation given y(t). The result gives the expected rate of change through time of

the function F(y,t) as induced by the stochastic process y- The operator dfy

so defined is the differential generator of the stochastic process y(t).

Formally,

it can be obtained by é%—Et(dF) » using (32) for ar i i.e., by taking the ex-

pectation of (32) and dividing the result by dt. This gives

2

R N § 9
of’y[F] = (g +f ay T3 EEE s} IF] (34)

The stochastic differential (32) and the differential generator (34) will

be applied to solve optimal control problems by the method of dynamic programming

in the following sections.

_ 5. Optimum Consumption and Portfolio Selection over Time

The problem of this and the following "section was studied by Merton (1969i 1971),
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and its discrete‘yggsiqn partly by Samuelsop;(1969). At time t, the indivi-

dual chooses his rate of consumption C(t) per unit time during period t

(between t and t+h) and the number Ni(t) of shares to be invested in asset
n

i during period t, given his initial wealth W(t) = ZNi(t—h)Pi(t) and the
1

prices Pi(t) per share of the assets. The prices are assumed to follow the

stochastic differential equations

= o, (P,t)dt + s, (P,t)dz. (35)
1 1 1

|8

where P is the vector of asset prices and zi are components of a multiva~
riate Wiener process, with E(dzi) =0, var(dzi) =1 and E(dzidzj) = pij'
If Ui and $; are constants, (35) describes & . "geometric Brownian motion"
hypothesis for asset prices. If there is no wage income and all incomes are
derived from capital gains (dividends being included in changes in asset prices),
it can be shown that the change in wealth from t to +t+h satisfies the budget
constraint

n

daw = L N, (t)dp, - c(t)dt (36)
g 1 i

Iet wi(t) = Ni(t)Pi(t)/W(t) be the fraction of wealth invested in asset i ,

with Zwi = 1. We substitute (35) for dPi in (36) to obtain

i
n n
aw = Iw.Wo,dt - cdt + Yw.Ws.dz. (37)
i i i TiT7i
1 1
th . ,
If we assume the n asset to be risk-free, i.e., s =0 , and denote the

n
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instantaneous rate of return an of this asset by r , we can write (37) as,

with m = n-1 ,

m m
aw = Zw, (a,-r)Wat + (XW-C)dt + Iw.Ws.dz. (38)
M 1 i

The endogenous or state variables of this problem, corresponding to the vec-
tor y of the previous sections, are W and P. They are governed by the sto-
chastic differential equations (37) and (35) which correspond to (25) when the
vector of control variables x is added to the arguments of £ and S. The con-
trol variables are C and w = (wl, ceay Wn)' , with ;Wi = 1. The problem is

1
to maximize

T
EO u(c(t),t)at + B(W(T),T)
o)
where U is the utility function and B is the bequest function. This model
assumes that assets are traded continuously in time and that there are no trans-

action costs in trading. The latter assumption is unrealistic, but we will con~

sider in section 7 a consequence of dropping this assumption. .

We apply the method of dynamic programming to solve this problem. By the

result of section . 3, this amounts to solving equation (24), which, using the

differential generator aﬁy of section - 4, can be written as

e max {uc,t) +& vy, )1} = o (39)
C(t) ,w(t) Y

Thus the optimum policy for C(t) and w(t) will be found by solving (39).
Using (37) and (35) as stochastic differential equations for (w,p) = vy,

and (34) for the operator ;Ey r we find
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n n
av ov oV
L Wy, t)] = =X+ [Tw,0.W - C] =~ + Zo.p. I
v ' ot 1+ i ow 1 i BPi
nn 2 nn 2
+ % rio, .w.w.w2 _a__g + é— ZZPiP.oi. Eg—g—P—— (40)
11t oy 1ty
nn 2
+ T3P WO, -———82 gw
B ]

where O,, = p

..S.S.. We perform the maximization (39) by
1] ij 1]

differentiating with respect to C and w the Lagrangian expression

n
L = u(c,t) +4 [V] + Al1-Zw.] (41)

and obtain the first-order conditions, with subscripts denoting partial deriva-

tives and V. 82V/8Pj8W ’

jw
LC(C,W) = UC(C,t) -V = 0 (42)
5 n n
L. (c,w) = w'v _Xo, W, -~ A+ WV. O, + WIP.O. .V. = 0]
w. ww, kj j - w k Jkj aw
k 1 1
(k =1, ..., n) (43)
n
L)\(C,w) = 1- Zwi = 0 (44)
: 1
Equations (42) - (44) can be solved to obtain the optimal C and w as functions

of the partial derivatives of V. These functions can be substituted for ¢ and
w in (40) and, by (39), we need to solve the resulting partial differential equa-

tion U(c,t) + i;[v(y,t)] = 0 for the function V(y,t).
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6, Consumption and Portfolio Selection When Asset Prices are Log-normal

Interesting results can be obtained for the special case when the asset pri-
ces follow a geometric Brownian motion, i.e., when ui and si in (3) are
constants. In this case, current prices P provide no information on the rela-

tive rates of change in the prices according to (35) and the maximum expected

future utility V is a function of W and ¢t only, and not of P. The terms

involving Pi drop out in (40). (42) and (43) become respectively

UC(C,t) - Vw = 0 (45)
2 n
W vwwickjwj - A+ vaock = 0 (46)

Defining the inverse function G = [Uc]_l » we solve (45) to obtain the optimum

consumption

c = G(Vw,t) (47)

To obtain the optimal portfolio w , we solve (46) and (44) for w and X ,

or solve
- r - ~ -
(013 91 - 0y, 1 V1 %y
. w o)
2
. v 2
° = _.—_.Vi_. * 48
: WV : (48)
ww
cnl O'112 tte Gnn 1 “n __qh i
_11...10__uj [1 ]
where WU = _A/WZVQW' By partitioning the bordered matrix in equation 48, we find

the first n rows of its inverse to he
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(49) .

ot o™ o faeth et et o) L. et @ty 5ot
- - - _ i-.-l s I!"l E
il o) (2™ @e®) ™) ... ™) (2 ], o™
where (c5..)'-l = (Oij) and T = Z50°J). Therefore the optimal portfolio rules are
ij 13
" K& 1,0 kg0 Ri. 0 Vwo o1l ki
" = X[ =T (2077) (20" )1 =— 0,1 + I “Zo
k . . wv 2 .
% | i ww 3
“1.kj Vw k4 “1o Koo R4
= I 78077 = —— [0 0, - T 20 'Iioo "a,l
. Wv '3 . . L
j w4 j 4
= hk + m(W,t)-gk (k =1, ..., n) (50)
where we have defined
n, = I (51)
j
A\
m(w,t) = - WV—W (52)
wwW
g = 309, - I ieretiag (53)
k . 3 . 2
3 2i
n n
implying §hk = 1 and §gk = 0.
The first component h of the optimal fraction W invested in asset k

k k

in the k!
ap.

P,
J X3
is a weighted average, using o

. . k3 .
is proportional to the elements O J row of the inverse of the cova-

riance matrix of the relative rates of returns stipulated by (35). The fac-

in the second component of

tor X as

B

weights, of the difference between the expected rate of return aj for asset j
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- 24
and the average expected rate of return r 1%%0 1a2 for all assets. If the cova-

riances Oij were zero for i # 3 , = would become G;i[ak - Eciiaﬁl , thus
measuring the expected rate of return ak for asset k as compared with the
average expected rate %O‘;iaz for all assets. The first component hk recom-
mends investment proportional to the inverses of the variances and covariances.
Since Vﬁ >0 and VWW < 0 for maximum V , m(W,t) > 0 by (52). The second com-
ponent m(W,t)gk recommends investment in asset k proportional to the expected
rate of return ak for k (and to the expected rates aj for other assets cor-
reiated with it), as compaféd with thé average exéected rate for all assets.

The factors hk and g, are determined entirely by the means, variances,

and covariances of the relative rates of returns of the assets, and not by

the utility function, the amount of wealth, and the time horizon. m(W,t)

certainly depends on the wealth and the utility function of individual i

making the decision.

Since an individual's relative demand W for the k h asset has only

one parameter m(W,t) which is affected by his wealth and his utility func-

tion, the demand can be satisfied by selection from shares of only two "mutual

funds," the first holding a fraction Gk of its value in asset k and the

second a fraction Ak , with

Gk = hk + (a—b)gk (k=1, ..., n)

(54)
A = hk - bgk (k =1, ..., n)

where a and b are arbitrary constants. Any value of m(W,t) for an

individual can always be met by a suitable linear combination of Gk and Ak ’

i.e., by
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m = 8 (a~b) + (1-8) (-b) fa - b

or by investing a fraction © = (mitb)/a in the first fund and the remainder

(1-9) in the second fund. This is. known as a mutual fund theorem.

if the nth asset is riskless; s, = o, an = r and equation (38) re-
places (37). We need only to solve for m = n-1 optimal control equations
for . , k=1, ..., m , with ﬁh =1 - ?Gk' The Lagrangjan multiplier in

(41) and (46) disappears. In our derivations, m replaces n , (ai—r) re-

places 0y and (48) becomes

r 17 7] © o~ -
A Wy oy r |
W2 o —Vﬁ az—r (55)
o . ST wv .
. wwW .
-O'mlO'mz... CTmm- -Wm_ _Ol.m'-r—
the solution of which is
Wy = m(W,t)gk (k =1, ..., m) (56)
where
m .
k3
g = X 0 “[o.-r] (k =1, +¢e., m) (57)
k =1 3

To satisfy the demands Qk for any individual, there need be only two mutual
funds, the first holding a fraction 6k = (a—b)gk of its value in asset k
(k =1, ..., m) while the second holding a fraction Ak = -bgk. To achieve any

m(W,t)gk desired, the individual again invests a fraction 06 = (mtb)/a of his

wealth in the first fund. We can let b = 0 , so that the second fund holds only
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the riskless asset n and no risky assets. Thus only one mutual fund holding the

m 3 .
risky assets by proportions ag, - with k_Z_Ilagk =1 , and a second fund holding
only the riskless asset will satisfy the demand of any individual.

Let the nth asset be money, with r = 0. The relative holdings of the

risky fund are, by (57) .

n ki
= = X Q. k=1, «.., m (58)
Gk ag, aj=10 5 ( ' ’
. m k3 -1 . .
where, to insure ) ag, = 1, a= (ZXo uj) . The holdings (58) are in agree-

ment with the traditional Tobin-Markowitz mean-variance analysis. We find the

portfolio & = (61, ey 6m)' for the fund which minimizes the wvariance
02 =48'z6 of the rate of return for a given mean rate of return m = §'a ,
with o = (al, cees am)', yielding a function G(m). In the (m,0) diagram,

if we draw a line going through the origin and tangential to the curve O(m) ,
we will find the portfolio & given by (58).

The above mutual fund theorem and generalization of the mean-variance port-
folio analysis were obtained without using a specific form for the utility func-
tion and without deriving the function V(y,t) explicitly. The reader is re-
ferred to Merton (1969) and (1971) for explicit solutions of V(y,t) and for further
discussions of‘ the economics of this problem, and to Rosenberg and Ohlson (1976) for
a critique of the assumption that the rates of return are stationary and serially

independent.

7. Capital Asset Pricing With Shifts in Investment Opportunities

One variation of the model of section 5 suggested by Merton (1973) is to
introduce a new vector X = (xl, ey xN) of N state variables to replace the

vector P of asset prices. X may include all, some or none elements of P.
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It may include the parameters ai in equatién (35) which will themselves be as-

sumed to satisfy the stochastic differential equations
do, = a,dt + b,dq, {59)
i i i™i

where dqi are Wiener processes with unit variance. Let us write the stochastic

differential equations for the elements of this new vector as

ax, £, (XAt + gF(X)dg; (i=1, ..., N) (60)

Let E(dq dz ) nij and E(dq dq ) = v, i ! dzj being defined for (35), with

E(dz dz ) = pij' We further let the nth asset be "instantaneously riskless"
in the sense of s, = 0 and an = r(t) in (35), but bn # 0 in (59) for
do,. = dr.

n

Assume that each individual maximizes utility over time as in section 5.
The present variation, with y = (W,X) , leads to a slight modification of (40) ,
v

. m N
3%t {[§2_wi (oci—r) + rlw - ¢} v+ %fivi

1

£y [V(y.t)]

p Mo 2 1 W
+ = XX0, w.w.WV_  + —-ZZg g¥v. .V, (61)

2 11 13173 ww o 2 11 175713 i3

N m

+ Z ) 95 *w . Ws.T. .V,
i=1 j=1 1737340 v

where m = n-1 as before and Vi denotes partial derivative with respect to
the 1i~th element of X. Equation (43) becomes

m N

+ - +
WV :ZLoka v, (oc r) igjsknJk v

= 0 (k=l, ooy m) (62)
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The solution of this linear system of equations for vy yields

m m N .
k
W = AZX dk (al ¥y + = % ngjsln ;0 + (k
i=1 i=1 j=1 J

]
=
~

ceay, I) (63)

= - . = =V, . The first term of this demand function
where A Vh/vww and HJ Vﬁw/wa e

is the same as given by (57). To interpret the second term, note that VW = Uc
oC _ . .
by (42) and hence v&w = Ucc ™ and vﬂw = Ucc ij , implying
_ oC aC
Hj = axj aW ( 64)

If the j—th state variable has a negative or "unfavorable" effect on consumptlon

. aC . . '

— L
i.e., i o, Hj will be positive. Since (g slnjl) is the covariance
between dxj and dP. , the expression H] Z (g; i Jl)ckl measures the invest-

ment in asset k to hedge against the unfavorable effect of state variable Jj
acting through its correlation with Pi for all i=1, ..., m
Consider the special case when the vector X of state variables consists

only of o =r which affects the mean rates of return ai(X) of the assets

i=1, ..., mi. (63) becomes
m m
ﬁkw = azd" (a -r) + H_ %L Cov(dr,dpP, /P)O
i=1 fi=1
= Agk + Hrdk k=1, ..., m) (65)
A m/\
and W o= 1- Zwk , where I and dk are independent of the individual's utility
1

function and wealth. (65) is a generalization of the asset demand functions (56)-
{(57). Since there is an additional term Hr which depends on the individual's

utility function and wealth, any individual's demand can be satisfied by three
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mutual funds. Let the first fund hold a fraction 6k = agy of its wvalue in asset

k, k=1, ..., m. Let the second fund hold only the "instantaneously riskless"

asset n. Let the third fund hold a fraction cdk in asset k. The demand func-

tions (65) for any individual will be satisfied by investing proportions 6., ,

1
(1—61—93) and 63 in the three funds respectively, where
A Hr
Biagy + 054 = TRt § % k=1, ..., m

or 61 = A/Wa and 63 = Hr/Wc. Summing the above equations over k , we get
6, + 05 = ?ﬁk = l—ﬁn , which insures that the demand ﬁn for the "instantaneously

riskless™ asset n can be met by investing the remaining proportion 1—61—63 of

the individual's wealth in the second mutual fund. Comparison of (63) and (65)

shows that if thef; are two state Variabies.shiftihg the mean rates of return

or investment opportunities which one would wish to hedge against, i.e., N =2
in the model, there will be one extra term in (65) and four mutual funds will be
required.

This analysis provides a theory of mutual funds. The first type of funds

holde a portfolio dk proportional to in the demand function (65). The

%
second holds an instantaneously riskless asset like a short-term government bond.
Each of the remaining funds holds a collection of capital assets to hedge against
one type of contingencies. If there were no transaction costs, the individual
could make up the collection himself. Since there are transaction costs, each

fund provides a service in offering the required collection of assets.

This analysis also provides an equilibrium theory of market prices of the m

capital assets, interpreted as securities of m firms. TLet the demand functions

(65) for asset k by individual i be written as
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alq + u'a k=1, ..., m) (66)

I k

i i 0 g i
of = atzoY.-r) +H d
=1 i

The market demand for the asset of firm k is the sum of above over all indivi-

duals i, i.e.,
i i i
D = ZDk = (?A )gk + (EH )dk = Ag + Hdk (67)

If we redefine w to be the ratio of the value of the assets of firm k to the

k
total market value M of the assets of all firms, then in equilibrium Dk = wkM.
Given Dk = wkM , we use (67) to solve for the equilibrium expected rates of re-

turm o for assets k , noting 9 = _?lokj(uj—r) in (67). The solution of these
j:
linear equations is

} m H m .
Yw.0,, - — X d,0 . k=1, ..., m (68)
j=1 7 ki A j=1 3 kJ

WQ
1
M
i
~—
=

which provides an explanation of the expected rate of return of an asset k.

Since ijokj is the covariance of the (instantaneous) rate of return of asset k
J

and the aggregate of the rates of return of all assets in the market (i.e., the
aggregate rate of the market portfolio), this covariance being known as the "beta"
of the kth asset in the finance literature, the first term of (68) requires a
higher expected rate of return for asset k insofar as its price change varies
with those of the entire collection of risky assets in the market. Recall that

dj represents the portfolio of the third mutual fund which can be used to hedge
against the shifts in expected returns. §d.0 . is thus the covariance of the rate

Jkj

of return for asset k and the rate for this fund. The second term of (68) jus-

'fifiés a lower expected rate of return for asset k insofar as it sexves the

hedging function provided by the third mitual fund. For furtheyr discussion of

equilibrium capital asset pricing, the reader may refer to Long (1974) .
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(72) and (70) vield the differential equation for w(P,t)

2

The solution of (73) will give the function w for the pricing ot call optionms,
The boundary condition of this problem is wP,T) =P - ¢ for P > c and
w(P,T) = 0 for P < ¢, c being the exercise price.

As pointed out by Cox and Ross (1976), the solution can be Obtaingd“altgrnatiyely

by assuming that there exist risk neutral investors, so that the price of the

stock will follow (69) with o = r. The option price at time t will be its

expected price at time T discounted back to ¢, namely,

-r (T-t)
e

w(P,t) Ew (P, T) (74)

Let X = &nP. Using (69) and Ito's differentiation rule, we have

2 .
P 2
ax = | 299F yp  Ldlogp 2.2 1, | dloge sPdz = (¥ -2s°|dt + sdz (75)
dp 2 2 dap 2
dp
Given Xt = logPt + (75) implies that the distribution of XT is normal with

mean X, + (r - %1;2)(T-t) and variance sZ(T—t) - The price of the option at

time T will be zero if PT < c, and it will be PT - c if PT > ¢. Therefore,

the expected price of the option at T 1is

Ew(P,T) = (P, - c)pdf(PT)dPT (76)
C
where pdf stands for the probability density function.

Since the pdf of XT = log PT is normal with mean and variance given
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above, (76) can be written as

® ) [* -x,_ - (r-g'-sz)(T—t)]2
X 1 1 t 2
Ew(P,T) = (" - c)———— exp -3 > dx (77)
V2T s VT-t s (T-t)
log ¢

Substituting (77) into (74) and simplifying, we obtain the solution

1 2. 2
[xxX, -{(r+<s” Y (T-t)]
w(P,t) = e—r(T_t) 1 exp -%n t 22 + xt + r(T-t){dx
V2T s VT-t s (T-t)
log ¢
o o]
rmt) L , DX (- %—sz)‘. (T-t) 72
- e c |- exXp{ —=- dx
V2T s /Tt 2 SZ {m=t)
log ¢

1 2
fnlp /cl+r +2s I[T—t]]

1 2 \
—r(T—t)N ln[Pt/c]+[r-Es 1iT-t]

ce
W= ) | SVt

= PtN

- (78)

where N stands for the cumulative unit normal distribution function. Black

and Scholes (1973) have pointed out that by considering corporate liabilities as

combinations of options, the pricing formula (78) can be applied to corporate

liabilities such as common stock, corporate bonds and warrante.

9. Optimal Control of a Linear System with Quadratic Loss

The continuous-time version of the optimal linear-quadratic

control

Problem assumes a linear model

dy = A(t)ydt + C(t)xdt + dv (79)

where dv = Sdz has covariance matrix Xdt = ss”at, =z being a multivariate




- 28 -
Wiener process with Idt as its incremental covariance matrix, and a quadratic

loss function

1 - -
W(y,x,t) Ei(y-al) Kl(t)(y—al) + (x—a2) K2(t)(x—a2)]

1 . - 1 . 1 1
= S YKy-yKa +=xKx-x~ = al =al
2 ¥ " T Y RE P EKx - XA, + 5 aKatyaika,
= 2yRyY - vk, +Ex ’
5 Y ly vy 1 > X K2x X k2 + d(t) (80)
The problem is to find
T 1
Viy,t) = ‘M§n E, [ W(y,x,t)dt + E-y‘(T)KOy(T) - y’(T)kO + 4, (81)
t

Applying the optimality condition derived from dynamic programming as stated in

(24) we have
Min {*}ry'Ky— K+ ExKx-xk +d+L Vi, El} =0 (82)
- 2 1 Y% T3 2 2 gtV Y

We use the differential generator (34) for .ﬂyﬂ,] in (82) to obtain

- 2
NN 1o L AV 4 (V) 1 Vv _
M;n{zy Kly N kl+2x K2x x k2+d+3t . (By) at)y+c(t)x] + Ztr ZW } =0 (83)
_

Differentiating the expression in curly brackets with respect to x vyields

which implies the optimal control equation
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- xler Xyt (84)
x = =K, CT gt KKy

When (84) is substituted for x in (83), we have

Y~ y -
1 . 1lov| -1 .13V |__~ L R N ™
Sy Ky-3 5| K S gy | TY Rt By | T2 2T e 2 2
v )A +iee| z v | W (85)
td+ G Y T dyoy ot

The partial differentiation equation (85) is to be solved.
From knowledge of the solution for V in the discrete-time formulation of

this problem, let us txy the quadratic function

v = -;-y‘H(t)y- g h(t) + c(t) (86)

The appropriate derivatives of (86) can be substituted into (85), giving

-1 -1

1 o
> + y“HCK, k

1 .1 . - DRI BIPUN RPN, BN
2yKly 2yHCK2CHy+yHCK2Ch 2hCK2Ch ykl 5 Ko
- -1 l }"'l l - lll;’ - l
hCsz2 2k2k2k2+d+2yHAy+2yAHy—hAy+2tr(ZH)
_ 1| .dn_ do
= 27 dtjy+ydt at (87)

(87) implies the following differential équations for H, h, and c,

_l; -
ac —Kl—HCK2CH+HA+AH (88)
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dh _l - - -1
I - HCK2 Ch-Ahw kl + HCK2 k2 (89)

de 1, . -1 . . =1 1, ..-1 1
T 2h CK2 Ch + h CK, K, +2k2K2 k2 -d —Etr(ZH) (90)

These differential equations are to be solved with the houndary conditions

H(T) = KO, h(T) = ko and ¢(T) = do. Having found the parameters H(t), h(t)

oy

and c(t) of Vv, we can evaluate 5y for the optimal control equation (84) as

H{t)y - h(t).

10, Optimum Use and Exploration of a Natural Resource

A classic paper of Hotelling (1931) deals with the optimum rate of consuming
an exhaustible resource over time when the total reserve of the resource is known.
This section attempts to find a solution to the optimum use and extraction of an
exhaustible resource when the amount of the reserve is unknown.

In the certainty case, let =x(t) be the rate of consumption and vy (t) be

the known stock of reserves at time +t. The differential equation is
dy = - xdt (91)

Given a utility function u(x,t) the problem is to find

T
V(y,t) = max J u(x,s)ds + B(y(T),T) (292)
x
t

By the method of dynamic programming, we need to solve
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, v v
A A = 93
max { u(x,t) + e T X 5y 0 (93)
X
Differentiation yields the first-order condition
Ju oV
_— = AN 94
ox Y (94)

which equates the marginal utility of consuming the resource at each point in

time and the shadow price of the stock of reserve. Denoting the function

g§-= ux by G(x,t), we write the solution of (94) as

-1 a_v

-1
X = G ( 5y

r ) G~ (V. ,t) (95)
y

]

When (95) is substituted into (93), the resulting partial differential equation
can be solved for V(y,t).
. -pt 1 2 \ .

To illustrate, let u = ¢ (x - E—Bx ). This problem becomes a special
case of the problem of Section 9, with Kl =0, k, =0, A=0, C= -1,

~-pt -pt . .
K2 = e B, k2 = e +» d=0 and ¥ = 0. The loss function W of (80) is -u.
Therefore, if we redefine the function V to measure total expected utility

instead of total expected loss, but retain the definitions for H, h and c, we

change the sign of the right-hand side of (86) :

V(YI t)

- ZH®)Y + WD)y - c(b) (96)

By (88), (89) and (90), the differential equations for 'Hl_vgm_agggﬁg,_are

di _ -1 pt 2
~& = B e H (97)
&o gLy, gl , (98)
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de _ 1 ,1pt2 -1 1 .-1-pt
T = 38, B h + 38 e (99)

The terminal utility is assumed to be

- FY@EY@ 4y - a4y = - Lyl (100)

with Ko = A, kO = 0 and do = 0. We will let )X be extremely large to pena-

lize any non-zero y(T) and to insure that the resource is used up at time T,

The solution to (97) is H(t) = --Bp(ept+oc)-l where o is a constant of
integration. To determine a, we use the condition H(T) = KO = A, vyielding
o = —epT—Bp/l. The solution to (97) is therefore

H(t) = Bp(e”T - &Pt 4+ gosny 7t (101)
Similarly, the solution to (98) is
h(e) =  p(r-t) (ePT -t 4 go/n)L (102)

which satisfies the terminal condition h(T) = ko = 0. Having found the coef-
ficients H(t) and h(t) of the quadratic function V, we can use (94) to

obtain the optimum consumption function
x®© = 87H1+ Py - hw]} (103)

which is linear in the stock of reserve y. The shadow price of the reserve stock
. oV
can be obtained as §§-= h(t)-H(t)y.
The above solution is provided partly to illustrate the method of section 9.
Note, however, that it ignores the restrictions that vy (t) > 0. An alternative

method of solving this problem is to utilize the optimality condition that the

marginal utility of consumption should be the same at all time, i.e.,

l
I
b
]

e Pta - gy (104)
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where k is const nt through time and is chosen to exhaust all the resource at T.

Hence the rate of consumption is

x(6) = g7l - kefY (105)

and total consumption from t to T is
T -1 =1, 0T opt
f x(s)ds = B [T—t—kp (e" " -e )] =  y(t) (106)
t

yielding
T t, -1
k = o - &PY [T—t-By(t)]
and accordingly the optimal consumption function

x(t) = B M1+ PH(e?T - H By - (r-0)]} (107)
T
which agrees with (103). The function V(y,t) can be obtained as f u(x(s))ds.
When the total stock of reserves in the ground is unknown, a si;ple assump-
tion is that it is distributed at random over the surface of the earth, with an
expected number A of hidden reserves per square mile. The reserves are assumed

to take only discrete values. The quantity z to be discovered in n square

miles is assumed to follow a Poisson distribution

f(zll,n) = -—z;ll——— (108)

The parameter ) is unknown.

To provide a model of learning about }, let us consider for the moment that
decisions on consumption and exploration of the resource are made in discrete
time. We assume for analytical convenience that the Prior distribution of At

at the beginning of period t is gamma with parameters Sy and r,
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(time subscript to be omitted when understood).

e—sk Ar—l <

glils, r) = = (109)

The conditional distribution of A given 2z units being discovered in n

squared miles is, by the Bayes theorem,

g0z s, = £ElAngQls,x) (110)
j ﬁumerator(dh
.
The marginal distribution of =z is
Lol z Y e.e]
o ———
or
z r
_ n _ s , (r+z-1)!
flz[s, r, n) = z1 (e-1)! r+z (111)
(s+n)

Note that the function g given by (109) is a natural conjugate prior
density function for the parameter A of the Poisson distribution. The former
distribution has parameters Sy and Ty - After n, square miles are explored

and 2z, units of the resource are found, the posterior density function of A

as given by (110) has the same form, but has new parameters

st+l = st + n, (112)

and

el T Tt E (113)
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Thus Se and r, can be interpreted respectively as the total number of square

miles explored and the total gquantity of the resource discovered up to time ¢t.

The marginal distribution function (111) of 2z , rewritten below, is a negative

binomial distribution

z r
(z+r-1)1 1 n S
z! (r-1)! | s+n s+n

£(z|s,r,n) = (114)

Having considered the problem of resource use and exploration in discrete
time, we will reformulate the problem in continuous time by letting the time
interval h between successive decisions become small. Let xz(t) be the
number of square miles to be explored per unit time at time t. In a small

time interval h, x, (t)h is the number n, of square miles explored; n

t t

is small compared with the total square miles Sy having been explored up to

that point in history. According to (114), the probability of discovering no

resource during the time interval h is

x.h
s ]r xX.h -t 2 —r
P(z = 0) = s+th-— 1+T = [e + o(h)]
2
_§x2h iy
= e + o(h) = 1 - ;—xzh + o(h) (115)

The probability of discovering one unit of the resource during time h is, again

by (114),

r
x2h s

rs’~+xh s + xh
27 2

P(z = 1)

x.h

.2 r
rv S + o(h) l—gx2h+o(h)
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= L xh+ oh) (116)
s 2

Thus in a very small time interval h , the probability of finding no resource

is 1 -

n iy

xzh; the probability of finding one unit of the resource is

(20 L

X2h ;

and the probability of finding two or more units can be ignored. We have just

. r ' R
specified a Poisson process dv with parameter sz= EﬁzavThlS process generates

an outcome "one" with probability A xzdt and an outcome zero with probability

1—Ax2dt during a time interval dt = h if an exploratory effort x is applied.

2

Our model so far has three state variables: the quantity yl(t) of
known reserves in stock, the amount s(t) of land already explored, and the total
quantity x(t) of the resource ever discovered up to time t. The two control
variables are the rate xl(t) of consumption and the rate x2(t) of exploratory
effort. We will replace the second state variable by y2(t) =L - s(t), where
L 1is total explorable land; y2(t) thus denotes the amount of land as yet un-

explored. The state variables satisfy the stochastic differential equations

dy = =x dt + dv

1 1
dy2 = -x,dt (117)
dr = dv
The objective is to find
T
Viy,t) = max Et[ f u(y,x,s)ds + B(y(T),T)] (118)
X t

where y denotes the vector of state variables and x the vector of control

variables.
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Since the stochastic differential equations involve the Poisson process

dv , we will derive the optimality condition for a model of the form
dy = f£(y,x,t)dt + g(y,x,t)dv (119)

where £ and g are vector functions. In the special case of the model (117),

—xl 1
f = X, g = 0] (120)
0 1

By the method of dynamic programming, we need to solve

max {u(y,x,t) + Et(%-dv)} = 0 _ (121)
X
where
dv = V(y(t+dt),t+dt) - vy (t),t)
_ W, (Y
= atdt+{3y}dy+0(dt)
3 8 1 a ]
= 9V ov A4
= 3 at + [ 5y ) £4t + [ oy J gdv + o{(dt) (122)

Note that @&v has probability szdt of being one (or being W in a more
general formulation with W having some given probability distribution) and

probability (1 - szdt) of being zero. Hence
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1 = SV v - £ 123
B (tan = 2, [ayJ £+ A%, V(7 (£)+g,t) - Vig(t), )] (123)

When (123) is substituted into (121) for our model (120), we have

v v v, A%, V(Y +1, y,r T+l, £) - V(y, )1} = 0 (124)

max {u(x,t) + EE-— x1—§§1-— z, 3Y2

b4

We will study a simplified version of the problem (124) by ignoring the third

state variable r which is the quantity of the resource discovered up to t.

. . . r
This state variable helps us construct the estimate )\ = s - . In other

L—y2

words, we are ignoring the possibility of active learning about A in the
future while utilizing only the current value of A(t) as if it would remain

constant in the future. The problem (124) will then become

v v oV _
mzx {u(x,t) + AT Xl 5;;'— x2 5;; + AXZA‘EL} = 0 (125)

" where A\G. = V(y1+l, Yor t) - V(yl,yz,t). Compare (125) with (93).

If u(x,t) = e-ptu(x), p being the rate of discount, and if the planning

horizon is infinite, we can write Viy,t) as e—ptV(y) since the expected total

utilities V for a given inftial state y at two different points of time

differ only by the discounting factor. Substituting e—ptu(x) for u(x,t) and

e Pt V(y) for V(y,t) in (125) gives

oV oV

méx {u(x) - Xy F - X, gg— + )\szvl} = oV (y) (126)

® 1

We solve (126) by differentiation, using subscripts to denote partial derivatives

é%;l = u - Vl = 0 (127)
1
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= u, -V +}\Avl = 0 (128)

Vl and V2 are the shadow prices of the known stock of reserves and of unexplored

land respectively. The price Vl = P of the reserve is equated to its marginal
utility. The price V2 =P, of the unexplored land is equated to the sum of

its marginal utility ul (actually the negative marginal cost of exploration per
square mile) and the expected gain XAVl of discovering new resource. We can

write u(x) as the sum u(xl) - c(x2) where c(x2) is the cost of exploring

X, square miles of land per unit time. The marginal utility ul(xl) is a

decreasing function of X, . Denoting the inverse of the function uy by ull P
the solution of (127) is
X, = u_l(p ) (129)
1 1 1
The marginal cost gﬁ—- = —uz(xz) is assumed to be a nondecreasing function of
2
X, - The solution of (128) is
X, = -u. [-p, + Ap.] (130)
2 T Y TPyt Apy

showing that the exploratory effort x will increase as the price P, of

2
land is lower, as the density A of deposits is higher and as the value Py of
the resource is higher.

To study the dynamics of the prices fdlowing the work of Arrow (1977), we

differentiate (126) with respect to Y, and v, respectively, obtaining

il

“X,Viq - X Vi, + sztvl(yl+1,y2) - Vl(yl,yz)] pv (131)

=XV, ~ X Voo + sz[Vz(yl+l,y2) - VZ(Yl-YZ)] = v, (132)
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In differentiating (126), we treat the control variables Xy and x, as constants.
The reader can verify the results (131) and (132) by treating X) and X, as
functions of Yl and y2v and utilizing the first-order conditions (127) and (128).
Consider the price of the resource at time t+dt. Tt will depend on whether

additional resourde is discovered during the time interval dt since the argu-

ment of the function Vl takes different values in the two cases:

Vl(t+dt) = Vl(y,t) + Vlldyl + V12dy2
= Vl(y,t) - Vllxldt - V12x2dt with prob. (1 - kxzdt) (133)
Vl(t+dt) = Vl(yl+l, y2) with prob. szdt

Using (131) to substitute Ax2[vl(yl+l,y2)$ vl(yl,yz)] - pvl for le11 + x2V12

in (133), one finds the expectation

Vl(t+dt) - Vl(t)

E ET = (1 - }\xzdt)[-xlvll - x2V22]

+ szdt[vl(yl+l,y2) - Vl(ylfyz)]/dt

2
= le + (sz) [Vl(yl+l,y2) - Vl(yl,y2)]dt - szledt (134)

By taking the limit of (134) as dt approaches zero, one finds that the expected
proportional rate of increase in the price of the resource to be the rate of
discount o' . This conclusion generalizes a conclusion of Hotelling (1931) for
the case with known quantity of the exhaustible resource.

An explicit solution to this problem can be obtained if we assume a guadratic

loss function and a finite time horizon T. Equation (125) then becomes
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. 1 ' ' l [ _ ¥
0 = M}J;n {Sy Kl(t)y-yklﬁt) +2xK2(t)x xkz(t) + d(t)
v w ) ,
+ 3% + [ E ] (Ay + Cx) + (AV)'Dx} (135)

(135) is a formmlation of the optimization problem which includes our problem

of exhaustible resource as a special case if we assume

-1 0
K, (t) =0 ko(t) =0 A=0 C =
1 1 0 -1
(136)
Av. V(y+1,y)-V(y ,y)_ 0 A
AV = 1 - 1 2 142 D =
Finding the minimum of (135) by differentiation yields
of |9 . _
N = KX k2+C[8}+DAV—O
which gives the optimal feedback control equation
_ -1 fav} -1, -1

x = -K,"C (ayJ K2 DAV+K2 k2 (137)

when (137) is substituted for X in (135), we obtain

1 1
. 119V -1 B_V I N | ' ..BX.
3V Kly - y'kl - 5{——-} CK C'[ ] -2-AV DK2 D'AV + [ }.

1
v -1
ay 2 oy oy Ay {W} CK2 k2

1]
ol _ [BV -1, N NIE L - _ov
+ AV DK2 k2 5y CK2 D'AV + 4 5 szz k2 = o (138)
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(138) is a partial differential equation to be solved.

From knowledge of linear-quadratic control theory, we can try a quadratic

function for the solution,

vV = %-y'H(t)y - y'h(t) + c(t) (139)

The derivatives and difference of (139) are

oV

2y - - 14
5y Hy - h (140)
AV = Hy - h - hd (141)

where h is a vector composed of the diagonal elements of H , and

d

v _ 1, dn  dh | de
0t T 2Y YTV Ftai (142)

Substituting these derivatives into: (138) and equating coefficients of the

quadratic functions on both sides of the resulting eguation, we obtain

an
dt

Qs
u

de
dat

K, - H(CK;lC' + DK;lD' + CK;lD' + DK;lC')H + HA + A'H (143)

-1

-1,
kl + H(CK2 C' + EK2

D' + CK;lD' + DK;lC')h - A'h

-1 -1 1
+ H(CK2 k2 + DK2 k2 + DK2

' oy
D hd + CK2 D hd) (144)

__].'_l —ll _ Ak _}_ v ' _lv
5 h CK2 C'h - h CK2 k2 5 (h +hd)DK2 D (h+hd)

(145)

-1 -1 -1 . 1 -1
- 1 ¥ - L] - 1 v - — T
k2K2 D (h+hd) h CK2 Ch h CK2 D (h+hd) + 4d 5 k2K2 k2
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By introducing appropriate terminal conditions analogous to the ones given in
the beginning of this section, one can solve these differential equations to
obtain the function VvV of (139).

This section has illustrated the method of dynamic programming as applied
to a continuous time model governed by a Poisson process. It has treated some
useful methods that are applicable to the optimum use and exploration of an
exhaustible resource, while leaving the discussion of many economic issues to

be further explored.

Footnote:
*The author wishes to acknowledge with thanks the valuable comments from

two referees and the financial support from the National Science Foundation.
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