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SUMMARY

Under consideration are programming problems in
which the objective function is given as a partial preference
order rather than numerically. For example, many of the
problems that are generally associated with the term "military
worth" fall into this category. Conditions are given for such
a problem to be transformable into a problem that can be

handled numerically.



Introduction

Programming problems are defined by a constraint set and an
objective function. The role of the constraint set is to define which

courses of action—the technical word is activity vectors—are feasible,

and the role of the objective function is to define the preference rela-
tion on the activity vectors. The aim is to find a feasible activity
vector which is preferred or indifferent to all other feasible activity
vectors. The objective function is assumed to be given as a numerical
function defined on the space of all activity vectors, or at least on a
neighborhood of the constraint set; preferred activity vectors correspond
to higher values of the function. If the objective function is linear and
the constraint set is a polyhedron, then the computational methods of
linear programming are applicable. Computational techniques are also
available for some kinds of problems in which the objective function is
not linear, but in any case, all such techniques do use a numerically
defined objective function.

There is, however, a large class of practical problems in which
there is no a priori numerical objective function readily available. TFor
example, many of the programming problems that arise in the military
establishment are concerned with the maximization not of some definite
and measurable quantity such as dollar profit, but rather of the ill-
defined, vague "military worth." Mathematical techniques for dealing with
such problems are useless unless military worth is adequately defined and
some method is given for measuring it. Nor is this problem area limited
to the military establishment; any organization which does not operate

on a profit motive (including any government department) is in a similar
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situation. Even ordinary profit-making business corporations may be faced
with such a problem, when it i1s a question of deciding on activities whose
effect on the profit-making mechanism, though vital, is too remote and
camplex to be effectively calculable. For example, many employee-assignment
problems are of this kind; so are most problems involving activities whose
main effect is on good-will.

The object in all these problems is still to find a '"best possible"
activity vector in the constraint set, but the term "best possible" is no
longer defined by a numerical objective function. Instead, we must assume
that there is some kind of preference structure defined on the set of all
activity vectors, and solve ocur problem in terms of this structure. The
preferences are presumably those of the individual responsible for making
decisions in the problem involved. Hence the name "subjective programming";
the decision is to be made on the basis of subjective preferences rather
than cbjectively measurable quantities. Perhaps "non-numerical programming"
would have been a more accurate description of the mathematical context, but
the name we have chosen is, we think, more suggestive of the applications.

What can we say about the preference structure? First, it will
in general be a partial order, not a total order; it would be unreascnable
and unrealistic to expect the decision-maker to have a well-defined prefer-

ence (or indifferencel) between any pair of activity vectors.2 Therefore

lwe stress the difference between indifference and incomparability:

Indifference between two activity vectors involves a positive decision that
it doesn't make any difference if the one or the other is chosen, whereas
incomparability means that the decision maker refuses to decide between
them. Indifferent activity vectors are comparable in the preference order,
incomparable ones of course are not.

2Often the available preference information is restricted to a
small subset even of the feasible activity vectors. For example, in the
large-scale allocation problem discussed in [T7], available preference infor-
mation was restricted to a number of "ioken allocation plans” each of which
involved only a single assignment.



we will not always be able to find a maximum feasible activity vector, i.e.,
one preferred or indifferent to all others; we will in general have to be
content with finding a maximal activity vector, i.e., one to which no other
feasible activity vector is strictly preferred. The second condition on
our preference structure is transitivityo3 We have no wish to enter into a
Justification of this slightly controversial assumption, but state merely
that without it the search for a maximal element is fruitless and the
programming problem bgcomes meaningless. Possibly if the decision making
remains the province of a single jindividual, the transitivity assumption is
less objectionable than it might otherwise be.

Let us for the moment restrict our attention to the case of dis-
crete (or integer) programming problems—problems in which the céordinates
of the activity vectors take integer values only. Many real-life subjec-
tive programming problems have this form, and it is the more interesting
case from the mathematical viewpoint. What we are seeking is a "pridge"—
a method which would enable us to use the existing computational techniques,
which were invented for numerical objective functions, on our non-numerical
problems. The most obvious such bridge would be a numerical function u
that "represents” the preference order, in the sense that if x and v
are activity vectors such that x >y (x preferred to y) then N
u(x) > uly) .h Maximization of such a function over the constraint set
would lead to an element maximal in the preference order. Furthermore,
such a function always exists; the given partial order can be extended to

a total order, and any "monotone" function on the total order will do the

5This was previously implied by our use of the word "order."

hAnd if x and y are indifferent then u(x) = u(y)



trick. The trouble is that this is too broad to be useful. The numerical
function will have no regularity properties, will in general not be defined

by a "formula,"

and therefore will be hard to compute with; it is no better
than working with the original order. What we should ask ourselves 1s
whether we can find functions of a specified kind to represent our prefer-
ence order. In this paper we will investigate the question: Under what
conditions on the preference order can a linear function be found to
represent it? 1In many circumstances the existence of such a function

would be of great importance—even if only from the practical, computational

viewpoint. The (unsurprising but useful) answer we have found is as follows:

Roughly speaking, if and only if x >~y implies x +2 &y +2z for all

activity vectors x, y, and z (where + stands for ordinary vector addition).

In the next section we give an exact description of our assump-
tions and an exact statement of our results. Section 2 is devoted to dis-
cussion and elucidation of the section preceding it. In Section 3 we
describe a complex of problems, largely unexplored, which are suggested by
this study; we consider that these problems are both fascinating from the
mathemat}cal viewpoint and crucial for the applications. Section 4 is
devoted %o generalizations and extensions of the basic results in various

directions, including ordinary, non-discrete programming problems. Proofs

are given in Section 5.

1. The Main Theorem

We dencte by X the subset of euclidean n-space En consisting
of all points with non-negative integer coordinates; X 1s the space of

all activity vectors. We shall assume that on X there is imposed a



preference relation,5 denoted by = and called "preference-or-indifference.”
If x>y and y > x , then we shall write y ~ x , and say that x is
indifferent to y . If X >>y but x £ ¥ (x not indifferent to y), then
we shall write x >>y and say that x 1is preferred to y . Expressions

of the form x >>y and x ~ y will be called preference statements. The

following assumptions are made about the preference relation ( + refers
to vector addition, and all statements not otherwise quantified refer to
all X, y, and 2z ).

Transitivity If x >>y and y > z , then xSz .

Reflexivity X ~ X
e
Additivity i) x>y implies x +2z oy + 2

ii) x ~ 7y implies X +2 ~y + 2 -

Finite Generation There is a finite set S of preference statements,

such that every preference statement can be deduced from one of the state-

ments in S by means of a finite chain of applications of the transitivity

and additivity assum.ptions.6

Main Theorem There is a real-valued linear function u on X such that

x Sy implies u(x) >u(y) and x ~y implies u(x) = u(y)

A linear function on X satisfying the conditions of the main

5I\Iothing is assumed sbout this relation that is not specifically
stated in the sequel.

6

This assumption may be paraphrased as follows: we shall say that

a preference relation 2 includes another one E* if x ¥y implies

X >>y , and x ~*¥ y implies x ~y . Further, for a given transitive,
reflexive and additive preference relation é’, we shall say that a set S
of preference statements generates the relation E’, if this relation is
included in every transitive, reflexive and additive preference relation
for which the statements in S are true. The assumption then says that

the given relation is generated by a finite set of preference statements.
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theorem is called a utility function. The main theorem has a partial con-
verse (to which we were referring in the "only if" half of the rough state-

ment in the introductiOH), which we will state in the following section.

2. Discussion

A) The space X , on which both the given preference order and
the resulting utility are defined, consists of all the activity vectors,7
not just the feasible ones. This corresponds to the real-life situation;
the preference relation and the constraint set are determined by com-
pletely different considerations, and there is no reason to restrict the
former to the latter. The housewife, for example, may be able to express
meaningful preferences as between various bundles of groceries, even
though not all of them are feasible from “the point of view of the week's
budget. TFurthermore, prices of groceries or the family's earnings might
change without affecting preferences, so that this week's infeasible
vector may be feasible next week. Thus the preference relation will
ordinarily be defined on many pairs of vectors that are not in the con-
straint set, and this is perfectly reasonable.

B) We emphasize again that the preference order is partial,
that is, it is in general not defined on all pairs of vectors. We also
repeat that the lack of a pref:srence between two vectors doesg not imply
indifference between them.

c) Transitivity: The reader is asked to refer to the intro-
duction (p.4) for a brief discussion of this assumption.

D) Additivity: This is the heart of the matter; we put off a

full discussion to the end of this section. Here we note only that

7V’ectors with non-negative integer coordinates.



additivity for the preference-or-indifference relation (i.e. x >y implies
z + z,é»y + z) would not be sufficient for our purposes; counter-examples
to the main theorem for orders that satisfy only this weaker assumption

are easily constructed.

E) Finite generation: This constitutes no real restriction, at
least as far as the applications are concerned. Though the preference order
must theoretically be defined on all of X (in order to enable us to prove
our theorem), we are practically speaking only interested in its restric-
tion to the constraint set, or to a "meighborhood" of the constraint set
sufficiently large to contain all constraint sets that are liable to occur
in practice. A utility for the preference order generated by this restrict-
ed order will accomplish everything that a utility for the original order
would have accomplished; preference statements that are not contained in
the restricted order have no practical relevance.

F) The utility "represents" the preference order, but in a
weaker sense than is usually understood under the word "utility." Though

a preference x >y implies the corresponding utility-inequality

8The following superficially appealing justification for the
finite generation assumption is not valid: Obviously the decision maker
can make only a finite number of "basic" preference statements; though an
infinite number of preference statements can be deduced from the basic
ones by the application of rules such as transitivity and additivity,
which the decision maker accepts as reflecting his views, the whole prefer-
ence order will always be generated by the finite set of basic decisions.
The argument is invalid for the following reason: If the decision maker
can adopt general rules—such as additivity—as reflecting his views, then
he can also adopt other rules of the same nature; for instance he could
adopt a lexicographic-type rule that a single unit of a certain commodity
is preferred to any amount of another commodity. Such a rule leads to a
preference order that is not finitely generated, and indeed the main
theorem becomes false for such preference orders. The point is that it
will still be possible to define a useful utility, by using the preference
order generated by the restriction of the given one to a finite neighbor-
hood of the constraint set; though this utility will not represent the
original preference order outside this neighborhood, it will still yield
the correct answer to all the programming problems that will arise in
practice.



u(x) > u(y) , the converse is false; if wu(x) >ul(y) , x and y may be
incomparable. Indeed, a moment's reflection will convince the reader that
a utility that is to represent a partial order cannot be a two-way utility
of the usual kind. This apparent defect does not, however, affect the
usefulness of the utility in solving programming problems; maximization

of the utility still leads to a maximal element of the constraint set.
Usually there will be a number of different utilities; maximization of
any of them will lead to a maximal member of the constraint set, and con-
versely, any maximal member of the constraint set can be obtained by
maximizing an appropriate utility. Since the utility is to be used only
for the solution of programming problems there is no need for it to be
unique.

G) The converse of the main theorem: We are particularly
concerned with the relation between the additivity assumption and the
existence of a utility. Assume that a given preference relation has a
utility; must the additivity assumption be satisfied? The answer is in

9

general no” ; but the additivity assumption must be satisfied whenever
X +z2 and y + z are comparable. More precisely, let us define the

preference order to be weakly additive if

i) x >y implies either that X +z >y +2 , or that x +2z and
Yy + 2z are iﬁcomparable; and

ii) x ~ 7y implies either that x +z ~y +z or that x + 2 and
¥ + 2 are incomparable.

Fd

Then every preference relation for which there is a utility must be

9Let X Dbe the non-negative integers, and suppose the prefer-
ence relation to contain (in addition to the statements x > x) only
the ‘single statement 1 > O (from which it follows that 1 > 0). This
has a utility given by u(x) = x , but obviously the preference relation
is not additive.
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weakly additive. It must. also be weakly transitive and reflexive, if
these concepts are defined in the corresponding manner.

- On the other hand, nothing of this kind can be said about finite
generation. An alternative statement of the converse is that a preference
relation for which there is a utility may be extended to a transitive and
additive utility. The proof of the converse, unlike that of the main
theorem, is trivial.

H) Computing the utility; Write
u(l,0;...,0) = Uy, u(0,1,0,...,0) = Uy 5eess u(0y+..,0,1) = u
and x = (xl,...,xn), y = (yl,...,yn) . Obviously it is sufficient to
determine the u, - A preference statement of the form x ~ y supplies
us with the equation Zi(xi‘yi>ui =0; if x>y then Zi(xi-yi)ui >0 .
Iet S be a set of preference statements that generates the preference
relation—such a set exists because of the finite generation assumption.
Each member of S 1is either an indifference or a strict preference;
form the system S¥* of equations and strict inequalities corresponding
to the members of § . Any feasible solution (ul,...,un) of this
system gives us a utility, defined by
(1) u(x) = Tx,u s
conversely any utility u is of the form given in (1), where the u, are
a feasible solution of &% .
From a practical viewpoint, the question of computing the util-
ity is often more complicated. In this paper we wish to avoid a detailed

discussion of the practical difficulties that ariselog we will merely

Ome reader is referred to [7-101, where a fairly complete dis-
cussion is given of a complex real-life subjective programming problém, -
more or less in the spirit of this paper.
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mention one of them, which has some theoretical interest and significance
as well. The set S of basic decisions may be extremely large; it is
often impractical explicitly to ascertain all of these decisions. The
result of having a set of available decisions that is smaller than the
true set is that the polyhedron of feasible solutions to the resulting
system of equations and inequalities is larger than the true polyhedron
of utilities. 8o we are not sure that a member of the larger polyhedron
is actually a utility; in some sense, though, we may call it an approxi-
mate utility. The first question is, in what sense is 1t an approxima-
tion, and can we give any measure of how good the approximation is? We
are not really interested in the utility as such; we are interested in
its use as a tool for scolving programming problems. Use of the approxi-
mate utility in a .programming problem may be expected to lead to an
answer that is not in general optimal; we may hope that it is "close"

to optimal. The basic question here is how to define "closeness";

when we have done this we may be able to use the resulting measure of
closeness on the space X 5of activity vectors to define an appropriate
"closeness' measure on the space of utilities. One feels that the
measure of closeness on X should be based on the polyhedron of true
utilities, but it is not clear exactly how.

Once these basic guestions have been'answered, it is possible
to ask whether there are any good techniques of approximation whicﬁfhave
general validity. More precisely, suppose we have some control over the
questions on which the decision maker will be asked to decide, the
results of which‘will be used to find approximate utilities; how should

we exercise this control in an efficient manner in order to make the
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approximation good?

I) We now return to a conceptual discussion of the additivity
assumption. This is a strong assumption, but as we saw under (G), it is
implicit in the use of a linear objective function. Roughly, it may be
saild to hold whenever the effectiveness of an individual activity in an
activity vector does not depend on the other activities being performed
at the same time. For example, it will not hold in a situation which is
governed by a law of diminishing returns, or in personnel assignment
problems in which compatibility considerations play an important part.

Here are some examples of situations in which the additivity
assumption does hold:

i) Problems in which the various activity units operate entirely

independently of one another. For instance, consider an employment

agency which has a number of candidates and a number of firms on its
roster, where each firm has only one vacancy. To keep things subjective,
assume that the agency gets a fixed fee for each assignment, and is
therefore interested only in maximizing good will.

ii) Programming problems in which the interactions between the activ-

ity units are relatively minor and difficult to analyze. Allocation of

clerical and other semi-skilled workers in a single organization might
be an example. Another example of the same'type is that discussed in
[7-101.

iii) Certain situations governed by a law of diminishing returns, but

where we are interested only in adding to current activity in relatively

small amounts. Though the "utilities™ here will not in general be linear

(which we demand in our formal definition), they may be "marginally
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linear."” We give a more precise discussion at the end of Section 5.

J) There is another aspect of the additivity assumption that
is open to some question. It is asserted that x >’y implies
X +z >'y + 2z for all =z , no matter how large. Now in reality, there
may often be some practical limit on the set of activity vectors between
which the decision maker is willing to express preferences. (The house-
wife of subsection (A) above, though willing to express preferences as
between certain bundles of groceries, may call a halt when she is con-
fronted with a pair of bundles each of which contains millions of cans
of vegetables.) Thus the additivity assumption as it stands may often

have to be regarded as an idealization of the true situations -

3. The Restricted Additivity Assumption

We wish to pursue further the question raised in the last
subsection of the previous section. Let us say that the decision-meker
wishes to restrict‘his preference statements to a certain set A of
activity vectors. Within A the additivity assumption is assumed to
hold; that is, it holds whenever x, y, x +2 and y + z are in A .
As before, the order within A is only partial, and the set A need
by no means be restricted to the constraint set; on the contrary, in
general it will be large enough to contain all the constraint sets that
the decision maker thinks may arise in a given context, and may be a
good deal larger. We wish to know whether the main theorem still holds
in this situation, i.e., whether it is possible to define a utility
on A .

Unfortunately, the answer is no. Roughly, we may say that it
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is possible for the comparisons within A +to carry within them the "seeds"”
of contradiction, but that this contradiction need not take place until

we have gotten beyond A (and thus beyond the responsibility of the
decision maker).

There are several directions in which we might proceed if we
wish to save the situation. We might try in various reasonable ways to
restrict the kind of set that A may be, for example by demanding that
it be "convex" (i.e., the intersection of a convex set with the lattice
pointsll), or that it contain with a given pcint x all non-negative
lattice points y which have coordinates no greater than those of x ,
or both. Neither of these conditions will do the trick, as is shown by
the following example: ILet A be the set of all lattice points x in
euclidean UY-space ELL satisfying x, >0 for i = 1,c0.,4 and
zli‘zl x; <2 . Vrite a = (1,0,0,0) ,..-, & = (0,0,0,1) ; the order on
A is defined by 0<a <b<c¢c<d<2a<a +b<2b<ag +c<a +d4d<<
b+c<2 <b +d<c +d<2d; note that it is total. Iet u be a
utility; we obtain u(b) + u(d) >2u(ec) and u(db) +ufc) >ufa) +u(d) .
Hence 2u(b) + ulc) +u(d) > 2u(ec) +u(a) +u(d) ; therefore
2u(db) >u(a) +u(c) , contradicting 2b <a +c . Thus even a total
order on a perfectly "well-behaved" set does not always possess a utility.

. We might hope to obtain positive results by restricting A to
be of a certain geometric shape. Thus we might ask our question when
A is a "™ox"—the set of all points of X which are coordinate-wise
< a given point x . An equivalent question would be the corresponding
one when A consists of the vertices of the unit cube. Unfortunately

we do not even know the answer to this when the order is assumed to be

llPoints with integer coordinates.



~15~

total. It has been verified to be true for unit cubes of dimension up to
4 (when the order is total).

The problem of defining a utility on A 1is equivalent to that
of extending the given order to all of the lattice points in B ; this
follows from our main theorem. Thus the above problem may be formulated
as follows: can a (partial or total) additive order on the vertices of
the unit cube in E° be extended to an additive order on all the lattice
points of B2

Possibly positive results can be obtained if some other kind
of geometric shape (rather than a box) is assumed for A .

A completely different approach is as follows: Iet A Dbe the
set on which the preference order is defined, and B the set on which a
utility is needed (say the union of the constraint sets liable to occur
in practice). In general A contains B . It seems intuitively clear,
and indeed is not difficult to prove, that if A is sufficiently large
with respect to B ( but still finite), then a utility will be definable
on B (any contradictions caused by the preference order on B must be
realized "not too far" from B ). Now the question arises, how large must
A Dbe, as a function of B , for a utility to be definable on B ?
Alternatively, we might ask the following question: Iet B be a fixed
finite subset of X , and let A be a superset of B . How large must
A Dbe chosen so that every preference order on B that is extendable to
A is already extendable to all of X ?

We are now in a position to explain what we meant by "marginal
linearity"” (cf. (iii) of subsection I of the previous section). We are

concerned with a situation in which a large number of activities have
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already been performed, and we are interested in performing a small number
of additional activities. The additivity assumption is assumed to hold
"in the small," i.e., as long as =z stays in the "marginal® range (i.e.,
does not cause x + 2z and ¥y + 2z to become too large compared with the
activity vector already performed). If it is possible to extend the
preference order in an additive manner beyond the marginal range, then

it will be possible to define a utility within the marginal range, even
though the extended preference order may be totally unrealistic outside

the marginal range.

L, Extensions and Ceneralizations

These are possible in a great variety of directions, some of
which we indicate below:

A) Non-discrete programming: Instead of assuming that X con-

sists of the non-negative lattice points in ' , we may assume that it
contains the entire non-negative orthant. In this case it is natural to
add the following linearity condition to the additivity assumption:

X é>y implies Ox 2>qy for all positive reals o . The main theorem
remains true.

B) Dropping the Finite Generation Assumption: This leads to

an analogue of the main theorem in which ordinary utility must be replaced

by multidimensional utility (ef. [1]). A multidimensional utility u of

dimension m is the same as an ordinary utility, except that the range
of u 1s lexicographically ordered euclidean m-space. The dimension m
of the range of u can always be chosen so as to be no greater than the
dimension n of X . The solution of programming problems using multi-

dimensional utilities 1is perfectly straightforward; it consists of the
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successive solution of m ' ordinary programming problems, each one using
as objective function a different component of the multi-dimensional
utility, and adding an additional linear constraint to the previous con-
straint set. Practically, there would be very little point in going
through with such a procedure, for the reasons we explained in Justify-
ing the finite generation assumption (subsection E of Section 2).
Anyway, all components of the multidimensional utility other than the
first are completely insignificant when compared with the first com-
ponent; the slightest error in the first component-—even a computational
round-off error—completely swamps all multidimensional considerations.

C) CGeneralizing the space X . The main theorem remains

true when X 1is an arbitrary comutative semigroup. There is also an
analogue of the theorems stated in (A) and (B); in (B), however, the
utility may have infinitely many dimensions, and there may be no "first”

component .

5. Proofs
There is a vast mathematical literature that is closely

related to the ideas of this paper (and of utility theory in general) in
that it deals with ordered structures (topological spaces, groups, semi-
groups, vector spaces, etc.). Much of this literature is concerned with
classifying the structures, not with representing them by utility func-
tions (i.e., order-preserving homomorphisms to the reals); but the two
problems are closely related. It i1s possible to prove our theorems by

making heavy use of some of this literature,12 but even then the proof is

126r. [2-5].
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comparatively long (though not particularly difficult). It is our belief
that there should be available a comparafively short and elementary proof at
least of our main theorem; this we proceed to give. The chief tool is the
theorem of the supporting hyperplane. Our procedure will be first to prove
the theorem on the existence of multidimensional utilities stated in (B)

of the previous section, then apply the finite generation condition to
obtain the desired result.

Let us define a weak m-dimensional utility to be a linear func-
tion u from X to E' for which x >y implies u(x) >u(y) in the
lexicographic order on E' . If u and v are two such utilities—possibly
with different m — then u is stronger than v if u distinguishes be-
tween all elements that v does, but not vice-versa; more precisely,

v(x) > v(y) implies u(x) >u(y) , but there are x and y such that
x>y, vix) =v(y) and u(x) >uly) . Our basic lemma says that for any
weak multidimensional utility v which is not already a true multidimen=-
sional utility (in the sense that v(x) > v(y) for all x >y ), there is
a multidimensional utility that is stronger. Starting out with the trivial
O-dimensional utility v = 0 , we thus build up a ladder of stronger and
stronger weak multidimensional utilities; we show that the process must
finally terminate in & true multidimensional utility, and indeed in not
more than n steps.

Ieima 1 If x>y and 2 >w , then X +2 >y +W .

Tetma 2 Iet B be a subset of i containing rational points only, i.e.,
points all of whose coordinates are rational. Then any rational point in
En that is expressible as a2 linear combination, with non-negative coeffi-
cients of points of B , is also expressible as a linear combination,

with non-negative rational coefficients, of points of B .
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The proofs of lemmas 1 and 2 are left to the reader.
Temma 5 ILet v be a function on X . Assume
(k) there are x,y € X for which v(x) =v(y) and x >y .
Then there is a linear function w from X to the reals such that
(5) if x,y e X, v(x) =v(y) , and x >y , then w(x) >w(y) ; and
(6) there are x,y € X for which v(x) =v(y) , x>y , and w(x) >w(y)
Remark This is the basic lemma referred to above. If v 1is a weak
m-dimensional utility, then (v,w) is a weak (m+ 1)-dimensional utility
stronger than v . Assumption (4) says that v is not already a true

multidimensional utility.

Proof Iet W be the set of all members of E= of the form x - Y,

where x,y € X , v(x) =v(y) , and x>y . ILet W, be the convex cone
generated by W , and let Wé be the linear subspace of jou spanned by

W . Iet m be the dimension of W, . From (4) it follows that W con-

tains points other than the origin 0O . Hence m >1 . ILet us assume
for the moment that Wi does not fill Wé . Then O must be in the

frontier of Wi when considered as a subset of W, , and therefore by
the theorem of the supporting hyperplane (see, for example [6], Theorem 8,

p.20), W, has an (m-1)-dimensional supporting hyperplane H in W,

that contains O . Iet H' be the (n-1)-dimensional hyperplane in E-

that is spamned by H and the orthogonal complement of Wé in E .

We define w +to be the distance from H' (appropriately directed); the
verification .of (5) and (6) is straightforward.
It remains to prove that Wi does not fill Wé . Suppose it

does. ILet z =x - y be a non-zero member of W , where x,y € X and

X2y . Then -z € Wé , and hence -z € Wi . Applying lemma 2, we



~20-

deduce that there are members ZyseensZy of W, and noﬂ—negative

rationals Oi,aoo,ak , such that -z = :§=laizi . Multiplying by a posi-

tive common denominator p of - the Q& s Wwe obtain non-negative integers

q; such that pz + =0. But z; =x; -y, , where x,y, €X

1=1%1%1
and  x; E-yi ; hence it follows that
(7) px 450 = Py + LR
On the other hand, if we recall that x >>y and X, 2>yi and apply
lemma 1 a number of times, we obtain
PX + Zilqixi > DY + Zleqiyi ,
which contradicts (7) . This completes the proof of lemma 3.

The true dimension of a weak m-dimensional utility wu is the

dimension of the linear subspace of B spanned by u(X) .
Iemma 8. If u is stronger than v , then the true dimension of u is

larger than the true dimension of v .

Proof Extend u and v to all of E° ;3 they are then linear functions

and can be represented by matrices, which we also denote by u and v
respectively. Since u is stronger than v , uf(z) = 0 implies

v(z) = 0, but there are z such that v(z) =0 and u(z) + 0 (set

z =X -y in the definition of "stronger"). It follows that the nullity
of v 1is greater than the nullity of u , and hence the rank of u
exceeds that of v . Bince the rank is precisely the true dimension, the
proof of the lemma is complete.

Jemma. 9 The true dimension of a weak multidimensional utility on X is

not larger than the dimension n of X .

Proof A linear mapping cannot raise the dimension of a vector space.

Theorem 10 A preference order on X which is transitive, reflexive
e
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and additive (but not necessarily finitely generated) has an m-dimensional
utility, where m <n .

Proof Starting out with the weak O-dimensional utility v = 0 , success-

ively apply lemma 3 to obtain stronger and stronger weak multidimensional
utilities; by lemma 8 each of these must have true dimension greater than
the preceding one. Hence by lemma 9 the process terminates in at most
n steps; the end result must be a true multidimensional utility, and
since each step raises the nominal dimension by only 1, we cannot have

nominal dimension greater than n at the end.

Proof of the Main Theorem Iet v = (Vl’°°°’vm) be a multidimensional

utility, and let € be a positive real number; write ue(x) = i;zlvi(x)ei .
If e dis small then u_ "behaves like" v , because each term in the
expression for u, 1is "much more significant” than the succeeding term.
More precisely, if =x ~ y then ue(x) = ue(y) for all e ; if x>y

then ue(x) > ue(y) for sufficiently small ¢ , i.e., when

0<e<e = eo(x,y) . Now choose a positive € which is less than
<, (x,y) For all pairs (x,y) such that the preference statement x > v
is in S (the set of preference statements that generates the prefer-

ence relation). Then u, is a utility-
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