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1. INTRODUCTION

The full-information maximum likelihood estimation (FIML) pro-
cedure for estimating the parameters of linear equation systems was
developed at an early stage in the history of econometrics [5]. Despite
the admirable properties that FIML is known to possess, the technique
was seldom applied, due to the heavy computational burden involved in
the solution of the FIML normal equations, which are nonlinear. The
two-stage least squares (TSLS) and three-stage least squares (3SLS)
techniques represent an attémpt to develop estimators that share many
of the desirable properties of FIML but avoid its computational com-
plexity.

In recent years the increasing efficiency of electronic compu-
ters has greatly reduced the significance of this problem. This did not
result in the widespread adoption of the FIML approach, however, since
it was thought that the technique has excessive sample size requirements.
Klein [3,4] has suggested that FIML estimation requires a full-rank data
matrix and, hence, as many observations as there are variables in the sys-
tem. In a large econometric model this can present a problem, since
many of our economic time series are short relative to the number of

variables in the system. As an alternative to FIML in the "under-sized"



.
sample, i{nstrumental variable estimators for complete systems of equa-
tions have been proposed {11.

Some econometricians have disagreed with Klein's result, however,
and argue that over—-identifying restrictions can reduce the sample size
requirements below the condition given by Klein. In the appendix of a
recent contributioﬁ, Sargan [7] has demonstrated that Klein's condition is
indeed correct when the system to be estimated is only subject to exclu-
sion restrictions. This result will hold even if there are sufficient
restrictions to overidentify the system. The belief persists, though,
that more complicated restrictions might permit FIML estimation when the
number of variables in the system exceeds the number of observatilons.

The purpose of this paper is to establish conditions on the data
matrix for FIML estimation when the system is subject to linear homoge-
neous restrictions on the coefficients of single'equations. In the
following sectiom, the basic model and terminology will be introduced.
The just-identified case will be examined, in the third, and some general
conditions which establish upper and lower limits on the rank of the data
matrix will be set forth. In the fourth section, several sufficient con-
ditions will be derived which demonstrate that overidentified systems can
sometimes be estimated by FIML when the data matrix is less than full
column rank. These sgfficient conditions will form the basis for the
development of several necessary conditioms, in the fifth section.
Finally, in the sixth section, we will summarize our results and discuss

the possibilities for future research in this area.
2. MODEL AND DEFINITIONS
Consider the linear structural system

(2.1) By, + th =u, (¢ =1,2,...T)
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where Ye is an Mxl vector of endogenous variables at time €, z, is a Kxl
vector of exogenous variables, u, is an Mxl vector of structural distur-
bances, B is the MxM matrix of coefficients for the endogenous variables,

and T is a MxK matrix of coefficients of the predetermined variables. It

will sometimes be convenient to represent the system
Ax =u (¢ =1,2,...,T)

where xé = (yé,zé) is the 1x(M+K) vector of all variables at time t and
A = (B:l) is the complete Mx (M+K) matrix of coefficients. A more compact

representation is

where X = (Y:2) is the Tx(M+K) matrix of observations on all variables
and U is the TxM matrix of structural disturbances for all periods.

In order that the endogenous vector y. be unique for every
predetermined vector z. it is assumed that B is nomsingular or lBl # 0.

Thus (2.1) may be premultiplied by B_l to obtain the reduced form system

-1 -1
yt -B th + B u,

Mz + v
t t

or more compactly
Y' =nz' + V'

where II = —B—lf is the MxK reduced form coefficient matrix, v, = B"lut

is the Mxl vector of reduced form disturbances, and V is the TxM matrix

of all reduced form disturbances.
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The coefficients are assumed to.satisfy certain linear homoge-

neous restrictions, which can be represented
(2.2) a%@ = 0 (L =1,2,...,4)

' denotes the i-th row of A (i.e. the coeffi-

where the lx(M+K) vector a.

cients of the i-th equation) and Qi is a (M+K)xRi known matrix with each
of the Ri rows corresponding to a homogeneous restriction on @,. of
course the familiar exclusion festrictions can be written in this form.
It is assumed that (2.2) provides sufficient restrictions to identify
each equation.

The structural distgrbance vectors u, are assumed to be identi-~
cally and independently distributed multivariate normal with zero mean
vector and MxM covariance matrix £. The covariance matrix is assumed to
be unrestricted, except that it be positive definite, which implies that
(2.1) involves no jdentities or other exact relationships. By properties

of the multi-variate normal distribution

vt nvoili.d. N(O,R)
and

2.3) ytlzt " N(Hzt,ﬂ)

where Q = B-IZB'-l denotes the reduced form covariance matrix. Since Z
is unrestricted éxcept to be positive definite, then  is also unrestricted
except to be positive definite.

From (2.3), the joint probability distribution of the endogenous

variables given the predetermined variables is

N (yt—ﬂzt)}.

1 1 .
p(tl2);m,Q) = (ZW)nTIZ\MT/Z expi- 35 t:E‘l(y't-flzt) Q
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Thus, the log-likelihood function can be written

(2.4) L = const. --% 2alq| —-%tr{ﬂ-l(Y'fHZ')(Y—ZH')}

or equivalently

(2.5) L = const. -~% wn|z| —‘%tr{Z-lAX'XA'} + %ﬁniBIz
since I = -B_lf and Q = B-lZB'-l. The maximum likelihood procedure is

to find A and I which yield a maximum for (2.4) and hence (2.5), while
satisfying the prior restrictions lBl_# 0, ai@i = 0, and I positive
definite.

Suppose that A and I maximize (2.5) while satisfying the prior
restrictions, then so will A* = DA and I* = DID' for any nonsingular
MxM diagomal matrix D. But such a multiplication simply amounts to a
rescéling of each equation, thus the need arises for a "normalization'
rule in order to establish a scale for each equation. The most familiar
procedure is to set the diagonal elements of B to unity. This approach
can do more than rescale each equation, however, since it rules out
B.. = 0 which may be possible under the other prior restrictioms.

ii

Accordingly, we will introduce the length normalization aiai =1
(i=1,2,...,M), which will only restrict the scale for any A and I
satisfying the other prior restrictions.l

In order to simplify terminology we introduce the following

definitions.

DEFINITION 2.1: An Mx(M+K) coefficient matrix A = (B:T) is said
to be admissible if and only if it satisfies all pertinent prior restric-

tions, namely (1) the homogeneous restriction ai@i = 0, (2) the normaliza-

tion rules aini =1, and (3) |B] # 0.
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DEFINITION 2.2: The Mx(M+K) matrix A = (B:T') and the MxM

matrix I are said to be maximum likelihood estimates of A and L if
and only if A and I maximize the log-likelihood function (2.5) sub-
ject to the restriction that A be admissible and I be positive defi-

nite.

DEFINITION 2.3: The equation system (2.1) is said to be

estimable if and only if there exist maximum likelihood estimates of

A and I.

3. PRELIMINARY RESULTS

For an estimate of I to yield a maximum of (2.5) it must satis-

fy the first-order condition

=__']:'. _i -1 ' 1 -1
5 L 7 ¥ (AX'xa")zs .

Solving this condition we find that Z maximizes the log-likelihood only

if

(3.1) £ = % AX'XA

and is positive definite only if [AX'XA'[ # 0. Provided lax'xa'| # 0,
then (3.1) may be substituted into (2.5) to obtain the concentrated

log-likelihood function

I

> lnlBlz .

= - I L ' t -
(3.2) L, = comst. = 3 2u|7 AX'XA \

Thus A and I will maximize (2.5) subject to A being admissible and L

positive definite if and only if A maximizes (3.2) subject to A being
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admissible and |AX'XA'| # O.

An important issue is whether admissible A which yields
|AX'XA'|= 0 is a maximum likelihood estimate. It is sometimes argued,
in such cases, that the log-likelihood is infinity and hence a maximum.
Actually, neither (2.5) nor (3.2) can be evaluated when IAX'XA'I = 0,
since I =-%-AX'XA' is not invertible and 2an|Z| = 2n0 is undefined.
Because such points cannot yield a maximum of the log-likelihood then
we have ruled them out in this paper by imposing the prior restriction
that ¥ be positive definite.2 In fact, as the following theorem shows,
the existence of such a point not only rules out that point as a maxi-

mum of the log-likelihood, but all admissible A as well.

THEOREM 3.l: A necessary and sufficient condition for the
system (2.1) to be estimable is that
|aX'RA'| # 0

for every admissible A.

PROOF: (Necessity). Assume to the contrary that AO is admissi-
ble but lAQX'XAO" = 0. Let Al be a maximum likelihood estimate of A,
then Al is admissible and ]AlX'XAl'[ # 0. Define a2 = oat + (l-e)AO

for 0 8 £ 1, so A2 will satisfy the homogeneous restrictions. Accor-

dingly, let £0 = % adxrxalr, gt = % alx'zal', and £? = % aZgrxa®r.
Now, the elements of 22 and hence |22| are polynomials in 8 and
nonzero for 8 = 1 or a2 = AY, hence IEZI # 0 for all 6 except on a set

of measure zero.> Since 8% is linear in 9, then {BZ‘ is also a polynomial
in 8, and we see that ]le and lzzl are both continuous in 8. Thus, by

choosing 6 sufficiently small we can find A2 satisfying the homogeneous
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restrictions such that \le is close to lBol and liol # 0. But this
means we can find admissible A2 with Iizl # 0 which yields a log-
1ikelihood exceeding that associated with Al, which contradicts the
assumption.

(Sufficiency). Suppose IAX'XA'{ # 0 for every admissible A,
then the log-likelihood associated with each admissible A will be non-
zero and finite. This guarantees the existence of a maximum (perhaps
noﬁ unique) of the log-likelihood subject to the restriction that A be

admissible. END OF PROOF.

The above theorem, while very general, is somewhat difficult
to apply since it requires knowledge of all édmissible A, which usually
is an infinite set. Thus, we are interested in developing conditions
that do not require knowledge of A, which is the task of the remainder
of this paper. First, we have the following rather straightforward
corollaries, which result from the fact that |AX'xA'| # 0 if and only

if p(AX'XA') = M.

COROLLARY 3.1: A necessary condition for the system (2.1) to

be estimable is

p(X) 2 M.

COROLLARY 3.2: For (2.1) to be estimable it is necessary that

T > M.

>
=

Now |AX'XA'| # O if and only if XA'A # 0 for all Mxl vectors
A # 0, thus the system is estimable if and only if XA'M\ # O for all

admissible A and A # O. Suppose X is full column rank M+K or
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equivalently Xu # 0 for u # 0, then XA'X # 0 for admissible A and
A # 0 since admissible A' has full column rank M or u = A'A # 0 for
A # 0. Thus, we have the following result, which will prove to be

the basis of all subsequent sufficient conditions.

COROLLARY 3.3: A sufficient condition for the estimability
of (2.1) is that

p(X) = MK

Corollaries 3.1 and 3.3 establish an upper and lower limit for
the estimability of the system (2.1) in relation to the rank of X. In
the present paper, we are interested in how knowledge about the identi-
fying restrictions might eliminate the gap. In particular, we wish to
examine the role of overidentifying restrictions and whether the imposi-
tion of overidentifying restrictions can reduce the upper limit as given
by Corollary 3.3. The effect of overidentifying restrictions can best
be studied after having established some basic results on just—identified
systems.

As was discussed above, maximum likelihood estimates of A and I
can be obtained by maximizing the reduced form log-likelihood (2.4) with
respect to I and Q, subject to the restrictions that A be admissible. In
the case of a just-identified system it is well known that there is a
one-to-one relationship between restricted A and unrestricted L on the
one hand and unrestricted Il and Q on the other. Thus, the prior restric-
tions on the structural system imply no restrictions on the reduced form
system and we can maximize (2.4) directly with respect to T and Q. If

p(Z) = K, then we may solve the first-order conditioms to obtain
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(3.3) 1 = (z'z)‘lz'Y
and
(3.4) Q =-1,f (Y'-TK') (Y-2Z0")

as estimates of I and Q. The estimate I and the homogeneous restric-

tions imply A = (B:I') uniquely and I = B is also unique.

THEOREM 3.2: Suppose the system (2.1) is just-identified and

0(Z) = K, then T > M + K is a necessary condition for estimability.

PROOF: Let p(Z) = K, then substitution of (3.3) and (3.4)

yields

>

0 =% [Y'-Y'Z(Z'Z)—lz'][Y-Z(Z'Z)-lZ'Y]

L

t v‘ll
T Y [IT—Z(Z Z) "'y

= -]; !
T Y'DY.

Now D = [IT—Z(Z'Z)-IZ'] is symmetric idempotent which means p(D) =
tx(D) = T - K. Thus, if T < M + K then p(D) < M whereupon p{Q) < M

and p(2) < M since I = B 1B'~. END OF PROOE.

It is clear that X = (Y:Z) has full column rank M+K with unit
probability when p(Z) =K and T 2 M + K, since the elements of Y are
stochastic and not perfectly correlated. By Theorem 3.2, if p(Z) =K
and the just-identified system is estimable, then T > M + K and
p(X) = M + K with unit probability. Thus we have the following corollary

in terms of the rank of X.
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COROLLARY 3.4: Suppose the system (2.1) is just-identified and
p(Z) = K, then with unit probability a necessary condition for estima-

bility is p(X) = M + K.

An interesting question in the just-identified case is whether
ﬁ given by (3.2) is maximum likelihood when T < M + K but o(Z) = M.
Clearly, Ii] = [él = 0 and the value of the likelihood functiom (2.5)
is undefined. On the other hand, the estimate ﬁ would be the same even
if the true value of Q@ were known. Thus, even though we cannot get a
positive definite estimate of I we can treat ﬁ and hence A as maximum
likelihood estimates. This particular result is due to the fact that
Z does not enter into the estimation of A when the system is just-identi-
fied. When over-identifying restrictions are.added, however, estimation

of A requires an estimate of I and the condition for maximum likelihood

estimation of A and I will be the same.

4., SUFFICIENT CONDITIONS

In the previous section we established that a sufficient condi-
tion for the system (2.1) to be estimable is that the data matrix (X)
have full column rank. For just-identified systems this was also dis-
covered to be a necessary condition for estimability. In this section
we will develop sufficient conditions which demonstrate that overidenti-
fied systems may sometimes be estimable when p(X) < M + K. As will be
shown, however, the system can always be reduced in such cases into a
system where the data matrix (X*) of the transformed system is full column
rank.

Suppose Qi’ the restriction matrix for equation i, has rank Ri'

Define an (M+K) x (M+K-Ri) matrix P, such that

i
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(4.1) Pi¢i =0
and
(4.2) p(@i) + p(Pi) =M+ K

Now Pi forms a basis for the null space of ¢i’ so aiéi = 0 for nonzero

ay if and only if

for some (M+K-Ri)xl vector Ei. Thus we have solved the homogeneous
restrictions on each equation so as to represent all parameters in the
equation (ai) in terms of several unrestricted parameters (Ei).

A complete matrix A that will satisfy the homogeneous restric-

tions can be formed in a similar fashion. If a; = Piai for i=1,2,...,M

then
! =
A (al,az,...,uM)
= (Plal,Pzaz,...,PMaM)
= (Pl:Pzz...:PM) a 9
ey -
0 0 aM
= PA'
where
P = (Pl Pz:...PM)

and
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ay 0 0

0 Ez 0
A' = :

0 0 . y

Clearly, a matrix A will satisfy the homogeneous restrictions on each

equation if and only if A' = PA' for some K'.A

THEOREM 4.1: A sufficient condition for the system (2.1) to be

estimable is that p(XP) = p(P).

PROOF: If p(XP) = p{P) =M + K, then p(X) = M + K and by
Lemma 3.1 the system is estimable. Thus we will suppose p(XP) = p(P)
= M+K* < M+K or
P = QP*
where P* is formed from M+K* independent rows of P and Q is an
(MK) x (MFK*) matrix. Let A be admissible and hence satisfy the

homogeneous restrictions, then

XA'A = XPA')
= XQP*A' )\
= X*P*A' A

= X*A*' A

where X* = XQ and A*' = P*A'. Now P* is full row rank thus p(X*)

= p(X*P%) = p(XP) = M+K* and X*u* # 0 for any (M+K#)xl vector ux # O.5
Since |B| # O for admissible A = (B:T), then A'A = PA'A = QP*A'X = Qa*')
40 and p* = A*'\ # O for admissible A and A # 0. Thus XA'X = XPA'A

= X*P*R') = X*A*') # O for all admissible A and ) # 0, or |AX'XA'| #0
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for all admissible A. END QF PROOF.

This result shows that (2.1) is sometimes estimable when p(X)
< MK, provided the homogeneous restrictions yield p(XP) = p(P). The
system can always be transformed in such a case, however, so that in
some respect‘Theorém 3.3 holds. The M+K* variables of the transformed
system are defined by xé = Q'xt and form the Tx(M+K*) data matrix
X* = XQ. An Mx(M#K*) coefficient matrix for the new system, which
obeys the original homogeneous restrictiomns, is defined by A* = AP*',
In the preceding proof we demonstrated that p(X*) = M+K* when
0 (XP) = p(P), thus we see that Theorem 4.l is really just an applica-
tion of Theorem 3.3 to the transformed system.

Now p(P) = M+K* indicates the number of columns of admissible
A that may have independent coefficients. Let A be admissible and
hence satisfy the homogeneous restrictioms, then

A = AP'

N t.p?
A(PB'PF)

(B:T)

for some A, where Pé denotes the first M columns of P' and P| the

remainder. But B = KPé and hence Py have full column rank M, so we

can rearrange and partition the columns of P' and hence T such that
s A(P':p! P!
A‘ A(PB'PFl'PFZ)

= (B:Fl:Fz)

where (szPél) are p(P) = M+K* independent columns of P'. Because of

columns of P%Z are spanned by the columns of (PB:Pfl) then
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’
v - t.ot '
Pry = (PpiPry) [ Qq

1
Q

and

= AD!
Py = &Ppy

= A(P!.D? 1\
= A(Pg:Pr) /Qo )

H t
iy

(B:Ty)  [Q)
Ql I

]

where Q0 and Ql are known matrices. Thus, admissible A has at most

M+K* columns with independent coefficients, since F2 is always

determined by the choice of (B:I‘l).6
If the K predetermined variables are all independent and

T > K, then we could expect p(Z) = K and we can state a sufficient

condition in terms of T. Let P*' = (Pﬁ:Pfl) and accordingly

IM 0

Q= |0 ek

Qo Ql

Rearranging and partitioning Z conformably, then we have

X* = XQ
= (¥:2,:2,) I, 0
0 ek
QW Y
= (¥+2,Q:2,+Z,Q;)

(Y*:2%)
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and A% = (B:rl). Suppose Z = (2;:Z,) is full column rank K, then

L4
L

p(Zl:Zz) /IK*\ =p ( Iys = K*
i

i ;
\"Ql ' \\ Ql

or p(Z*) = K*. It is clear that the M columns of Y* will be indepen~
dent of any given T-M columns with unit probability. Thus, if T 2 p(P)

= MHK*, then p(X¥*) = p(X*P*) = M+K* with unit probability and we have

the following corollary.

COROLLARY 4.1: Suppose p(2Z) = K, then with unit probability
a sufficient condition for the system (2.1) to be estimable is that

T > p(P).

The preceding corollary is appropriate in the absence of extreme
multicollinearity in the data matrix of predetermined variables, which
is usually the case. When this matrix is less than full rank, then we

may sometimes apply the following result.
THEOREM 4.2: A sufficient condition for the system (2.1) to
be estimable is that
p(X) =p(2) + M.
PROOF: Suppose p(X) = p(2Z) + M, then the columns of Y are all

independent of the columns of Z. Let Mg be an Mxl vector and hp @

Kx1l vector, then

(¥:2) ug #0
*r
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o

for ug # 0. Now (2.1) is estimable if and only if lAX'XK"# for

all admissible A or equivalently XA'XA # O for all admissible A and Mx1

"

vectors A # 0. But [Bl # 0 and ug = BA # 0 for admissible A (B:I')
and A # 0, whereupon

(Y:Z) B A#0

and (2.1) is estimable. END OF PROOF.

This result states that the system can be estimated when
0(X) < MHK, provided the M columns of Y are mutually independent and
also independent of the columns of Z. In this case, however, we do
not really have M+K independent variables but only p(X). Let
p(X) = p(2) + M < MK then MK - p(X) columns of Z (denoted ZZ) are

spanned by the remaining M - p(X) (denmoted Zl) or

for some matrix D. Following a conformable partitioning of I' we have

t - N - 1
A" = (Y:Z,:L,) B
\
'
]
)
\ 1 L
L T1re r', )

Therefore we can define an equivalent transformed system with data
matrix X+ = (Y:Zl) and coefficient matrix A+ = (B:I‘l + FZD). Now
(Y:Zl) is full column rank, and we see that this result is also just

an application of Theorem 3.3 to a reduced system.6
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5. WNECESSARY CONDITIONS

In the preceding section we developed two conditions, P(XP) = p(P)
and p(X) = p(Z) + M, either of which is sufficient for the estimability
of the system (2.1), even when the data matrix X is less than full rank.
It was discovered in both cases, however, that the system could be trans-
formed into.a reduced system where the data matrix of the new system was
full column rank. In this section, we will show that for the original
system (2.1) to be estimable it is necessary that at least one of the
two conditions must be met. Thus, in a certain respect, FIML estimation

always requires a data matrix of full column rank.

THEOREM 5.1: With unit probability a necessary condition for

(2.1) to be estimable is that

p(X) = p(Z) + 1

or

p(XB) = o(P).

PROOF: Assume to the contrary that p(X) < p(2) + M and
p(XP) < p(P) < M+K. Given these conditions, we will demonstrate the
existence of A satisfying lAX'XA'l = 0 that are admissible with unit
probability. Thus, we will show that the system (2.1) is not estima-
ble when the conditions of the assumptions are not.

As in the proof of Theorem 4.1, for A satisfying the homogeneous

restrictions we can write
XA'A = XPA')
= XQP*A'\

= X*P*q
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where X* and P* are the same as before but A' = (1,1,...,1) and
a' = (Ei,aé,...,aﬁ). Since P* is full row rank, then p(X*) = p (X*P*)
=p(XP) < p(P) = p(P*) and X*u* = 0 for some (M+K*)xl vector u* # 0.

Moreover, P*a = u* for some a # 0, whereupon

X*P*q

(=)
i

XA'A

. LI - - - . . .
Thus we can find A (P,al,Pzaz,...,PMaM), which will satisfy the
homogeneous restrictions, and A' = (1,1,...,1) # 0 such that XA'A = 0.

12,:2,)

Since p(X) < p(Z) + M, then X may be partitioned X = (Yl:Y 1'2

2
where (Yl:Zl) has o (X) independent columns. Following a conformable

partitioning of p, then we may write

0 = Xu

= Tqugg FYgugy T Zqugy + 2oy,
= (Yl:Zl)ul + (YZ:ZZ)u2

where ui = (uil,uél) and ué = (uiz,uéz). If we discard all but p(X)

independent rows of X then the solution to this system may be represented

R
np = (¥322) "z,

adj (Y.:2.)
3_#_]:. (Y .z )U
det (lezl) 27272

1

where A = det (Yl:Zl) and g(+) is a vector of polynomial functions in Y

and the arbitrary parameters oo
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Let R be the right-inverse of Q, then p* = Ry is a solution to
p = Qu* and X*p* = 0 when Xy = 0. Partitioning P* = (PT:PE), where

Pf has o (P*) independent columns, and conformably a' = (Ei:&é) then

u%* = P*gy
=*- * o
Pl al + P2 az
has the solution
Q. = p*‘l(u*-p*E )
1 1 272"

Thus, following substitution, a solution of X*P*y = XPg = 0 may be

represented
(5.1) g, = P L(Ru-P*3.)
: 1 1 272
g, (Ysu,)
1 -1 1 2 -
= I Pf (R - AR’é‘az )
Ha

1 -
= K hl <Y’u2’a2)
where hl(-) is a vector-valued polynomial functionm in Y and the parameters
Hy and @y.
Now [B| is a polynomial in the elements of B. But B is linear
. - I - . - . R - - « ‘ . o
in o when A (Plal.PZaz ..... PMaM), Vhereupon IB(a)[ is a polynomial in

the elements of a. By substitution, then

B | = @Matsn,,8,)

when XPa = 0, where d(+) is a polynomical in Y and the parameters oy

and Ao
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0_ ,=0_-0 =0 . .
Let A™ = (Plal.PZa2 ..... PMaM) be admissible and A' = (1,1,...,1)
then uo = AP'AO and 30" = (52',53',...,&3'). Clearly, we can choose one

column of Y2 such that

v .r 2.0 .0
0 = (¥:2))u; + (¥:Z,)u,

thus for uy = ug, 52 = ag, and some Y,, then (5.1) yields g =30

and hence A = A0, Since A = det (Yl:Zl) is unchanged and |BO[ # 0,

then d(Y;ug,Sg) # 0 for some Y and hence all Y except on a set of mea-
sure zero., Now the elements of Y are continuous random variables and

not perfectly correlated, so lBl # 0 with unit probability for A = (B:I)
determined by (5.1).7 Thus we can find @ such that XPq = 0 and

|B(a)| # O with unit probability or equivalently A' = (Pl&l’PZEZ""’PMSM)

which satisfy the homogeneous restrictions with certainty, IBI # 0 with

unit probability, and XA'A = 0 for A' = (1,1,...,1). END OF PROOF.

Suppose p(Z) = K then p(X) = p(Z) + M implies X is full column

rank M+K, whereupon p(XP) = p(P) and we have the following corollaries.

COROLLARY 5.1: Let p(Z) =K, then with unit probability

p(XP) = p(P) is necessary for the system (2.1) to be estimable.

COROLLARY 5.2: Assume p(Z) = K, then with unit probability a

necessary condition for the estimability of (2.1) is that T > p(P).

Combining Corollary 5.2 with Corollary 4.1, we discover that
in the absence of multicollinearity among the predetermined variables
T 2 p(P) is a necessary and sufficient condition with unit probability.

A rather obvious consequence of Theorem 5.1 is the following

result.



-22=

COROLLARY 5.3: Suppose p(X) < p(Z) + M, then with unit proba-
bility .
p(XP) = p(P)

is necessary for the system (2.1) to be estimable.

Sargan studied estimability when the homogeneous restrictions
are of the exclusion type. In this case, he showed that p(X) = MK is
a necessary condition (with unit probability) if Z has at least T-M+1
independent columns when T < M+K. But p(P) = MK for the exclusion
restriction case, as will be shown below, and p(2) 2T ~-M+ 1 implies
p(X) < p(Z) + M, since X has only M more columns than Z. Thus, the
above corollary is a generalization of Sargan's result to the homogeneocus
case.

When the homogeneous restrictions are in fact of the exclusion
type, then we have the following simple necessary condition, which is

less restrictive than Sargan's condition.

THEOREM 5.2: Suppose all homogeneous restrictions are of the
exclusion type, then with unit probability a necessary condition for the
estimability of (2.1) is that

P(X) =p(2) + M.

PROOF: Assume that all homogeneous restrictions are all of the
exclusion type, then ¢i will have a column ej for each aij restricted
to be zero. Consequently, since Piéi = 0 and p(Pi) + p(¢i) = M+K, then
P, can be formed with a column e, for each @, that is not restricted

to be zero. No column of A can be entirely zero restricted, so

(el,ez,...,em+K) must all be included as columns of P = (Pl:PZ:...:PM).
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Thus o (X) = p(Z) + M will be met when 0 (XP) = p(P), since P will be

full row rank M+K and p(XP) = p(X). END OF PROOF.
Sargan's result follows as a simple corollary to this theorem.

COROLLARY 5.4: Suppose that all homogeneous restrictions are
of the exclusion type, T < MK, and p(Z) 2 T - M + 1, then with unit

probability the system (2.1) is not estimable.

PROOF: Let T < MK and p(Z) 2 T -~ M + 1, then p(X) < p(2) + M
since X has only M more columns than Z. But when all homogeneous restric-

tions are of the exclusion type, then by Theorem 4.4y p(X) =p(Z) + M 1is

necessary. END OF PROOF.

6. CONCLUSION

Klein has asserted that FIML estimation of the linear simultaneous
equation model requires that the data matrix be full column rank. When
the identifying restrictions are of the exclusion type, Sargan has shown
that this conjecture is indeed correct. In the more general case of
1inear coefficient restrictions on single equations, we proved that FIML
estimation is sometimes possible when the data matrix is less than full
column rank. We also showed, however, that this can only occur when the
system can be transformed into an equivalent system with fewer variables
and the data matrix of the reduced system is full column rank.8 In a
very real sense, then, Klein's assertion is still correct in the more
general case.

0f course when the system (2.1) is subjected to more complicated

prior restrictions, the results obtained above need not apply. In the
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case of linear restrictions on coefficients of more than one equation,
simple examples can be constructed which allow FIML estimation when
the data matrix is less than fuil rank and cannot be transformed to be
so.9 Other restrictions which might relax the data matrix rank require-~
ment are nonlinear coefficient restrictions and constraints on the
coveriance matrix. A more careful treatment should be undertaken to
determine the precise relationship between the rank of X and estimability T
when the system is subject to these more complicated restrictions.

Perhaps the most frequently occuring extension of (2.1) is the
model which is linear in the parameters but nonlinear in the variables.
The system can then bhe written

Aq(y,,x) =u (¢ =1,2,...,7)

t
where q(*) is a vector of (possibly nonlinear) functions of the endo-
genous and exogenous variables. As before, the question is whether the
System can be estimated by FIML when the data matrix of observations

Q' = (Q(Yl,ZlL q(yz,zz),...,q(yT,zT)) is less than full rank. It

is my conjecture that this is indeed possible, provided, as in the
linear model, the system can be transformed such that the data matrix

of the transformed variable is full rank. This case also deserves an

extended analysis to verify or reject this conjecture.



FOOTNOTES

The results given below are unchanged if we adopt the nor-
malization 844 = 1, however, the development is more straightforward
with the length normalization.

Sargan argues that the maximum likelihood estimator is
unidentifiable when admissible A yields |AX'XA'| # 0. Rothenberg
[6] has shown that the model is locally unidentifiable at some
point (A,I) if the information matrix is singular at that point.

But when £ = = AX'XA' is singular it is easy to show that the infor-
mation matrix evaluated at (A,I) is also singular. Thus, if one
accepts the argument that admissible A and singular I = # AX'XA' are
maximum likelihood estimates, then we have Sargan's conclusion.

3Fisher [2] has shown that if an analytic function is nonzero
somewhere in its domain, then it is nonzero for all values of its
argument except on a set of measure zero. '

4There is sometimes a choice as to which parameters will be
unrestricted and which will be eliminated (i.e. represented as linear
combinations of the unrestricted parameters). Fortunately P, must
span the same column space and hence P = (P,:P :...:Pi)and must
have the same rank regardless of the choice of parame%ers to be
eliminated for each equation.

5Suppose D is full row rank, then we can partition D = (D :Dz)
and CD = (CDI:CDZ) where Dj is square nonsingular. Now p(CD) < p%D)
and p(CD1:CDl) > p(CDl). But p(CDl) = p(C) when Cl is square nonsingular
thus p(CD) ="p(C).

61t would be misleading, however, to conclude that multicolli-
nearity buys us degrees of freedom for nothing. In order for the
system to be identified in the presence of a collinear predetermined
variable we must impose additional "gver-identifying' restrictious.

7By the same arguments we could show that B.. # 0 with unit
probability, thus, we could satisfy the normalization rule Bii = 1 with
unit probability.

8No gain is achieved over other estimators such as TSLS and 3SLS,
however, since we could also apply them to the transformed system.

~25-
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9Consider (2.1) when M = 3, K = 3 and

.B 0O vy ¢ 0
A= 0 1 B 0 v o0
B 0 1 0 0 v

where we have imposed the normalization B.. = 1. The system will be
estimable if XA'A # 0 for all B,y and A #°0 or A'A = 1. Suppose

P(X) =T =5, then XA'A = 0 supplies 5 equations and A'A = 1 another.
Thus, we have 6 equations (which will generally be independent) in
only 5 unknowns (8, v, Al’ Az, A3), which cannot be solved.
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