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INTRODUCTION

This paper unifies the two leading classical concepts of
equilibrium for an economy: Walras equilibrium and Cournot
equilibrium. The theory provides a fresh setting for the
study of competitive markets, and leads to a description of
economic equilibrium which differs in substance from the one
offered by modern formal competitive theory (see, eg,Debreu [31).

Because modern formal competitive theory does not
permit free entry, the number of firms is essentially fixed.
Further, it is posited that firms behave in one of two ways.

In one case, perfect competition is assumed: firms act as if
they have no effect on price; they maximize profit taking

prices as given. In the other case, imperfect competition is
assumed: firms recognize and act on their ability to influence
price. The model we present here proceeds in quite a diffe-
rent manner. Several distinctive features of classical economic
analysis, in particular free entry, occupy a central role in

the development.

Specifically, we study a model in which the number of firms
is determined endogenously; firms enter when it is profitable
fo entér, and the entry of firms is a driving force in the
explanation of value. The presence of fixed costs (more pre-
cisely, the fact that the efficient scale of firms is bounded
away from zero) places a limit on the number of firms which are
"active" in an equilibrium. When efficient scale is small

relative to the size of the market, equilibrium will be



characterized by a large number of firms and small profits for
each firm. In this case, firms will have very little effect
on price when confined to the range in which they make non-
negative profit. (We do not study the case of large efficient
scale; however, in that situation firms make large profits and
their actions may have a substantial'effect on price. The
resulting allocations will typically lack the efficiency pro-
perties associated with perfect competition.) In contrast to
modern formal theory, a change in the specification of tastes
(and/or technology) will change not only the actions of firms
Present in the market, but typically it will alter as well the
number of firms in each industry.

Price taking producer behavior obtains only as an ideali-~-
zation; the primitive solution concept employed is Cournot-
Nash equilibrium with quantity choosing firms and entry. Firms
choose a quantity action given the actions of other firms;
they evaluate the profitability of their actions according to
the demand function of the price taking (consumer) sector.

More precisely, prices are identified by the condition that
consumer excess demand matches the aggregate action of firms.
Cournot-Nash equilibrium is defined by the following two
cohditiohs; no firm in the market can increase profit by
altering production, and no firm absent from the market can
enter, and achieve a positive profit.

There are a countable infinity of firms of a variety of
basic types available; however, since efficient scale is bounded
away from zero, only a finite number of them are active in an equi-

librium. Since there are only a finite number of active firms,



each firm is significant and affects price: thus, iso-profit
manifolds are not linear. Furthermore, profit functions are
not concave. The assumption that efficient scale is bounded
away from zero could be defended on grounds of realism alone.
However, the need for this assumption goes deeper, and is in
fact dictated by the requirement that the number of firms be
endogenous and determined by the opportunities for profit. For
if production becomes increasingly efficient as output converges
to zero, then the size of firms will be indeterminate (arbi-
trarily small) and the number of firms likewise indeterminate
(arbitrarily large). Non-convex technology and free entry are
intimately related. No theory of economic equilibrium which
requires non-increasing returns to scale throughout can provide
a satisfactory explanation of the number of firms in a market.
Now suppose that efficient scale is very small relative
to the size of the market. Assume that there are a countable
infinity of firms of a variety of types available. Profit
functions may not be concave and production sets are not convex;
this suggests the possible non-existence of Cournot-Nash
equilibrium with entry (see; eg, Roberts and Sonnenschein [12]).
But, if an equilibrium with entry exists, it is highly likely
that it will approximate a Walras equilibrium of the economy
obtained by viewing there to be available, for each firm type,
a continuum of price taking infinitessimal sized firms.
(Formally one replaces the given technology by a cone techno-
logy which includes all multiples of possible productions and

convex combinations of such points.) Although generally



loosely presented, reasoning to support this belief is not uncommon
in the partial equilibrium analysis of a single market. The
availability of a continuum of price taking infinitessimal sized
firms is formalized by a horizontal supply curve the height of
which is given by minimum average cost. The perfectly compe-
titive (Walras) output is determined by the intersection of that
supply curve with the demand curve. Cournot-Nash equilibrium
output cannot fall short of the perfectly competitive output by
more than the cost minimizing output (efficient scale) of a single
firm; otherwise, there would be entry. Thus, if the scale at
which firms are most efficient becomes small relative to demand,
then the deviation of Cournot-Nash output from rperfectly compe-
titive equilibrium is small. (Similar reasoning is no doubt
behind a conjecture of Samuelson [14]. "As the size of the

market grows relative to the size of the minimum scale at which

unit costs are at their lowest, the system approaches the

perfectly competitive equilibrium.") But the above argument

is possibly vacuous unless one can show that the notion of

Cournot-Nash equilibrium with entry is viable when efficient

scale is small relative to the market. Novshek [10] provided

the required argument for the case of the partial equilibrium

analysis of a single market. The central achievement of this

paper is to extend the analysis to the case of general economic

equilibrium. We next make the preceeding argument more explicit.
Consider an Arrow-Debreu private ownership eccnomy ¢ which

satisfies sufficient conditions for the existence of Walras

equilibrium -- with one exception: production sets are not



convex. (As a leading case, consider the zero vector union

a "standard" and convex production possibility set which is
displaced by a vector (of fixed costs) w £ 0 (# 0).) If firms
are infinitessimal relative to the market, and if a continuum
of each type of firm is available, it is natural to consider
the economy £ in which each firm is replaced by the smallest
convex cone which contains the production possibility set of
that firm. The cone so defined is viewed as an industry; and
the implied industry supply curve is the counterpart of the
perfectly elastic supply curve of partial equilibrium analysis.
(Ownership shares are most conveniently translated into industry

, s
ownership shares; however, this is not essential.) Since g_

has convex production sets, Walras equilibrium exists, and an

equilibrium of E} is viewed as a Walras equilibrium of £ in
| which firms both must and do take prices as given. Associated
with every equilibrium is a measure of firms in each industry.
Alternatively, for each o (0 < o< 1), consider the
economy & (y) obtained from the original economy % by replacing
each firm Y by a sequence of firms, referred to as an industry,
each with production set Y(Q) =QY, When l/a is an integer,
Y(x) is viewed as a representation of Y in per capita terms in
an economy in which each consumer has been replicated le times.
As O becomes small, efficient scale becomes small relative to
the size of the market. As small becomes infinitessimal;
ie, as @ approaches zero, it is natural to think of C(a) as

Fa)

converging to & . This is because (in per capita terms) the



sum of the production sets of each industry in &£(a) converges
to the production set of the corresponding industry in é.

We prove that it is a generic property of economies £ that
there exists o > 0 such that Cournot-Nash equilibrium with free
entry exists in £(a) for all q < a. The number of firms in
the market is determined endogenously. Firms who choose to
produce, typically have positive profit, and all firms with
positive expected profit adopt pure strategies. Pure strategies
are not required as a condition for equilibrium, rather they
arise as a characteristic of equilibrium. Firms are permitted
mixed strategies. Marginal firms are firms which maximize
profit by choosing strategies of the form "produce y with
probability w and stay out of the market with probability (1-m)";
by profit maximization, they must make zero profit. For a < o
only pure and marginal firm strategies are profit maximizing
in the equilibria which are exhibited; furthermore, the number
of marginal firms is uniformly bounded in q. Thus, as o + 0,
the proportion of firms which are marginal and the aggregate
output of marginal firms converges (per capita) to zero.
Marginal firms arise naturally in the theory and are a proper
analog of the entity which bears their name in less formal
analysis. Without marginal firms, Cournot-Nash equilibrium
will in general not exist and non-existence will be "robust".

The existence theorem requires as one of its hypotheses
~

the presence of a Walras equilibrium for € at which no industry
can increase profit by increasing the scale of its operation. .
fal

From the present point of view, equilibria of € which fail to

have this property are not proper Walras equilibria. Without
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this property, firms of arbitrarily small size will profit from
entering the industry, and upset equilibrium. Thus, a notion
of downward sloping demand (DSD) arises naturally as a
requirement for Walras equilibrium with entry, and equilibria
which do not satisfy this condition are artifacts of a specifi-
cation of the competitive model which requires that firms be
infinitessimal. While it is natural to think of these
equilibria as failing a "stability test", the considerations
involved are in fact more basic. If o is sufficiently small,
but not zero (ie, if efficient scale is small, but not infini-
tessimal), then Cournot-Nash equilibra of Z(a) cannot.exist
close to a point where DSD fails. For at any proposed

equilibrium of ¢ () near such a point, profits in every

industry must be non-negative, and an inactive firm can make
positive profit by entering an industry in which profit increases
with scale.

Having settled thé problem of existence, it becomes
meaningful to inquire whether the set of Cournot-Nash equilibria
approaches the set of (DSD) Walras equilibria as efficient
scale’(measured per capita) approaches zero. Two questions are
distinguished. First, whether an arbitrary (DSD) Walras
equilibrium of %,can be obtained as the limit (as o = 0) of
a sequence of Cournot-Nash equilibria, one point in the sequence
for each Ei(a), Second, whether every limit of Cournot-Nash

I’

equilibria (as @ —=> 0) is a DSD Walras equilibrium of ¢ .

Both questions are answered in the affirmative. Since the
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Walras equilibria of € coincide with the Cournot-Nash equilibria

of & » the preceding questions might be rephrased as pertaining
to the lower and upper - hemi continuity of the Cournot~Nash
correspondence at the point of infinitessimal (per~capita)
efficient scale. We note here that Cournot's approach of
replicating firms with a fixed "demand sector" does not lead

to prices which approach Walras equilibrium prices. With
efficient scale bounded away from zero and non-negative profit,
prices diverge from those associated with efficient scale
(competitive prices) as the number of active firms is increased.
This is because the output of some firms will necessarily
approach zero, and this will require prices higher than minimum
average cost so that profits do not become negative. And,

of course, equilibrium does not in general exist (Roberts and
Sonnenschein [12]). For a partial equilibrium analysis, see
Novshek, [10] and Ruffin [13].

Taken together, the existence and convergence results
unify the concepts of Cournot and Walras equilibrium. For
economies in which efficient scale is per capita small and
entry is free, the assumption of price taking behavior (in 2)
leads to an outcome which approximates the result obtained with
strategic behavior. Free entry, absent from the current
formal analysis of perfect competition, is a driving force in
the analysis. Firms do not wish to take price as given, but
with entry, as efficient scale becomes small in per capita
terms, the percentage difference between price taking and
strategic behavior becomes small. The concept of Walras
equilibrium islderived from a primitive concept of strategic

behavior; it is appropriate when the data of the economy




indicates small (per capita) efficient scale and there is free
entry. Finally, only the equilibria of & which satisfy DSD
are true economic equilibria. Most of this is of course very

classical; what we offer is an adequate formal setting.

Novshek's Theorem ([10],p.8) on the existence of Cournot-
Nash equilibrium with entry in a single market sﬁggested the
possibility of the general equilibrium analysis presented here.
That work is surveyed in Appendix I. Prior to the completion
of our paper, we had access to a manuscript by O. Hart ([6]).
While Hart's analysis does not include the main concern of this
paper - the existence of Cournot-Nash equilibrium with entry -
he does provide a convergence result which is similar in spirit
to our Theorem 3, but for an economy in which firms choose the
commodity they will produce from an infinite set of possible
commodities. We heartily recommend this paper to the attention
of the reader. Finally, we note that the interplay between
significant fixed costs, the number of firms, and the variety
of products actually produced, has for many years been a central
ingredient of the theory of monopolistic competition. For a
particularly interesting modern treatment in partial equilibrium,

we recommend a paper by M. Spence ([16]).

The next section introduces the formal model. This is
followed by Section III which presents the theorems and two
sections (IV and V) -devoted to their proof. Section IV is exposi-

tory and is designed to introduce some of the concepts used.



It is an important part of our presentation, as the formal
proof involves an unusually large amount of computation.

Remarks and conclusions are contained in Section VI and

Section VII.

THE MODEL

The notion of a basic private ownership economy ¢ is

standard.

a. An. econo = LW, 2 . is:
___.__,_IEX E (Xl’ l’ l,Yj’elj) lS'

al) For each consumer i=1,2,...,m, a consumption set

2 C e
X; © R , an initial endowment vector w; e R& ’

and a preference ordering E:.cXi * Xy,
L

[Whenever we speak of a collection of consumers (X.,® z )

i’ i
the following hypothesis is maintained. Desirability:
t
for any sequence {p } C 8y = [(pl’pe""’pk ) > 0:

Lp, = 1}, if pt +p e Z&\A& , and if for each 1i
B ’

and t, hl(pt) is };i maximal subject to ptxigptwi,l/
i, t "
then ”; h(p )| »> .17,
i

a2) for each firm j or k=1,2,...,n, a production set

v. ¢ R

J

j, Oe Y4 and the asymptotic cone of Yj contains

)[We maintain the hypothesis that for all
no vectors with positive co-ordinates,]

a3) for each i and j a non-negative number ©, . which
indicates the fraction of firm j owned by

individual i. For each j, = eij =1 .
’ i
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The economies € (a) are derived from the basic economy §
by replicating the consumer- sector (1/o times), viewing produc-
tion in per capita terms, and for each j, positing the availa-
bility of a countable infinity of each of the Yj 2_;)f g . In
the economy ¢ (a), we speak of the j'th industry; for simplicity,

ownership shares in € are translated into industry ownership

shares in £ (a).

b. For any economy § = (Xi’wi’zi’Yj’eij) and any number

a > o, the economy

€ (a) = (Xi,w th(a),e.jt) is defined by:

-
i’ i’ 1

bl) the m consumers are those of § ,

b2) for each j < n and each positive integer t,

Yi¢ © th(a) Yj(a) if yjt/a € Yj’ and
b3) © ¢ £ ©;, for all i,j, and t.

ij j

A

The economy ¢ is derived from the basic economy 3 by
replacing each production set of € with the smallest convex

cone with vertex at the origin which contains it. The

A

economy £ is interpreted as the limit of £(a) as o approaches
zero, and corresponds to a view in which the actions of firms

in € are infinitessimal in per capita terms.

c. For any economy (S = (xi,wi,z;i,y.,e.

5 e e

L) A

limit of € is the economy €= (x;,v

i’ 2\—4'1, j’ lj
defined by: '

cl) the m consumers are exactly those of £ R
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~

c2) for each firm j = 1,2,...,n, Yj is the intersection
of all closed convex cones with vertex at the origin
which contain Yj’ and

c3) ownership shares are exactly those of E

The definition of a Walras equilibrium and a Walras
allocation for economies and pure exchange economies is
standard. The Walras correspondence indicates how equili-

brium prices vary with initial endowments in a pure exchange

economy.
d. For an economy & = (x.,w.,k.,Y.,e..), the triple
12710710 790 F
(p*,x*x,y*) ¢ r? x R'M x RM is a Welras eqguilibrium if 3
dl) p*ki - p*bi + §eijp*§j , i=1,2, ..., m,
92) 3= Iys 4oz,
i 3 i
dz) xi>'ix§ implies p¥'x, > pro. 4 §9ijp*yj , and
ak) p*yj > p*yﬁ implies Yy £ Yj .

If (p*,x*,y*) is a Walras equilibrium for ¢ , then (x*,y*)

is called a Walras allocati .

An exchange economy £

= (xi,wi,Z:i) is an economy minus

firms and profit shares (52 and 23%) of a). The pair
(p*,x*) ¢ rRY x &' is a Walras _equilibrium for £ if
ds) p*k§ = p*@i, i=1,2,...,m,

dé6) Ix} = zw,, and~

ar) X, > x¥ implies prk, > prY,
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The vector p* is called an equilibrium price and x* is
called an equilibrium allocation. For (Xi) and (bi)

fixed, the Walras correspondence W assigns to each vector

(wl,wg,....,“h) the equilibrium prices of & - (Xi,wi,ﬁi).

As mentioned in the introduction, the study of equilibrium
with entry dictates the requirement that efficient scale occur
away from zero output. Since we are ultimately interested
in Cournot-Nash equilibria which approximate Walras equilibria
of é , it is natural to view efficient scale relative to Walras
equilibrium prices, p* of é. . Not only is it assumed that
efficient scale occurs away from zero, but in addition that
such efficiency cannot be approximated in a neighborhood of
zero output. For simplicity, we add the requirement that

efficient scale (relative to p*) is uniquely attained.

[a)
e. Let (p*,x*,y*) be an equilibrium of £ . We say that

g has efficient outputs bounded away from zero relative

to p¥ if for all je (1,2,...,n)

el) (Yj (‘{y : p¥y 2 0}) \ (0} is a singleton aﬁyj* (this

defines the scalar Uj), and
e2) for all K,5 e¢ (0,®), there exists £> 0, such that
p*y/lyll < -¢ for all ye(YjﬂNt(O,K))\(I\i(ij§,8)U{ 0}),
- 2

where Bﬁa,b) is the ball in R' around a with radius b.é/
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It is generic that no more than l- 1 industries satisfy
el?jand the remaining industries are such that for all prices
near p*, all nonzero outputs in the cones 9j yield strictly
negative profit. Since the equilibria we construct for Theorems
1 and 2 will have prices converging to p*, these remaining
industries must eventually be entirely inactive, with no profit
incentive for entry. Without loss of generality, we ignore
these remaining industries, and assume that the number of indus-
tries which must be considered, n, is less than {. Of course,
the set of industries which must be considered may vary as we
look at different equilibria of é, but it is a generic property
that the number of industries which must be considered is less

than L.

Production sets are required to have one of two forms
in a neighborhood of efficient scale. Either they are finite
polyhedra, or their boundaries are smooth manifolds. While
we do not require that the manifolds have maximal dimension
(L —=1), we consider a formulation which rules out (mixed)
cases in which, for example, inputs can only be combined in
fixed proportion but yield varying marginal returns. While
cases of this type could be included in the analysis, their

treatment increases notational complexity.

f. If there exists a cube C with center at ij*j such that

polyhedral,at ij*j.
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Let Sj(y) be the largest subset of {1,2,...,£} for which
there exists a neighborhood N(y) such that the projection
of the set of efficient productions of Yj in N(y) on to
the Sj(y) co-ordinate subspace is a singleton.

I.\Sj(y) gives the co-ordinates in which production

is locally variable by the jth firm at y. If there
exists a neighborhood N(ij*j) such that the set of
efficient productions of Yj in N(ij*j) is a smooth
manifold of dimension #(L\\Sj(ij*j)) - 1, then Yj is
called smooth at ij*j. (We maintain the hypothesis
that 1 ¢ L\JJSj(ij*j), where the union is taken over

j such that Yj is smooth at ij*j.) Yj is regular

smooth if D2§(V_y*j) is negative definite where § gives
J

the first co-ordinate of efficient points in N(ijy)
as a function of the remaining #(L\\Sj(ij*j)) -1

smoothly variable co-ordinates.

A conceptual problem must be addressed prior to the
definition of Cournot-Nash equilibrium in & (o). Suppose
that several firms assert a quantity action. In general, there
will be more than one price consistent with their actions; ie,
there may be more than one price which generates a demand that
matches the aggregate action of firms. To see this, consider
the exchange economy § obtained by distributing the actions
of firms in &€ (o) according to profit shares (and adding these
amounts to initial commodity endowments). It is clear that

~

each equilibrium price of ¢ generates in € (a) a2 demand -

which balances the asserted quantity actions of the firms (Rader [11]).
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Unless one price is singled out, it is impossible to evaluate
the actions of each firm, and so a Cournot-Nash game 1is not
well defined. Since our methods demand that price varies
smoothly with the quantity actions of firms, we develop a
terminology to apply to situations in which there exists locally
a twice continuously differentiable selection from an appro-
priate walras correspondence, Balasko [ 2] has demonstrated
that the existence of such a selection is generic in an appro-
priate space.

Prices are expressed relative to the price of the first
commodity; ie, p; = 1. We note that in non-competitive
theory the choice of numeraire typically affects the profit
maximizing action of firms.~/ Our formalization requires that

there is a salient commodity in which all firms measure profit,

g. Let p* be an equilibrium price for the exchange economy

¢ = (X.,wi,ti). The pair (F,p*) is a p* based inverse

demand function if

gl) F 1is a selection from the Walras correspondence of the
the exchange economy € with Py = 1, and
g2) F 1is twice continuously differentiable in a neighborhood

of @ = (wl,w2,...wm) and has value p* at @,

Two notions of equilibrium for an economy g_(a) are
defined. The first corresponds to a Cournot-Nash equili-
brium in mixed (quantity) strategies, where pay-offs are
defined relative to some selection from the appropriate Walras

correspondence. The second, called Cournot equilibrium,
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corresponds to equilibria of the above type in which optimal
mixed strategies are either pure quantity strategies
(typically indicating positive expected profit) or "produce

y with probability = and stay out with probability (1 - =)",
(indicating zero expected profit). Equilibria of the latter
form, Cournot equilibria, are economically more meaningful and
their existence is demonstrated in Theorem 1. Despite the
fact that arbitrary mixed strategies are available in a
Cournot equilibrium, optimizing action leads to only marginal

firms and pure strategy firms.

h. Let o be a positive number. Consider an economy
£ - (Xi’wi’ti’Yj’eij) and the associated economy éi(a).
A Cournot equilibrium in mixed strategies for &(a) is
a non-negative n vector n, with integer components,
a function u from {(j,v):j<n and y;nj} into the set

of probability measures on Ri, and a p based

inverse demand function (F,p) for the exchange

economy £ = (Xi,wi + 291-( X I(l,du(],V))):ali)
3 ] v<,
such that i

hl) for all (j,v) in the domain of u, the support of
u(3,v) < vy(a),

h2) for all (3j,v) in the domain of B, and all probability

8
distributions v with support in Y;(a);/
{ ) > ! -b ——
I(F( jivij)ij, dm) = I(F(j?vij) 35 de(v in jv)),
v o= ﬂj v § ﬂj

where p is the product measure of the p(j,v),
(v<n(3),3Sn), and ¥(v in j,v) is M with the J,+v

co-ordinate replaced by v.



h3)

marginal firms.

for all k<n, and all v with support in Yk(a),

)
I<F(jzv Yjv)ykn(k)ﬂ.’ d(u"U)) § OJ
2

1Y +0
v<n(j)+ 3k

where ux v is | with the additional co-ordinate
(the k,n(k)+1 co-ordinate) v . The probability

measure p on R s the Cournot production

for £ (a) corresponding to the above Cournot

equilibrium in mixed strategies if for all py-measurable

2 . Ca
ACR" p(n) is the u probability that for all j,

z Y., Pelongs to the projection of A onto the
ven(y) J

(L(3-1)+1,...,9(3-1)+ 2 ) co-ordinates subspace of R},

2n Rl-l

The measure p on R induces a measure £ on

by €(P) =p{y ¢ gIn : F( y ) e{l}*x P). The measure

£ 1is the Cournot price distribution corresponding to

the above Cournot equilibrium in mixed strategies.

A Cournot equilibrium for <~ (o) is a Cournot equilibrium

in mixed strategies (u,",(F,p)) such that for all j and v,
either

hh ) u(j,v) is degenerate, or

h5) u(j,v) is of the form "O with probability =, (7 > 0)

vy € Yj(a) with probability (1l-x)."

Firms of the type described in h5) are referred to as

9 . [ [ 3 . .
= Since m > 0, profit maximization implies zero

expected profit.



We now formalize the requirement of downward sloping
10
demand. The economy exhibits downward sloping demand at

(p*,x*,y*,F) if F has the property that Ayﬁ'F(y*+Ay5*)< 0 for XAs#0,
but small; ie, profit of the action y;‘decreases (from zero) as A

increases from zero. It is convenient at the same time to
introduce a measure of the effect on the price of commodity
r of a "one unit" increase in the use (output) of commodity

11
s by industry j; for this we introduce the matrices Bj’ =

Recall that in the introduction we argued that equilibria of

ra)

£  which fail to satisfy DSD cannot be achieved as a limit

of Nash-Cournot equilibria.

i. Let § = (Xi,wi,ti,Yj,eij) bi given.  Assume (p¥,x*,y*)

is a Walras equilibrium of ¢ and (F,p*) is a p* based
inverse demand function for the exchange economy
) *) = w >
£ (y ) = (Xi’ i+ Z eijy*j;‘\-*i)-
For j e {1,2,...,n}, let Bj be the ¢ »¢ matrix with

generic entry

m 8Fr n
[2 o . w5 ((w, 4+ 5 0. vk )
to1 t].owts i s le j)l)]rs

The economy E: exhibits downward sloping demand (DSD)

at (p*,x*,y*,F) if Y;* Byyy* < O for all j.

A variety of non-degeneracy conditions are necessary to

the analysis. Appendix II establishes the genericity of

these assumptions in an appropriate space.
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Let

6 = (Xi’wi’?;i’

Y.,O,
3’

- 20 -

1

N
be a Walras equilibrium of £ .

j) be given, and let (p*,x*,y*)

Suppose that (F,p*) is a

p* based inverse demand function for the exchange economy

é:(Y*) = (Xi:w'

1

1373

X e,.y%
3
is either locally polyhedral or regular smooth at ij§

L 2y)

and that for all j, Yj

LetEB be the {x¢matrix corresponding to the projection onto

the space of commodities (excluding 1) which are smoothly

variable by firms of type j at Y.y%,

]

and let Gj be the (x¢ psuedo

inverse of ngj(ijg) which satisfies PjGjP. = Gj (where

J

gj gives commodity 1 as a function of the other commodities,

on the efficient production surface near ijj*

2
*
and the s,t entry of D gj(Kij ) is defined to be zero

if s or t is 1 or corresponds to a non smoothly variable

component).

G, = [0]
J

Also define p = p?l( ;

If Yj is locally polyhedral at ij.*

J J
ie, p = (p*ps*...py *)

= (FQ(Y*) FB(Y*) v Fl(y*))' The economy {,satisfies the

L

1

%

:

@)

-—
I ] 1

@]

inxin

B
-

condition ND (non-degeneracy) at (p*,x*,y*,F) provided:

inxg&n

does not have eigenvalue -1 (Gj and Bj are {x{, I is
(1-1) x (1-1)).
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2) EL* (0_5}1 -mg AR
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does not have eigenvalue -1, for a sequence of integers

m m.
S")

(Only one m value is used in the proof, but its

magnitude must be greater than m, where m is determined

by the data of the economy.)

33)  [yy*! L B 0
Yo X! : Y o*
2 [13l B, ... Bn] {I + Hy 5,Y,
: AxX4n inxin -
. % O .
' *
Y. | ¥ 9n _
= ~ X2 = “Rnxn
has rank n.
THEOREMS
Theorem 1 is the main result of this paper. For

sufficiently small o, we prove the existence of Cournot

equilibrium with free entry.

market is determined endogenously.

The number of firms in the

Firms who choose to

produce, typically have positive profit, and all firms with

positive expected profit adopt pure strategies. The number

of marginal firms is uniformly bounded.

= Hy(my)
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Theorem 1
[ A

ti’Yj’eij) be given. Assume that ¢ has a

Walras equilibrium (p*,x*,y*), and that there exists a px

Let Q::(Xi,wi,
based inverse demand function (F,p*) [for the exchange economy
g,(y*) = (Xi,wi + ;eijyj*,ti)], which exhibits downward
sloping demand at (p*,x*,y*,F). Assume ¢ has efficient
outputs bounded away from zero relative to p*, and for all
j,Yj is either locally polyhedral or regular smooth at ijj*.
Assume in addition that the non-degeneracy conditions ND are
satisfied. Then, there exists a > O such that for alla < &
there is a Cournot equilibrium for the economy ¢ (). Further-
more, there exists a fixed number N such that these equilibria
may be chosen so that for all a hs o, the number of marginal
firms is less than N.

It follows that as o approaches zero, the maximum of the
sum of the outputs of the marginal firms in each industry
becomes arbitrarily small (in euclidean norm) relative to

the sum of the outputs of all firms in that industry.

Theorem 2 is a corollary to the proof of Theorem 1.
It establishes that an arbitrary (DSD) Walras equilibrium of
£ can be obtained as the limit (as @ - 0) of a sequence of

Cournot-Nash equilibria, one point in the sequence for each

E,(a). Furthermore, the rate of convergence is «.

Theorem 2

Let the conditions of Theorem 1 be satisfied. Then there

exists p, from (0,1] to the set of probability measures on



_23_.
Rgn with the following property: there exist Sl,SE,&e(O,m)
such that for all o < a
2.1) p(a) is the Cournot production associated with some

Cournot equilibrium (M(a),a),(F(a),p(a))) of & (a),

2.2) Max lyx-vl < 0S,, and
ye support p(o)

2.3%) Max e -pll < as,, where £(a) is the
pe support £(a)
Cournot price distribution corresponding to (F(a),p(a)),

and p' = (pg*, p5* co. PR

Theorem 3 establishes upper hemi continuity of the
Cournot equilibrium correspondence at o = 0: any sequence of
Cournot equilibria with mixed strategies, one for each
ak(ak + 0), for which expected output converges, converges
to a DSD Walras equilibrium of ? (which is a Cournot equili-
brium of £(0)). Global analogs of el) and e2) are introduced

and guarantee that efficient outputs are bounded away from zero

at all relevant prices.

el') For all j, if t ¢ the interior of § is such that
t'y S 0 for all erj then there is at most one

0 £ y(t)eYj such that t'y(f) = o.

e2') For all j, with t and y(t) as in el, given K,8c(0,®),
there exists £ > O such that for all seN(t,&),

[(yev, | s'y = 0) M N(0,K)] C [{0}UN(y(t),5)].
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A A PN
e3') The cones Yo, Yo, oun Y, -§ are positively semi

independent, and for each j, O is an exposed point

of Y..
J

Theorem 3

Let ¢ = (X,,%,2Y

i"?’J’eij) be given. Suppose that the
Yl’Yg’ see Y safisfy el', e2', and e3' and that there
exist:
(1) F : Rﬁm‘+ {1} x R ﬁ-l, a selection from the Walras

correspondence for exchange economies with Xﬁ, &i fixed;
@
(ii) a sequence (ozk)k=l of strictly positive reals; and
(iii) a function p from {al,ag,QB, ...} to the set of
‘o v
probability measures on R n,such that
(iv) a +>0as k>,

(v) for all k, p(ak) is the Cournot production associated

with some Cournot equilibrium in mixed strategies

(loy ), ey ), (F,p(ey)) of € (0 ) and

(vi) there exists y*cR™ such that I(y,dp(ak))-a-y* as
k = o,
Then

3.1) for all ¢> O, k¥i?m P(ak) { N(y*,g) } = 1.

Furthermore, if F is continuous at y¥, and we let g(ak) denote

the Cournot price distribution corresponding to (p(ak),F),

3.2) there exists ﬁeRﬂul such that for all ¢ > O,

1 =
k;moo g(ak) { N<pl£) } = l’ and
A
3.3) there exists X*ele such that ((1, p ),x*,y*),
N
is a Walras equilibrium of § .



Finally, if F is twice continuously differentiable in a neigh-

borhood of y* [more precisely in a neighborhood of (wi+26ijyf)ﬂ
3

and Bj is defined as in i for each j =1,2, ...n, then

Iv. INTRODUCTION TO THE PROOF OF THEOREM 1

The purpose of this section is to develop some of the concepts
used in the proof of Theorem 1. Our framework is partial
equilibrium: a single market with U-shaped average cost curve
firms and downward sloping demand. The reader will profit
from turning first to Appendix I, where that framework is
explicitly introduced. Let y* be the competitive industry
output, osy* be the "competitive output" for a firm of size o,
and EIS (o ) be the largest y for which there is a non-zero optimal
response, y(a). The following "residual demand" diagram (figure 1)
is standard; the average cost fuhcﬁion Acé and demand function
F are drawn relative to the action y* - ayy* by other firms.
We note:

1) The profit maximizing response of a single firm

is less than aXy* and profit is strictly positive.

2) BAs the origin of the average cost function (equal to
the aggregate action of other firms) moves to the right,
maximum profit declines, and at aggregate output of others,
EIS(a), maximum profit is zero and is achieved at both

zero output and output y(a).
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! |
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EIS () i)

Figure 1
AC& is the average cost curve positioned with respect to
residual demand when the output of other firms is y* - a¥y*.

Acz is the average cost curve positioned with respect to

residual demand when the output of other firms is EIS(a).

(Note that oK converges to zZero as o converges to zero.
However, in this diagram [y* - oK, y*] is independent of o
and F varies with a, because the horizontal axis is relabeled
as 0 varies.)



3) By adopting the convention that aK is a fixed distance
on the horizontal axis, the shape of ACa remains fixed in
our diagram as o varies. For a qqffiéiently small,
[EIS(a) - (y* - asy*)]/a and [uﬂy* - y(a)l /0 are non-
negative and converge to zero, since F becomes flatter

in the diagram with standard unit a3y*.

The backward map b(y,a) [b(y,x) # y] indicates what
the aggregate industry output must have been for the non zero
action of one maximizing firm to be y-b(yaa) yielding aggregate
output y. For o small, and ye[EIS(a), EIS(a) + y(a)],
b(y,a) is a well defined continuous function, Define the
intervals B(a,N)= (y-N(y-b(y,a)) | ye[EIS(a),EIS(a)+y(a) ]},
and note that B(a,N+1) is left of B(o,N); however, they

may intersect.

If OeB(a,N) for some N, then there exists
ve [EIS(@),EIS(a) + y(a)] with y - N(y-b(y,>)) = 0, so there
is a symmetric N firm equilibrium with aggregate outpﬁt Y,
each operating firm acting optimally and earning non-negative
profit, and no incentive for entry (since O is an optimal

response to y > EIS(a)).

If O ¢ B(o,N) for all N, consider the backward mapping
for a marginal firm. For expected output
ye [EIS(a),EIS(a) + y(a)] a marginal firm must have come from
EIS(a) with action y(a) and probability [y - Eis(a)]/y(a).
(A marginal firm is.also profit maximizing, so it can only
come from EIS(a), where it is indifferent between action y(a)

and 0. For any y # EIS(a), a pure strategy strictly dominates
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every mixed strategy.) As y varies through [EIS(a),EIS(a)+y(a)],

the expected output of the marginal firm varies through [0,y(a)].

Let N be such that B(o,N + 1) < 0 < B(o,N). Using N
regular firms and one marginal firm (and ignoring here a minor
correction [which vanishes as o — 0] necessary because expected
price is not equal to price of expected output), the total
backward m@p from EIS(a) + y(a) goes to zeB(o,N + 1) < O
since the marginal firm has the same action as a regular firm,
with probability equal to 1, while the total backward map from
EIS(ca) goes to zeB(a,N) > O since the marginal firm has action
O with probability equal to 1. The map is continuous, so
there exists an equilibrium with N regular firms and one
marginal firm, with expected output ve(EIS(a),EIS(a) + y(a)).
In the eguilibrium, all firms are profit maximizing, regular
firms earn strictly positive expected profit, the marginal
firm earns zero expected profit, and there is no incentive
for entry. (It should be noted that in the partial equili-
brium model marginal firms are not needed for small o; ie,

OeB(x,N) for some N (see Appendix I).)

The essential ingredients of the above argument are:
first, to surround zero by the intervals B(a,N) and B(a,N + 1)
[for some N], and then if necessary (O¢B(a,N)), to introduce
marginal firms to capture zero. For situations in which
there is more than one commodity (and/or more than one industry),
the corresponding problem of surrounding and capturing zero
(starting at a point of non-negative profit and no entry)

becomes more complex. The non-degeneracy assumptions

(j1 - j3) play a central role in the argument. Appendix II

establishes the genericity of these assumptions.



PROOFS

The proof of Theorem 1 follows a sequence of lemmas.
Let zj(Z,a) denote the set of profit maximizing actions for
a firm with production set Yj(a) when the action of other
firms is y* + o3z, Figure 2 is an analog of Figure 1. We
have represented the production possibilities of the jth firm
with || oK || a fixed distance in the diagram. If the action
of "other firms" is y* + aZ (for some fixed a), iso-profit
manifolds are defined for the firm. Since the axes are re-
labeled as a varies, the relation between y* and v* + a2 remains
fixed in the diagram. As o approaches zero, the actions of
"other firms" approach the competitive output, and in Figure 2
(with || aK || a fixed distance), iso-profit manifolds "converge
uniformly" to the iso-profit hyperplanes Hp* associated wifh the
competitive equilibrium price p*. (The dependence of the
iso-profit manifolds on a in Figure 2 is analogous to the
dependence of the inverse demand function F on o in Figure 1.)
In the limit, the profit maximizing actions for the ij firm
are 0 and aéjyj*. Lemmas 1-4 show that for o sufficiently
small, the profit maximizing actions of a firm are either 0 or

an efficient production in a neighborhood of axjyj*.

Lemma 1: Assume the hypotheses of Theorem 1 are satisfied.

Given K < ® | there exists M < ® such that x| < Mo for

1
all xezj(z,a) for all (z,u)eN(0,K) x (o,1] rin x R™,



Figure 2

Hp* is the set of actions by a firm of type .j which

earn zero profit when the action of other firms is y* + o2

and prices are fixed at p*.
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Proof of Lemma 1:

The set of aggregate (over industries as well as firms)
productions

s = [\2) (0,(@) + (2lyr +o0z) + 501)] N 2 °
ZeN(0,K} t

is bounded above. By desirability (see al) and the upper
hemicontinuity of the Walras correspondence,

(F(y) | v = yj(a) + y*¥ + 0Z ¢ Domain of F for some
(yj(oc),o:,z) € Yj(a) x (O,l]xN(lO,K)

such that yj(a) + %(yt* + azt) + %wies} is contasined in a
closed cone C in the interior of ot (this set contains all
prices that could result from a feasible action in Y (o) when
others actions are y*+ az, (2,x)eN(0,K) x (0,1]). Since the
asymptotic cone of Yj is contained in -91, there exists M < «
such that px < O for allIMC\%ixeY (1), || x|| > M. Noting

OeYj(a) = an(l completes the proof.”

Let EYj(a) be the set of technologically efficient
productions in Yj(a)

EY (@) = (ye¥,(@) | I 0 4 xe2% such that y + xe¥ (o).

Lemma 2: Assume that the hypotheses of Theorem 1 are
satisfied. Given K < ® there exists @ > O such that

erYj(a) for all xe zj(Z,a), for all (z,a) e N(O,K)x (0,4].



Proof of Lemma 2:

The profit of a firm in the jth industry which chooses x

given that the actions of other firms are y¥ + QZ is

I(x|2,0) = x'F(y* + aZ + x). By the previous lemma || x| - ©
as a -: 0, and by g2 F is continuously differentiable at

y* + 02 + x for all o sufficiently small. Thus,

JI

= i *
Bxi Since Fi(y ) > o0

dy

for all i, it follows that gg > 0 for o sufficiently small, and

i Fi(Y* + 0Z + x) + X,(@E(y* +QzZ o+ X))-

ji

erYj(a) for all Xezj(z3a)’“

Lemma_ 3: Assume that the hypotheses of Theorem 1l are
satisfied. Given K,8¢(0,%) there exists & > 0 such that
xeN(aXSyj*,QB)L){O} for all xezj(Z,a), for all

(z,0) e N(0,K) » (0,&].

Proof of Lemma 3:

By e2 and the continuity of F in a neighborhood of y*, there

exists (M) > O such that Y'F(W7/1[YH < - (M) for each

ye[er\N(O,M)]\\[N(bjyj*,S)U{o}] and W close to y*, Setting

M equal to the M value guaranteed by Lemma 1, for o small,

é x'F(az + y* + x)/fH éx[l < - g(M) for éx e[YjﬁN(O,M)]\\
[N(gjyj*,B)L,[O}]. Noting that é zj(Z,a)C;N(O,M) for

(z,00) e N(O,K) x (0,1] and that the zero action yields zero

profit completes the proof.l



Lemma L : Assume that the hypotheses of Theorem 1 are
satisfied and that Yj is locally polyhedral at Bjyj*n
Given K < @ there exists a > O such that zj(Z,a)CZ{O,agjyj*}

for all (Z,a) ¢ N(O,K) « (0,a].

Proof of Lemma lL:

Let Tj = {teR'IH t || = 1 and there exist yjeYj, A > O such
that t = Ma.y.* - y.) and Py, y.* + (1- .eY. for all
(3374 yj) he ( p)y] 3

be[O,1]}. If Tj = ¢, Lemma 3 yields the result. If not,
there exists 8 > 0 such that
N(y.y.*,8) Ny, = [y.y.* - at| teT,, ac[0,9)]}.

(v, ) MYy = oy, | tery, aclo,8))
By Lemma 5)$Zj(Z,a)CL({O}L)[N(§jyj*, 6){\Yj]) for all
ZeN(0,K), for all a sufficiently small.
For any xeN(xjyj*,S)(WY. ,

J
M(oax|Z,a) = ox'F(y* + aZ + ax) is differentiable for a small,

210F. (y* + az + ax)j'

and JM (ax|Zz,a) = aF(y* + 0z + ox) + o Sot x.
ox . ij ik
1 v@E ! ; 1 . {C\)F . '
For each teTj, Sty (ax z,a) = t'F(yx + aZ + ax) + at 35§§kl
Tik

which is strictly positive for o sufficiently small since
t'F(y*) > 0 for all teTj, and aZ + ax —+0. Thus, for

o sufficiently small, for all ZeN(O,K), x =8y maximizes
N(ox|z,a) over the set xeN@j yj*,SXWYj,iand

zj<z,oc>C(o,oc zsjyj*}- il



The technique of proof involes separating out the deter-
mination of how many firms of each type are in the market from
what an active firm does. From Lemmas 1-4, if other firms
are doing approximately y*, then the action of a firm which
is active in equilibrium (and thus making non-negative profit),
will be approximately aéjyj*. Wé therefore study those
actions of firms which maximize profit on a neighborhood of
abjyj*. As o converges to zero, the number of firms present
in an equilibrium grows without bound. Although the deviation
of active firms fromcnﬁyj* becomes insignificant, the total
deviation of active firms may be significant from the view-
point of entry of new firms, and is thus important for the
analysis. Lemma 5 computes the deviation of an individual
firm, and Lemma 6 makes use of the significant aggregate

deviation.

For each j, let Sj > 0 be such that N(sjyj*,sj) is a
subset of the cube C (if Yj is locally polyhedral at Ejyj*)
or the neighborhood N(xjyj*) (if Yj is locally regular smooth

at gjyj*) which is described in f.

Let zj*(Z,a) denote the set of profit maximizing actions

in Y.(a) N N(azjyj*,asj) when other firms' actions are y*+aZ.
]
By Lemma 3, for o sufficiently small, zj*(Z,a) = zj(Z,a) if

n(x|Z,a) > 0O £for some xezj*(z,a).



Lemma_5: Assume the hypotheses of Theorem 1 are satisfied.
Given K < ® there exists o > O such that for all
(z,a)e N(O,K) x (0,a] =z.*(z,a) is a singleton and

* = K - . Z, Z, + (B.+B. . A
2,%(2,0) = any - o QP Sy lp 1|(TeBeBet 85(ByBy )y )

(= axjyj* if Yj is locally polyhedral at gjyj*)

(=(C)?if Yj is locally polyhedral at ijj*)'

[Recall p' = (py* P5* ceep*)]

Proof of Lemma 5:

The results for locally polyhedral Yj follow from the
proof of Lemma 3,

If Yj is locally regular smooth atxjyj*, by Lemma 2
we can restrict attention to the smooth efficient manifold,
so the profit maximization problem becomes

max H(a3 Y5 * + oox + ag (x)e IZ)a) where g. gives the
XeP. (R) 3 J

dev1atlon of the first coordinate from %yjf as a function of

the deviations x of the other coordinates from 5. yj)l( on the

smooth efficient manifold of Yj{\N(zjyj*,5j).
[Pj is the projection to the space of components other than

1 which are smoothly variable].
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Restricting attention to changes in x which are in Pj(Rl),

for a sufficiently small the profit function is differentiable, A

QEL - O{P + [69»X>C71][F ) o+ Q[S_ti )] {ijj*+X+gj(X)el}]
estricted f, y]k
to Pj(R ) -

(\\ \

where F and é{; are evaluated at y*+aZ+a{x.y.*+x+g.(x)el}
dy 377 J
jk

and @gig) is defined to be zero for those components not

variable in Pj(RQ).

Since || x || = O as o ->0 for optimal choices,

2
II =

R T« & g;&fl + O(ag) where the s,t entry of
ox ox' . OXoX

restricted

to p.[R")

J
3g: (x) . . . . .
__21__ is defined to be zero if either x_or X, 1s not variable
oxXox " S
: . 32g.(0)

in P.(R™). Y. is regular smooth at %ym* so x' 3 x < O

) ) ] ok
for all O % xe Pj(R‘).

2 2
Since é~21£§2 converges to f_ﬁ;ﬁfz as x -» O, (z,a) 1is
Ox ox Oxox!
a singleton for o sufficiently small.
8
To find the unique profit maximizing x, set Sg = 0,
use the Taylor expansion for F( ) and[éﬁi&_){(at y*) and
Wik |

Q%%E)(at 0), note that, as defined, @-XQ): —PjF(Y*) and solve

to find
0 , , ~ L2
X = -occ-;j[_.§ }{ZBtzt+7f( ji—Bj )yj*} + a)y.

(Recall F, 1 so the first row of each B_ is a zero vector. )

v 2
With this evaluation of x, gj(x) = —F'(y*)ij + {(a”) and

the zj*(Z,a) result follows.
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The azj*(z,a) result follows from implicit differentiation
oz ' .
of the first grder condition along with the evaluation of x above. !

Using the "reaction functions" of Lemma 5, it is possible
to find a Cournot "equilibrium" when the number of firms of each
type is fixed and allowed to be a non integer and & is small.
Lemma 6 computes "equilibrium" aggregate output as a function of
o and the number of operating firms of each type, which Lemma 7
shows that for o small, for certain numbers of operating firms,
each firm earns positive profit (so, as noted in the discussion
before Lemma 5, the "reaction function" gives the true profit

maximizing action of the firm) and there is no incentive for entry.

Let z(v,a), VERn, be the normalized error from

competitive output y* in a symmetric (within industries)

"equilibrium" in which there are &%- + vj firms of type 7
]

operating and forced to maximize profit over the restricted

set Yj(a)(]N(aaaxj*, a5j) for j = 1,2,...,n (no entry is

allowed). The normalization is such that aggregate output

in this "equilibrium'is y* + az(v,a). Note that dﬁ? + v
J

1s not restricted to integral valués.

Lemma 6: Assume the hypotheses of Theorem 1 are satisfied.

Given K < ® there exists o > O such that for all

1

(v,a) ¢ N(O,K) x (0,0] ¢ RU%R , @ Z(v,a) exists and

-1 o -plg [20O]5. "
Z(v,a> = -{I + Hl} —vjdjyj* +{é I]Gj Lp I!Bj ij | -+ ( (d>
: J

where Hy is the matrix in j1 (so (I + H} is invertible).



Proof of Lemma 6:

Let @j(z,a) = 7 + % zj*(z,a) and define ¢j(z,a) by
cj(¢j(z,a),a) = Z. By Lemma 5, given K < @, there exists
@ > 0 such that for all (Z,q) e N(O,K)x(0,a], ¢j(z,a) is a

well defined function and, by implicit differentiation,

E¢iﬁfig) = I + a{o -EI}G.B +(J(a?).
th' O I

Using Q (¢ (0,a),a) = (Cand 2 V {2z, a) Z + 1 zj*(z,a),

o

O[Bj vy +(i(0F)

H

we find ¢j(o,a) = -a Y * o+ oy [ j

and, for ZeN’/O,K),

0 -p'| [o 0 2
V.(z,a) =2 - 3.y.* + a p,G S B,Z, +\B. *} o+ (a”).
]( /) 33 o 1133 I!{t % T Y85y (o)

For veR" the backward map ¥(Z,v,x) is defined by

1 1
\?(Z,V,Oé) = Z + o yv* +:(&T; + Vj)[qu(Z,Oé) - z].

To understand the significance of this function, note that

for aggregate output in a Cournot equilibrium in pure strategies
of (=) to be y* + qZ, each operating firm of type § has

action a(z - ¢j(z,a)) [as a result of defining ¢j(~,a) as the
inverse of ¢j(',a)]. If there are &%T + V5 firms of type j
operating with pure strategies, their aggregate production is

(a%— + vj) a(z - ¢j(z,a)). Hence if ¥(z,v,a) = O, then

3
V¥ + QZ = Z(&%— + vj) o (z - ¢j(Z,a)), and the aggregate output
37
of the &%— + vj firms, j= 1,2,...,n is exactly the aggregate
J
output needed. Thus, the "equilibrium" error Z(v,x) satisfies

v(z(v,a),v,a) = O.
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2¥(2,v20) _ 1, §(__; ‘v )oY

+<J(a)>

and for (Z,v)e NKO,Kl) xN(O,Ré)GZRQn“k ®" cohverges

as a converges to O (where K., K, are any

uniformly to I + H. 12 Ky

1

finite numbers).

o , [ 0 = { 5 e
Also, Y(O,v,a) = ( AR P +[§ ? J L.P IJ ﬁ'yfﬁ +(;(@)

\
so Wz,v,a) = ¥(o,v,a) + (I + ﬁl}z +{Jla) For
(z, v)eN(b.K-)><N’O:K ), and
Z(v,a) =={I + H. } (0, v,a) +(3(a) [Given the X in the
statemeént of the lemma , an appropriate Ky is ‘determined by

(2(v,a) | ven(0,x)}.] ||

Lemma 7: Assume the hypotheses of Theorem 1 are satisfied.
There exist v¥eR”, €* > 0, @ > 0 such that
n(zj¥(wj(Z(v,a),a>,a)1‘¢j(21v,a),a),ag > 0 &nd
H(zj*(z(v,a),a)l zZ(v,a),a) < 0 for all j§ = 1,2,...n, for

all (v,a) e N(v*,ex)x (0,3].
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Proof of Lemma T:

1 N 0
Let z(v,0) = -{I + Hl} -vy 3Y5 + o 1 G4 5

Then for any K < ®, z(.,x) converges uniformly to z(*,0),
az(°,x) converges uniformly to zero, and ézj*(¢j(z(-,a),a),a)

and ézj*(z(',a),a) converge uniformly to -jyj* for veN(O,K).

The first expression for profit is

zj*'(¢j(2(v,a),a>,a) F (y* + az(v,a)) =

]

o(z(v,a) - ¥5(2(v,a),0) ) B(y* + 0z(v,a))

2 ' ) 3 : ' O _p' —
o ajyj*‘z&BtZt(v,a) + (a”) (using F'(y*) 01 *® 0)

so ég times that profit converges uniformly to

wy ¥ =B Z, (v,0).
dn

343 tt<

[

The second expression for profit is
zj*‘(z(v,a),a) F (y* + az(v,a) + zj*(Z(v,a),a))z

2. ) 3
o 5jyj*4(%BtZt(v,a) +thjyj*) + (a”)

so ég times that profit converges uniformly to

vy ¥ (2B, 2, (v,0) + .B.y.*).
5¥5*(3B 2 (v, 0) 5B4Y5*)

Thus, it suffices to show that there exists a v*ecR"

such that
i v *! . y *'' B Y *x
0 << 1t [B, . B ] z(v*,0) << - e
y‘ *x! l n . y * B Yy * -
n . ‘n‘n nin
¥y* dz(v,0), Y1" L1 1Yy
3 . AR 5 — - .
But by j3 : *'[Bl .Bn][ 30 I=- N [Bl...Bn](I+Hl} o
yn - Yn .
- O O
has full rank, so such a v* does exist. By the uniform

convergence on compact sets and the openness of the condition

just above, the *> 0 and o > O also exist. |

2¥2

* 0

*
nyn
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There exists o* > 0 such that for all
(v,a) « ﬁ?;:jZ;5A (0,a*], the z(v,a) "equilibrium" has
strictly positive profit for operating firms who are therefore,

by the remark before Lemma 5, at global profit maximizing

Qggi;iggg (zj* = zj) and there is no incentive for entry

over the entire production set Yj(a). It only remains to

show that there is an equilibrium with integral numbers of
firms in each industry. To this end, we introduce marginal

firms, and a backward map for marginal firms (see figures 3 and 4).

As in section IV, a marginal firm must be faced with an
aggregate output of other firms which makes it indifferent between
entering and staying out of the market, i.e., the output of other
firms must be on the marginal firm's entry indifference surface,
Given an appropriate aggregate output ¥, the backward map for a
marginal firm gives a point Z on the entry indifference surface
for that firm, and a number q between zero and one such that when
the firm is faced with output g by other firms, and is active in
the market (at its optimal nonzero output) with Probability q, ang
inactive with probability l-q, then expected aggregate output is y.
Lemma 8 computes the backward map for marginal firms,

First, for €ach j, for each K < o define the entry
indifference surface EIS (K,0) = (2eN(0,K) | n<zj*<z,@>, Z,0) = 0)

and EIS (K) = (ZeN(O, K 2 BLZ, = -5y ¥ By x )
; yK) | Yi" E B.Zy 85V 5 Byy ¥

For « sufficiently small, EISj(K,a) is a ¢t manifold with
boundary (since F and zj* are,Cl) and there exists Ml < @

such that d(EIsj(K,a), EISj(K) ) < aM (where d is the

1
Hausdorff metric),

For ae[0,a*] let g(u) - (Z(v,a)|ve N(V*, ¢7) ). Since
z(*,a) converges uniformly to z(+,0), there exists M, <=

such that d(Q(a),Q(O)) < oM, for all small g. Thus for K
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Figure 3 ' Figure 4
L - {y*+az|y.*' (B.,2.+B,Z.,) = 0}
1 1 17177272
Li = {y*+aZ|yl*'(Blzl+B2Z2) = -%y,*'By,* = {y*-#aZ]ZEEISl(K)}
Lg = {y*+aZ]y2*'(BlZl+B2Z2) = 0}
L% = {y*+aZ]y2*'(BlZl+B222) = —82y2*'B2y2ﬂ'= {y*-+az|zEEIsz(K)}

Via) = {y*+aZ(v,a) | veN(v¥,e¥)}

Li(a) = {y*+aZ|ZeEISl(K,a)}

Lg(a) = {y*+az-+zl*(z,a)[ ZeEISl(K,a)}
L%(a) = {y*+a2 | ZeEISz(K,a)}

Lg(a) = {y*+aZ-Fzz*(Z,a)l ZeEISz(K,a)}

a

E:E = ql(zla)

C

33 = 9,(2,0)
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sufficiently large (to include the entire area of interest)

there exists o, > O such that for all ae(o,al],

1

min min (] x-vl| l erISj(K,a), yveQ(a) }
J

> % min min {|| x-y|| l erISj(K),YeQ(O) } >0
J

where the last inequality follows from Lemma 7 and the
definitions of Q(0) and EISj(K).

For each j, for all ZeQ(a), ae[o,al], the backward map
for marginal firms is defined by
llem(Z,oz) - (§j<z,a), d;(2,2)) eEIS (K,0) x (0,1) such that
%j(z,a) + é qj(z,a) zj*(ﬁj(z,a),a) = 7 (where K is
sufficiently large to include all relevant points).
Lemma 8: Assume the hypotheses of Theorem 1 are satisfied
and v¥,g¥ are as in the statement of Lemma 7. Then there
exists o > O such that

¢;1(Z(V,a):a) = (Z - qj(Z(V:O)JO)Kij* ’ qj(Z(V,O):O)) +()(d)
for all (v,a) e N(v*,e*) x [0,a], where

q,(2(v,0),0) = Y5" ¥ P %e(¥:0)

Y.X BLuyl¥
nyJ JYJ

Proof of Lemma 8:

m
Existence and uniqueness of ¢j(Z(v,a),a) for small o follows

from the existence and uniqueness of ¢j(Z,a) and the fact that
m%n min (|| x-y[l/ erISj(K,a),yeQ(a)j > 0 for small «. This
also guarantees qj(Z(v,a),a) is bounded away from O and away
from 1 for o small and veN{v*,¢*). The expression for
¢?(Z(v,a),a) follows from the properties of zj*(z,a) and the

fact that d(EISj(K,a),EISj(K)) < oM, for small . The

1
expression for qj(Z(v,O),O) follows from the form of EISj(K)

and the fact that éizj*(Z,a) converges to 5jyj* as o converges to O.H
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q,(2,0)

Let q(z,a) = . By j3 2nd Lemma 8

q, (2,a)
{q(z(v,a),a)|veN{v*,2%) } is the closure of a neighborhood

of q(z(v*,0),0) for o sufficiently small. Thus, there exists
an integer m > 0 and an o > O such that for all ae(O,&],
(mg(zZ(v,a),a) - v|veN(v¥,g*)}D([-1,1]" + {mg(z(v*,0),0) - v}).

We could use a different integer m, for each component of q,
which corresponds to having a different number of marginal

firms in each industry.

Proof of Theorem 1

Let v¥,€* be as in Lemma 7, and m as in the remarks after
Lemma 8. For all a > 0, there exists a vector ™ (a) with
integral components such that
L

|”j*(a)‘(“— + vj*) + mqj(z(v*,o),o) | < L

agj > for a1l j, so

there exists a* > O such that

ﬂj*(a) -(&%5 + Gj(a))+-mqj(z(v(a),a),a) = 0 for all j,

for some Gj(a) e N(v*,¢*), for all a e (0,a*].

_1_ x 1
( Note lnj*(a) - 5%, | < | vy | +m + 5 )

Now consider a backward mappiﬁg from Z with m marginal
firms of each type, and ﬂj*(a) pure strategy firms of type j,
j =1, 2, ... n.

If F(y) is not linear in y near y* then an error is

introduced because expected price is not equal to price of
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expected output, so the backward maps, and the entry indifference
surfaces etc. must be redefined to take account of the effect
of the mn firms using probability distributions. However, the
effect of all these changes is only (J(a) since the support of
the aggregate distribution is contained in some ball with radius
QK for some K < ®, and for bounded Z, F(y*+az) is essentially
linear in Z for small a.

Thus the contribution of the pure strategy firms is
1

1 .
5 ¥ ... < ), while
1 32 gn ’

the contribution of the marginal firms is

¥(z, ™(a) - éf,a) + (O(a) where It = (

[+

d4, ¥y Y.* | -
m| L 171 +(](a). The backward mapping from z(v(a),a)

«

In *n

Yn*
with ™ (a) = éP + v(a) - mg(v(a),a) is therefore

9 (v(@),a) uy *

¥z(v(a),a), v(a) - mq(¥(a),a),a) - m| 1 o+ (o)
qn(V(a),a)anyn*/
(where qi(v,a) = qi(Z(v,a),a)) which is equal to
- - - ‘ 1f0-51 (oo o
z(v(oz>,oc).+ (vj(a) mqj(v(a),oz):)ajyj* + 5 o IJ/GJ'{_*? ;fEBtZU 4Bivd

,
5,

- (qj(‘_f(o«’):@)‘cijj*) +{_\/\'(Of)
: ] .

— — _—l ' N

= {I+H}Z(v(a),a) + (-v.(a)x.y.* +[8 ?:k. [9 defy.*; +U(a)
J 173 sk .
: : ‘3

= (}(a) by Lemma 6.

If we call this backward map WF(Z,ﬂ*,m,a), then

3%E = I + H, +(D(a) where H, is the matrix in j2 (we choose m

z'

to be one of the mg values).




- 46 -

) L . : .
For o sufficiently small SEE is 1lnvertible by j2. Since we
are interested in a compact set of v values, and therefore a
compact set of Z values, and the functions we consider converge

uniformly on compact sets, there exists o, > O such that the

1
™ () pure strategy and mn marginal firms are all acting
optimally and generate aggregate expected output

v* + az(v(a),a) +(](a2), and since v(a) e N(v*,e*), by

Lemma 7 and the uniform convergence, there exists & > O such
that for all ae(0,a], there exists a true equilibrium with m

marginal firms of each type and ﬂ;'(a) pure strategy firms of

type j, j=1,2,...,n. In this equilibrium

a) there is an integral number of firms in each industry,
m + nj*(a),

b) 211 firms, including marginal firms, are maximizing
profit over all mixed strategies on their entire
production set,

c) all pure strategy firms earn strictly positive expected
profit, while marginal firms earn zero expected profit,

d) there is no incentive for entry (entrants earn strictly
negative expected profit if existing firms maintain
their actions),

e) there exists S < ® such that the support of p(a) is
contained in N(y*,aS) where p(&) is the Cournot
production associated with the constructed Cournot

equilibrium of E(a).”
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Proof of Theorem 2

Let 0y be the o value guaranteed by Theorem 1, and let
p:(O,&o]-s probability measures m r'D be defined by p(a) =
the Cournot production associated with the Cournot equilibrium
of f(a) constructed in the proof of Theorem 1. (This
satisfies 2.1.)

As noted in the proof of Theorem 1, there exists S; <=
such that supp p(a) N(y*,asl) for all ae(O,&o]. Since F

is c® in a neighborhood of y*, there exists S. < ® and

2
ae(o,ao] such that supp g(a)C?N(E,asz) for all ae(o,&], where
€(a) is the Cournot price distribution corresponding to

(F(a),pla)) [F(a)=F].]|

Proof of Theorem 3

The set of feasible states is a subset of

fF’ = [yeRQn[yjer, ;yj + Zwi > 0} for each economy E:(a).
J i
By e3', there exists K < ® such that°fCN(0,K). Also by

e3', O is an exposed point of Qj so there exists xj such that
y‘xj > 0 for all yer\\{O}.

A
By decomposing each erj\\[O} into a multiple of xj and a

vector orthogonal to xj, noting that
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iy, —
min {%_fﬁl [ yefj\{o} } > 0 and usingofkiN(O,K) we see that
y

there exists K < ® such that for any countable set A, and

{ vy, | 2eA} where Y, € Cbl Qj for each aea,
j:

aZall Y, Il > K implies that the corresponding economy output

yeRLn is not feasible,

F is bounded so by desirability and the upper hemi continuity
of the Walras correspondence, the set of feasible prices is a
subset of a closed cone contained in the interior of £, and,
as in Lemma 1, there exists M < ® such that (*) supp
H(ak)(j,v)CN(O,Mak) for all O<v§nj(ozk), 0<j<n, k>1

(O dominates any action outside N(O,Mak), and the mixed

strategies are noncooperative),

We now consider the actions of operating firms as inde-
pendent (for each given k) random vectors with the same
underlying probability space (with expectation operator E).

Let igv be the random vector in R‘ corresponding to the j,v

L e R : .
firm in E(ak), and let va = va EXjV . Since y =
(yl*', y2*', eee yn*') and

ny (@) _ nyfa,)

E % k Xk = g k E Xk > y.* as'k + », in order to prove
v=1 v v=l v J

3.1 it is sufficient to show that for all j =1,2,...,n ,
i=1,2,...,2% r and § > 0,

v nj(ak) k
prob {| & >
vel jvi
k

component of va.

lim th

. k . ,
oo | < 8} =1 where Xipi 1s the i
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By definition, X?v induces the measure u(ak)(j,v) on RQ,

so by (*) prob {iﬁvi ~Ma, Mo 1} = 1 and therefore

k

e
< 2Mo¢k } = 1.

k
prob {Ixjvil

Fix jefl,2,...,n}, ie{1,2,...,2}, and § > 0, and for

notational convenience let Xt denote X?vi’ Split the sequence
My (ey) i

(| 5 X ])k into two parts, depending on k:
v=1" v

- -1 - .
nj(uk) < () *; and, nj(ak) > (o) .For the first part,

ns(a,)
prob {| g k Xk l < nj(ak)ZMa

b
iy o < 2M(ak) } = 1.

k

‘ i
For k sufficiently large, 2M(ock)2 < §, and

n4 (o, )
prob {] g k X5| <8} =1.
v=1 |
For the second part of the sequence, by the Markov inequality
ny o) o E| 7 le for any
([8] p.158), prob {| 7 xV] > 8} < v=1
v=1 r
8
r > 0. Let r = 3. The Xt are independent (for fixed k)
with zero means, so nj(ak) K 3 _ nj(ak) Kk 3
E| 3 Xg | = 3 E[XVI .
v=1 v=1
Also prob {]Xk | < 2Mo, }= 1 and prob . nylo) g
v o= k { I, x| > 2k} =0
V=

(otherwise a state which is not feasible occurs with positive
probability). Thus,
3 [*°)

. 3 o5
k v
7 Elx)| <sup {2 e | : I |c |<2K, |c_|<2Ma
v=1 v v=1 " v=1l " v

K for all v}

< (7%§ﬁ + 1)(2qu)3 = ak?[4KM2 + ak8M3] where the second
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inequality follows from the fact that the sum & IcVI3 is
v=1
maximized at a boundary solution with |cvl = 2Ma, for as many

v as possible. Thus, prob nj(ay) \
3 xE| > 6} =0(a2) » 0 as
v=1 v = k

k + o, This completes the proof of 3.1.

Let P be defined by F(y*) = (1,P). E(ak) is completely
determined by p(ak) and F, and 3.2 follows from 3.1 and

the continuity of F at y*.

Let x* be the allocation in the exchange economy

x) _ . . x5 . Ce e s
5‘(Y ) (Xl, it ;gljyj ’”1) that is an equilibrium

allocation at (1,p) (x* exists by definition of F and D).
F is continuous at y*, so (1,p) must be supporting prices

. EaY
for each cone Yj (otherwise entry would occur at some ak,

destroying the Cournot equilibrium in mixed strategies).
N

Thus, ((1, P),x*,y*) is a Walras equilibrium of £, which
establishes 3.3.

To prove 3.4, suppose yj*'Bjyj* > 0. By e2',

the boundedness of the set of feasible prices, and 3.2, given

8 > O there exists kl < ©® guch that

supp #ay)(3,V)C May; (1,250,550 (o) for 211 k » k,.
For all k sufficiently large, some firm of type j must
be active (by 3.1 and yj* £ O0). For each k, let X, £ 0

be an action with positive probability for some active firm of

type j, and consider an entrant using pure strategy x The

=
active firm only has actions in N(ayj((l,p*)),aS)L}{O}.
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Conditional on the action of the active firm being 0, the

entrant has non-negative expected profit (just as the active
firm does at action X, prior to entry). Conditional on the
active firm having action in N(ayj((l,p*)),aﬁ), the entrant's
profit increases for all states with aggregate output near yx

¥ BL.yL¥ > 0),
(yJ 55 )

From the proof of 3.1, we see that for any € > 0,
aggregate output is in N(y*,e) with probability 1 - Q(ak?),
and for €0y sufficiently small, the increase in profit is

greater than %o, x.y *' Bj(akx.yj*). The set of feasible

k3773 ]

prices is bounded, so the worst possible profit for the
entrant with action xkEN(dxf(l,E)), ad) is greater
than -co for some ¢ < », and the probability of a loss is
CX@EZ). For k sufficiently large (ak sufficiently small),
the net change in expected profit has the same sign as

;y;' Bjyj*, and entry will occur, upsetting equilibrium.

This completes the proof of 3.4.



VI.

REMARKS

A, The analysis we have presented differs substantially from
standard formal treatments of competitive theory: non-convexity
is essential, market power is endogenous, downward sloping demand
is a requirement for static equilibrium, there is free entry, etc.
Yet our complete dependence on the results of modern compe-
titive theory (as surveyed in Debreu [ 4 ]) should be apparent
to the reader. To underscore this dependence, we list some
of the ways in which the paper relates (even ties together)
recent developments in competitive theory.

Theorem 1 on the existence of Cournot egquilibrium with
eéntry requires the existence of Walras equilibrium in é
As such, the result rests on the existence of Walras equilibrium.
The Pareto Optimality of Walras equilibrium translates to the
approximate Pareto Optimality of Cournot Equilibrium when
efficient scale is small (Theorem 3). Theorem 2, together
with the result that Pareto Optima are Walras equilibria in
é» translates to the theorem that provided efficient scale is
small, any Pareto Optimum which satisfies DSD is approximately
a Cournot equilibrium (relative to the appropriate specification
of private ownership). Also, the replication of consumers,
the idea of a limit economy, convergence results, etc, borrow
from a pattern well developed in the literature on limitsAof
cores, (A natural way to obtain decreasing returns in & is

to exploit a measure theoretic specification of the kind used

in that literature.) Theorem 2 contains a result on the



"rate of convergence". The entire framework is equilibrium
with endogenous uncertainty. A "differentiable" framework
is for a great many reasons natural for the analysis; in

A
addition, the possibility of a stability theory in ¢ based on
the entry and exit of firms is an attractive possibility.
Product differentiation with an infinity of conceivable com-
modities would require extensions to economies with infinite
dimensional commodity spaces.

Finally, the notion of a regular economy is intimately
related to the existence of a selection from the Walras
correspondence, DSD is a requirement imposed on the Walras
correspondence, and existence can only be guaranteed as a

generic property of a class of economies.

B. The analysis could be enlarged to admit the case where
"
industry production sets in & exhibit (strictly) diminishing

returns to scale. This could be modelled in one of two

natural ways: diseconomies (external to the firm and internal to the

A

industry); or a measure space of available firms in ¢ with
differing efficiencies, Then, it would be possible for a

firm to have a large positive profit in equilibrium (rents).

C. The assumption that consumers exhibit price taking
behavior is not necessary; what is required is that every
set of quantity actions by firms yield a well defined vector

of prices. For suitably smooth "F", results analogous to
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Theorem 1 hold. For example, suppose that in each economy
éf(a), the quantity actions of firms result in an allocation

in the core of the associated pure exchange economy, and let
price be the implied efficiency prices. Since the cores of

the exchange economies converge to the Walras equilibria of the
exchange economy associated with & , the modified (non price
taking) Cournot equilibria of €,(a) converge to the Walras
equilibria of é - In connection with this point, it is
appropriate to underscore the asymmetry between our treatment

of consumers and producers. The present analysis is designed
to explain perfectly competitive producer behavior and has no
role in the explanation of price taking consumer behavior. The
key ingredients in our explanation of perfectly competitive
producer behavior are small (per-capita) efficient scale and

the free entry of firms. Whatever the explanation of compe~
titive consumer behavior, it is not free entry and small efficient
scale:! Firms and consumers are created and exist for different
purposes; they perform a different function in the allocation
of resources. In contrast with standard models of Walras
equilibrium, we highlight the creation of firms; this dictates

the asymmetric treatment afforded consumers and producers.

D. Since uncertainty disappears for the equilibria
exhibited in Theorem 1 as q converges to zero, the results
obtained are easily extended to firms that maximize a
(smooth) expected utility of income function. This admits

risk aversion into the analysis.




E. As long as there are only a finite number of conceivable
commodities, our analysis includes the classical case of

product differentiation. For any fixed value of o, there

may be many commodities which are not produced. As o converges
to zero, the number of different commodities actually produced
(from among the large but finite number of available commodities)
may increase, For situations in which there are an infinite
number of available commodities, it is necessary to consider
economies é, with infinite dimensional commodity spaces (see;

eg, Hart [ 6 ] and Mas-Colell [9 ]).

F. With only a countable number of firms, the introduction
of mixed strategies does not remove all discontinuities. The
only way to remove the discontinuity associated with entry is
to have a continuum of firms. We have constructed a simple
example in which equilibrium with entry does not exist in mixed
strategies for all a >a > 0 (i.e., introduction of mixed

Sstrategies does not imply that equilibrium with entry exists
for all ).

More importantly, arbitrary mixed strategies are not
consistent with observed behavior. Thus, the fact that only
pure and marginal firm strategies are profit maximizing in
the equilibria of Theorem 1, even though arbitrary mixed

strategies are allowed, is significant.

G. The introduction of marginal firms is essential.

Restrictive assumptions are necessary to guarantee the




existence of equilibrium in pure strategies for all o
sufficiently small. We have substantially explored such

assumptions, and existence results will be reported elsewhere.

H. A natural test of the robustness of the equilibria con-
sidered here is given by the ability of a single firm with
perfect information and perfect knowledge of the behavior of
other agents to increase profit by departing from the pre-
scribed behavior. We observe that the maximum profit such

a firm could obtain is less than oK, where K is a constant.
Thus, the benefit which accrues to strategies which are more
sophisticated than those considered here will eventually be
swamped by the costs of obtained information (which do not
depend on o). Similarly, from the point of view of cooperative
action, any cartel must be sensitive to the possibility of
entry if it restricts output to increase profit. Threats
aside, cartels must "limit price" to prevent entry, and so

the profit which accrues to a cartel is less than alL, where L
is a constant. (This is discussed by Novshek [lO].)lg/ For
this reason, we believe that the results reported here have
natural extensions beyond the case of quantity choosing Cournot

equilibrium.

I. Firms that recognize their effect on price do not in
general maximize a weighted sum of shareholders' utilities by
profit maximization. Consider a sequence of Cournot equi-

libria, one for each economy E(%&), k=%, k+1, k+ 2, .
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~

as constructed in the proof of Theorem 1, where the E(%&) are
viewed as "per capita" economies for k replications of each
consumer type. Let vi(p,w) be an indirect utility function
for consumers of type i. For large k, the equilibrium prices
and wealth (pk,w?) are approximately equal to the competitive
pPrices and wealth (p*,w;) = (p*,p*'mi). For any single firm
of type j for which the tth consumer of type i has ownership

k . 1
share eitj in i(,&),

* * * *
Wi x 1 AViprwh) oo 0.5, Vi WH) e
oy' k ap'’ o J ow
For e;ij = %&6 i both terms are of the same order of magnitude
so either may dominate. Whenever B;ij > 0 as k » » , if the

firm's actions are constrained to lie in a bounded set then the

effect of a single firm on any single consumer converges to zero.
If for some itj, e;ij is bounded away from zero, then for

k sufficiently large,

* *
avi 7 e}‘. ?Vi(p ’wj.) pP*', and the utility maximizing solution
oy 1t] ow

is approximately the competitive solution which is approxi-
mately the profit maximizing solution (as seen in the proof
of Theorem 1). In either case, any cost (to the firm) of
learning the preferences of a consumer/owner eventually out-
weighs the gain from knowledge of an exact "welfare function"
to be maximized by the firm.lg/The second case is related to

Hart [ 7], which deals with a stock market model.
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J. Implicit in the manner in which firms determine how much
they will have to pay for an input is the assumption that in
equilibria of é the consumer sector consumes some of each
commodity. Thus, there are neither pure inputs nor pure
intermediate products.’ The producer sector can always obtain,
from the price taking consumer sector, an additional amount
of a commodity to use as an input by paying the appropriate
price. This could be softened by introducing price taking
firms, but such a devise would be contrary to the spirit of

the analysis.

K. Theorem 3 makes precise the sense in which DSD is a
necessary condition for Cournot equilibrum. Degenerate

cases aside, the condition will be satisfied whenever the
consumer sector behaves as a single utility maximizing consumer
(eg, if each consumer maximizes a homogeneous utility function
and initial endowments are proportional). More generally,

DSD will be satisfied (again excluding some degenerate cases),

if the Walras correspondence satisfies the weak axiom of revealed
preference locally and in certain directions: there exists
"X > 0 such that for all je {1,2,...;n}, yj*' F(y) <yj*'F(y*) = 0

whenever y = y* +_ij*,'xe (0,%x].




L. When o is small, changes in demand lead to new equilibria
in which both firms' actions and the number of active firms
have changed. As o - O, the change in the number of firms
is dominant. This suggests the possibility of a "real time"
dynamics in which the adjustment of price is determined by
the rate at which firms enter. In addition, since firms
recognize their effect on price, there is no contradiction in
having them change the amount which they offer to the market
(or even enter!) when preferences, technology, or other data
of the economy change. It is only in the 1limit that a
tension arises betweeh price taking behavior and the need for

prices to adjust in order to clear markets (see Arrow [ 1]).

M. By definition, every Pareto Optimum of 6 which does not
satisfy DSD has the characteristic that a planner (just as a
firm) could buy resources at market prices and sell their

product at a price which would more than cover cost. As such,

they fail a natural cost benefit test. Theorem 2 then

generates the result that provided efficient scale is small,
Ja

every Pareto Optimum of ¢ which satisfies the appropriate

cost benefit test is approximately a Cournot equilibrium

(relative to the appropriate specification of private ownership)

©

N. Under what conditions does the Arrow-Debreu model apply?
If one views industry constant returns to scale as being an
idealization of small per-capita efficient scale and free entry,

as done here, the Arrow-Debreu model with constant returns to
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scale is applicable, but only if downward sloping demand is
satisfied. If one views constant returns to scale for firms
as empirically correct, then the Arrow-Debreu model captures
formally the notion of perfect competition only in so far as

we acknowledge that the technology is freely available to all
users. (Why else will a firm take prices as given?) In

this case, our argument for downward sloping demand as a require-
ment for static equilibrium applies again, and perfectly compe-
titive equilibrium which do not satisfy the condition are
simply the result of actions which are irrational (and in no
approximate sense rational). If we understand the Arrow-
Debreu theory as appropriate for conditions of decreasing
returns to scale for firms and no free entry, there is the
‘embarrassment" of possibly significant profit and possibly
significant market power to explain. Free entry is not
available to make these go away (and if it was available the

model would collapse). Finally, the Arrow-Debreu model is
not applicable under conditions of increasing returns to scale,

since equilibrium will generally not exist.

CONCLUSION

Theorem 1 proves the existence of Cournot equilibrium with
entry. Theorems 2 and 3 unify the equilibrium concepts of
Walras and Cournot by establishing that Cournot equilibria are

approximated by certain Walras equilibria.



The Arrow-Debreu model is viewed as representing a
"frictionless system", whose "frictions" are barriers to entry
and non-infinitessimal efficient scale. When efficient scale
is small (but significant) and entry is free, certain Walras
equilibria serve as good approximations to Cournot equilibria
with free entry. However, when there are barriers to entry,
or if efficient scale is not attained at a level which is per-
capita small, the "frictionless" idealization is no longer
appropriate. In the frictionless system, demand determines
the measure of firms which are active in each industry. Zero
profit becomes a consequence of free entry, and firms take
prices as given, not because they want to, but because prices
really are beyond their control. However, the analysis shows
that the viewpoint of the Arrow-Debreu model as representing
a frictionless system is only proper under conditions of downward
sloping demand and when the efficient scale of firms is bounded
away from zero. (Thus two cornerstones of the classical
partial equilibrium diagram are introduced into formal general
equilibrium analysis and play a central role.)

We present a simple proof that the perspective we have

offered does "make a difference". Recall the standard line:

consider a perfectly competitive economy with one firm (two
or three firms) and constant returns to scale. From the
Present viewpoint, it makes no sense: the number of firms is
not endogenous, and perfectly competitive behavior is not a

primitive solution concept; it applies if conditions are right.




Finally, competitive behavior is unlikely to obtain with only
one firm (two or three firms) active in equilibrium. In
contrast, the formalism of the present analysis forces you to
say this: consider an economy with one industry (two or three
industries), free entry, small efficient scale, and downward
sloping demand. If efficient scale is small, then the pro-
duction sets of each industry exhibit approximately constant
returns to scale. Small efficient scale with entry dictates
the result that firms have almost no effect on price when
attention is restricted to the region in which they make positive
profit. The addition of a demand sector determines the number
of active firms in each industry. In each industry in which
there is positive output, there are a large number of firms
active, each of which is producing a small amount (at approxi-

mately efficient scale).
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FOOTNOTES

' denotes transpose.

By industry, we mean the set of firms with identical
technology. Several industries may use the same inputs

to produce thc same outputs.

(Xl*', xz*"’ o e 0 xm*.) € Rzm’ and

&n

x*

y*! (Y *'y ¥5*"y eo0 ¥y *') eR

In an abuse of notation, we usevyj to indicate a vector
in Rl and a vector in Rzn (with all components zero except

possibly 2(j=1) + 1, 2(3-1) + 2, ... (3= + ). For

example, in y + {yj + el}, e, = (L0O ... 0)'e R'ov is
added to yjs:Rz, which is then imbedded in Rﬁn, and added
to ye R"Ln. |

Let C be the set of closed convex cones in Rz with vertex

the origin and dimension greater than or equal to 6ne,

and define the metric d on C by

d(cy, cy) = h(clf\Nz(O,l), CZ(WNQ(O,I)), where h 1is the
Hausdorff metric. For each ceC let P(c) =

{peRz\iO}Ip'y < 0 for all yec and p'x = 0 for some o ¥ xec!.
Let (cl’CZ’ cees cn)ecn. Theh the property that(WP(ci) = ¢

’ i ieIC{l,Z,...n}

whenever #I > -1 is generic

(i.e., the property holds on an open dense subset of cty.
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Peter Hammond pointed this fact out to us. See, for
example, Gabszewicz and Vial [5] pp. 398-400. Aside

from the requirement that the numeraire is a commodity

which is smoothly variable for each firm, the existence
theorem remains valid independent of the choice of numeraire.
This is because there are only a finite number of commodities

and an o which will work for each one of them.
I(x,dp) is the Lebesgue-Stieltjes integral.

For convenience, we write F(y) for F((w. + I6..v.).)
i 5 137374

. n

where y' = (yl', y2', ces yn')efi .
A probing question by Kenneth Arrow led us to consider

the possibility of marginal firms.

The DSD condition only applies to the industries which are
"active" in the target Walras equilibrium (p*,x*,y*),
i.e., those j such that there exists 0 # yje§j such that
p*'yj = 0. As noted in the remarks after e, all other
industries are completely inactive, with no incentive for
entry, for all prices near p*, and therefore they can be
ignored. (It is possible that there is a 0 # yj€§j such
that p*'yj = 0 but yj* = 0. In this case, we use Yj

rather than yj* in the DSD condition.) See remark K for

further discussion of DSD.



11

12

13

The definition of Bj implicitly assumes that F is defined
for certain points nearry*; later we will require that F

is twice cbntinuously differentiable in a neighborhood of
yv¥*. If in the Walras equilibrium (p*,x*,y*), all éonsumers
do not consume a bundle in the interior of their COnsumption
set, then the definition of F(y) for some y near y* may
depend on a notion of equilibrium in which some consumers
are not in their consumption sets. See remark J for a

related discussion.

Since entrants can produce as efficiently as cartel members,
each cartel member faces at least the same loss as an

entrant when threats are carried out.

k

If 0, .= le.. + it is worthwhile for consumer/owners to
itj k "ij

have whole industries act collusively, in which case

equilibrium (if it exists) is not in general approximately

competitive. However, we are interested in an extension
. . ko . .
of the model in which eitj # %eij 1n general, and instead

of exact replications, "similar" consumers are added as k
increases, i.e., for each k there is a finite measure Vk
on the space of consumers (preferences, initial endowments

and ownership shares) and Vi 7V as k > o,
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PARTIAL EQUILIBRIUM (Novshek, [10])

For the cost function c(y),

O y=0

(c) cly) = [Co+V(Y> ¥>0

where CO > 0, and for all y > 0

vz>0, v >0, v" > 0. Average cost is minimized uniquely

at y =1

For the inverse demand function F(Y),

2 .
(F) F e C°([0,0)) with F' < 0 whenever F > O, and there
exists ¥* > O such that F(Y*) = c(1) (equals minimum
average cost). Y¥ is the competitive output.

II,1) An o _size firm corresponding to C is a firm with cost

function Ca(y) = ac(g). For each o,C, and F, one considers
@ pool of available firms, each with cost function C.»
facing market inverse demand F.

II,2) Given C, F, and an o « (0,), an (a,c,F) market equilibrium

with free entry is an inte er n and a set | .. } of
g Yqi» 'Y

positive outputs such that

a) [yl,...,yn} is an n firm Cournot equilibrium (without

entry), i.e., for all i=1,...,n,

F<.z_ Y3ty )y - c (yy) > F(.Z,yj+y)y - C,(y) for al1
3£4 AL

y > O, and

b) there is no profit incentive for additionsl entry, i.e

M

n
F( x yj+y)y - Ca(Y) < 0 for all y > O.

J=1




- 67 -

The set of all (o,C,F) market equilibria with free entry

is denoted E(o,C,F).

It is easily demonstrated that the Nash-Cournot equilibria

exhibited converge to the competitive equilibrium y*. I.e., given
C satisfying (C), F satisfying (F) and @ ¢ (0,0), if n
(Y1:Yp,0-257, ) ¢ E(a,C,F). Then .glyj e [yx-o,v*], (Q0],p. 8).
This observation is made whole by tﬂé following theorem.

b

Theorem ([10],p.8) Given C satisfying (C) and F satisfying (F),

there exists o > O such that for all o ¢ (0,a¥], E(a,C,F) £ P
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APPENDIX IT

In order to show the genericity of j1, j2, and j3, we

use as basic Gj' yj*, F(y*), Bj’ and eij subject to

a) Gj is negative semi definite and x'ij< 0 for xer(Rz)\{O}.

b) yj*'F(y*) = 0 for all j,

c) Fl(y*) 1,

d) yj*'Bjyj* < 0 for all j,

e) (L0000 ... 0) Bj = (00 ... 0) for all j, and

£) ; eij = 1 for all j.

i

The ownership shares, eij, and the shape of production sets
at competitive outputs, Gj' are clearly basic. The F(y*), y*,
and %%. are considered basic in the spirit of the result that
given any prices, p, output, y, and Jacobian [%%], a set of
consumers exist whose aggregate demand is y at prices p, and
has Jacobian [%%] at (y,p) (Sonnenschein [15]). The Bj are

used as basic rather than the SE. since
w

-

op ®11Texn oo O1pTaxg
[Bl e« 0 e B ] = vl-_' ] . . SO if m > n
n angzm . . -
Lx4n ‘ *
6 .1 ‘8T
ml=2xg *** “mnT4xg
-
2mx4n
611 . eln
and{ . . has rank n (which is a generic property
[eml * @ emn




oF

. 0 .
if m > n since the 6,., are basic) then if any gﬂ' (with — = 0'")
- 1] w W

is possible, so is any [Bl - Bn]
(with (1 0 ... 0)1xz [B1 ces Bn]lxzn = (0 ...O)leLn ).

We only consider economies which satisfy the required
differentiability assumptions, and a) - f). Each economy ¢
in this space of economies can be represented by a vector
)

((Gj)j,(yj*)j,(e (Bj).,F(y*)) where the matrices Gj are

J
written as vectors (row l, row 2, ..., row ). The distance

ij'i,3’
between any two economies is defined to be 1 if the number of
consumers, commodities, or industries is different, or if for
any industry j, the set of smoothly variable commodities is
different. Otherwise, the distance is defined to be the usual
distance in Rn22+n2+mn+n£2+2 . We show that the nondegeneracy
conditions hold in an open dense subset of this metric space,
and are therefore generic properties. Since eigenvalues and
determinants are continuous functions of the entries of the
corresponding matrices, and jl - j3 are open conditions, they
hold in a neighborhood of an economy at which they hold. It

only remains to show that j1 - j3 hold in a dense subset of

the space.

0 -5

j1 Using the form of G. (the first row is a linear

0 I |
combination of the other rows, and row i is zero if i is not a

smoothly variable component), jl can be transformed into an
equivalent form (eliminating all components which are identically

zerc in Pl(Ri) X P2(R£)x cen xPn(Rg)L determinant {D+G™ 1} £ 0
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-
. G, 0| -
where G =~ |, with Gj the negative definite submatrix

2 Gy

of Gj corresponding to Pj(Rg) (if Gj = [0] then Gj is skipped)
and where D is independent of G. Since G_l has full rank, all
entries of é—l can be varied, so if j1 fails at E, it is

satisfied at a Sequence of economies Ex >t

J2 By jl, the existence of {I+Hl}—l is generic. Let A be
the smallest strictly positive eigenvalue of {I+Hl}_l{Hl-H2(l)}.
If Hy(m)x = -x then {I+Hl}x = {Hl-Hz(m)}x = m{Hl—Hz(l)} X

and x = m{I+Hl}_l{Hl—H2(l)}x. When m > % (m > 1 if A does

not exist), then x = m{I+Hl}_l{Hl—H2(l)}x implies x = 0, so

Hz(m) does not have eigenvalue -1.

y.*' 0] |[B,. B y.* 0 1
33 (a) It is generic that N = l', ( L'n L
* 1 : *
0 Yq ! _Bl'”Bn_ 0 Y |
nX4&4n Anx4&n nxn
00
has rank n. To see this, let B,(x) = B. + x| for all j
J J l-0 I
- XL
(Iis (2~1)x(2-1)) and let N(x) be the matrix corresponding to N
(2. 'z ...z 17"
. _ 1.71 1."n’
when B is replaced by B(x). Then N(x) = N + x : Y
z 'z y
n "1 z 'z
L n n!
. g-1 BXn
= * * *
where zj (yj2 ’ yj3 .o yj2 ). The zl, z2, ...,zneR

are generically independent since n < 2-1 and the yj* are basic,

SO0 the matrix multiplied by x has rank n generically. Expanding

the determinant of N({x), we find
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n-1 n
n-2 + ... + X al + X ao.

Let S be the largest integer such that ag # 0 (such an s exists

det N(x) = a + xa + x2a
n n-1

. _ , ,
since a, det ([zi Zj]ij) # 0). Then

—%H:s) det N(x) = ag t xa__; + ...+ xsa0 >a  #0as x~ 0.
x

For all x sufficiently small, det N(x) # 0 so if N does not
have rank n for economy ¢, N(x) does for a sequence of economies

£, ~E.

X

(b) It is generic that

5 .
Yy E ' _ * 0 ‘
M="1 5[13l .. Bn]{I+Hl} 1 1-,, 1
*1 *
SEN | ° ¥
ry * ! O ?B .. B—‘ _ ry * 01}
= 1. ] } :ni{I+Hl} l% 1-, §' has rank n.
* 0 . i : *i
0 By an LO Yn '

To see this, let B(x) = B + xB{I-—leHl}—l Hl{I+Hl} where
{Bl"Bni

|
B,..B
L 1 n—Lnxln

let M(x) be the matrix corresponding to M when B is replaced

B = (the inverse exists for all small x), and

by B(x) (note B occurs in Hl' which becomes Hl(x)).

Computation yields

B(x){I+Hl(x)}'l = B{I+Hl}'l[(1—x)1 +'x{I+Hl}] = (1—x)13{I+Hl}'l + xB.

Thus M(x) = (1-x)M + xN where N (the matrix from (a)) generically
has rank n, and, proceeding as in (a), we see M(x) has rank n for
all small nonzero x. If j3 fails for economy ¢, it is satisfied

for a sequence of economiesf% > £.
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