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1. Introduction

The question of why agents in large economies exhibit price-taking
behavior has been important throughout the history of mathematical economigs.
Recent work has treated this question within the formal context of the Arrow-
Debreu economy, in which tlw set of cyents is either finite or a continuum.
This work has shown roughly that, for some cooperative (e.g., the core) or
non-cooperative (Cournot-Nash) equilibrium concept, if standard convexity

and continuity conditions hold, then

() (Inclusion principle for non-atomic economies.) If the set of
agents is a continuum, then every equilibrium allocation is a Walras alloca-

tion, and

(b) (Limit principle for finite econcmies.) If a sequence of increas-
ingly large finite econcmies converges in a natural way, and if their
equilibrium allocations have a limit, then the limit is a Walras allocation

of the limit econcmy.

1
Actually, although the theory of the core is well develoPedr/, the

current results about non~cooperative equilibria of large Arrow-Debreu
economies is less complete and less unified. One explanation for this situ-
ation is that, while a cooperative game can be defined from the feasible

allocations of an economy and its sub-economies, the Arrow-Debreu model must



be augmented to define a non-cogperative game and it is not clear how this
ought to be done. Nevertheless, for an exchange economy with a continuum
of traders, Mas Colell [5] has proved an inclusion theorem of type (a)
which will apply to any non-cooperative game satisfying scome apparently
reasonable conditions. Limit theorems in the spirit of (b) for fimite
economies are due to Gabszewicz and vial [3], Ndvshek and Sonnenschein [6]1,
Postlewaite and Schmeidler [8], and Roberts and .-'Postlewaite- [4) .-2-/

The present paper also is a study of the non-cooperative equilibria of
large econcmies. However, an economy will be rep;esented not as a set of
Arrcw-Debreu markets which clear simmlizncously, bﬁt as an infinite sequence
of markets which clear consecutively. This latter repiesentation will be
called a dynamic economy, and is to be distinguished from the corresponding
Arrow-Debreu economy with infinitely many forward markets. In addition to
the Cournot equilibria of their Arrow-Debreu counterparts, dynamic economies
typically have other non-cooperative equilibria in which, by means of strate-
gic threats, firms induce one another to act collusively. Because collusion
can ke non-cooperatively enforced even in scme large dynamic economies, price-
taking behavior does not necessarily characterize dynamic equilibrium. How-
ever, positive results along the lines of both (a) and (b) can be obtained.
Interestingly, collusive equilibria are ruled out when firms are inconspicuous
to one another, but not necessarily when they are insignificant in the usual
sense of having negligible productive capacity relative to the market. This
explicit dependence on considerations of market information distinguishes the
dynamic theory from the results for Arrow-Debreu economies.

In section 3 a sequence of replica dynamic economies will be defined,
each of which has a strategic non-cooperative equilibrium which supports the

monopoly allocation at every time. This example refutes the limit principle



for dynamic economies. An example is also given in which, if each firm can
observe the output level of every other £irm, then such a collusive non~
cooperative equilibrium exists for a dynamic economy with a continuum of firms.
Thus the most general version of the inclusion principle is refuted as well.

In the counterexample to the inclusion principle, firms are required to
have exhaustive non-price information about their competitors. In section 4,
it is proved that all equilibria which violate the principle require such in-
formation. This is done by interpreting dynamic economies within an abstract
theory of repeated games, and providing a sufficient condition for all Nash
equilibria of a yepeated. game to be constructible from Nash equilbria of the
static game on which it is based. This condition yields an inclusion theorem
for dynamic economies in which agents have information only about price and
other market aggregates.

The inclusion principle derived in section 4 sheds light on the failure
of the limit principle for dynamic economies. The principle must fail because
there is information about individual producers which the price mechanism
conveys in every finite economy, but not in a non-atomic economy. In fact, in
a finite economy price information can reveal to a firm that a competitor has
disregarded its strategic threat, although the identity of the violator is
indeterminate. If the price varies because of random demand, its informative~
ness about the supply side of the market should be reduced. As the scale of
an individual producer becomes arbitrarily small relative to market demand in
a sequence of replica dynamic economies, any stochastic demand disturbance
should make strategic threats unenforceable in the limit. This is prov-@8 in
section 5, again in an abstract game-theoretic context. It yields a limit
theorem for dynamic economies with demand uncertainty.

In section 6 some remarks are made about the relevance of these results



to anti-trust policy.

2. Non-cooperative equilibria which support the monopoly allocation.

The first inclusion and limit theorems were derived by Cournot in a
static partial equilibrium setting. These will be reviewed in this section,
and countciriimoles to their dynamic versions will be given in the next.

These result:s may be reformulated in a general equilibrium setting, building
on the work of Gabszewicz and Vial 13]. The positive results of this paper
are immediate consequences of game theoretic results which apply straight-
forwardly to tlie goecor:l eqnilibrium version.

First, static and dynamic markets are defined. ?ntuitivelY' a static
market consists of a set of firms, each of which supplies the market good
at a total cost which depends on the quantity it produces, and an inverse
demand function which determines the price as a function of mean supply.
Implicitly, this inverse demand function is determined by the actions of price-
taking consumers. The question to be investigated is: are profit-maximizing
ﬁirms also price-takers when there are many fimms?

A (statidnary) dynamic market is a static market which operates repeated~-
ly, its times of operation being indexed by the natural numbers. Firms maxi-
mize the discounted present value of their profits.éf These definitions are

now presented formally:

Definition: A cost function is an element of the set Y = {flf:R+->R+qgﬁn},

£ is continuous}. A normal inverse demand function is a continuous function

D:R (He}->R,_ with D(®) = 0. A static market is an ordered 4-typle. <K,H,y,D>




where X is an abstract set of fimms, U is a probability measure on K. ¥Ry

specifies the cost function of each firm, and D is a normal inverse

demand function. A (stationary) dynamic market is an ordered 5-tuple .

<K,\,y,D,B>, of which the first four components specify a static market and
8e(0,1) is the market discount factor. Let M be a market (static or

dynamic) with measure space <K,u> of firms. A supply vector for M is a

bounded j-measurable function q:K#R+ .

Given a supply vector q for M , mean supply will be ng(k)du and
the market price will D(ng(k)du) . If a firm kek has cost function
y(k)=£, then a supply vector determines a net profit level for k . This

net profit will be denoted by ﬂk(q) , and satisfies the equation
(1) Wk(q) = q(k)D(ng(i)dp)- flgik)) .

In selecting its output level, either a firm may accept the market price as
an exogenous parameter of its decision problem, or it may recognize its own
influence on the market price. A price-taking equilibrium results when all

firms act in the former way, and a non-cooperative equilibrium results when

they act in the latter way.

Definition: A price-taking equilibrium of the static market <K,M,y,D>

T T AR s &

is a supply vector q such that, for almost all (w.r.t. u) kek ,

(2) ﬂk(q) = max[rD(IKg{i)du) - (y&x)) ()] .

reR
ERy

A price-taking eguilibrium of the dynamic market <X,M,y.D,f> 1is a sequence

<qt>ten of supply vectors such that, for almost all k€K ,

t t ‘ N
(3) % Bm (g) =max{ I plr p(f g (1)) - (y(k)) (x y1|<x, >, _ER, I .
ceN i A e £ K t t teN  +
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A non-cooperative equilibrium of the static market <K,u,y,D> is a supply

vector q* such that, for alwost all kex ,

4y m (q*) = max{q(k)D(IKq(i)du) - (y(k)) gk} 1,
qeQ

where Q = {q]q is a supply vector and q(i) = g*(i) for all i# k} .

To define non-cooperative equilibrium for a dynamic market, the notion of
a strategy must be introduced. A strategy of a firm is a rule which, at each
time, determines an output level for the firm as a function of information
which is available to the f£irm at that time. A strategy vector is an assign-
ment of strategies to firms. Thus, if § is the space of strategies, a
strategy vector is a measurable function £S5 . A non-cooperative equili-

brium of a dynamic market is a strategy vector £ such that

(a) for almost all kek , £(k) yields as high a discounted present
value of returns (given that the other firms are using the strategies assign-

ed to them by £) as would any other strategy seS . and

(b) Clause (a) will continue to hold at every future time for almost all
keX, regardless of firms' information at that time.g/
This rather informal definition of dynamic non-cooperative equilibrium
will be adequate to verify that the strategy vectors to be discussed in this
section are equilibria. A more explicit definition will be given in secticn
4. In the remainder of this section, straightforward generalizations of
Cournot's theorems for static markets will be stated, and counterexamples to

their dynamic versions will be constructed. Cournot's inclusion theorem can

be stated immediately:



Theorem 1: Every non-cooperative equilibrium of a non-atomic static

market is a price~taking equilibrium.

To facilitate the statement of Cournot's limit theorem, the notion of
a sequence of replica markets is introduced. Intuitively, such a series is
formed by starting with a finite market, and at each stage adding a new
"clone" of each of the original market agents (firms and consumers). This is
done explicitly for firms, but must be done implicitly for consumers. Since
there are n times as many consumers of each type in the nth market as in
the first, aggregate demand in the nth market at any price is n times
what it is in the first. However, since the inverse demand function is de-
fined formally in terms of mean guantity rather than of aggregate quantity,
and since there are n firms in the nth market for every one in' the first,
all markets in the sequence should share the same inverse demand function.
As replication continues, the members of the sequence should resemble the‘non—

atomic representation of the market in their equilibrium behavior. The

sequences are now defined formally, after which Cournot's limit theorem is

imnmediately stated.

Definition: A sequence of replica (static or dynamic) markets is an

infinite sequence <Mn> of markets such that the following hold for

neN

some finite set K,y:K->Y,B£(0,1) and nozmal inverse demand function D

For all n , Mn = <Kn,un,yn,D'S> ;, where
(5) K = kx{0...n}

(6) un(B) = #B/#Kn for all ngn .

(r.e., un is normalized counting measure.)



it

(7 y, (<km>) = y(k) for kek , m<n .

The market M

<[0,11%K Uy 1 Ve eD 18> is the non-atomic represgentation

of the sequence if

® 1, = I Alrefo,1ll<r,k>eB)) for all BE[O,IFK -
ke

(I.e., M, is Lebesgue measure on the copies of [0,1] in &, )
(9) y, (<z;k>) = y(k) for all <x,k>ek, .

Theorem 2: Suppose that <Mn>n€N is a sequence of replica static
markets, that the supply vector 9, is a non-cooperative equilibrium of
Mn for evexry n , and that some subsequence oOf <<qﬁ,yh>¢h€N converges in distr:
butionxé/ Then the subsequence has a limit <q,y,>, and g, is a price-

taking ~ynilibrium of the non-atomic representation M .

3. Non~cooperative equilibria which support the monopoly allocation (contiaued).

Counterexamples to the analogues of theorems 1 and 2 for dynamic markets
are constructed by exhibiting non-cooperative equilibria of large markéts, in
which the monopoly price is maintained by mutual strategic threats among the
firms. The existence of these equilibria in markets with finitely many firms
was first pointed out by James Friedman [2]1. A counterexample is provided to
the analogue of theorem 2, simply by noting that such an equilibrium may
exist for every market in a sequence of replica dynamic markets. Such a
sequence is easy to comstruct. It reguires only one type of firm (X is a

singleton {k}) with a production function y(k) = £ described by



(10) £(x) = {o, if r < 2/3
r~-2/3, if r>2/3

‘Price is specified by the inverse demand function

l-x, if x 1

s
0, if > 1

an b = ¢

The discount factor for the sequence is B = 0.9. The counterexample to the

limit principle is now presented.

Theorem 3: There exist a sequence of replica dynamic economies <M.n>n8N

and a double seqguence of supply vectors <qnt>n £eN such that
,Ler

(a) For each n, the sequence of supply vectors is determined

<q >
Int”teN
(in the sense that q_ . specifies firms' output levels at time t) by a non-
cooperative equilibrium of Mn , and

(b) For each t there is a supply vector d,. such that niiz Lp = Gt
in distribution, hut

(c) <q°°t->tsN is not a price-taking equilibrium of the non-atomic repre-

sentation M of the sequence.

Proof: Let <M > .. be determined by the conditions that K = {k}, y(k)=£
defined by (10), D is determined by equation (11), and g = 0.9 . Recall
that a strategy for a firm in a dynamic market is a rule which, at each time,
determines an output level on the basis of information then available to the

firm. The double sequence <qrt>n N will specify the output decisions of
it n,te

firms which follow the strategy

(@) Produce at level 1/2 (the monopoly level) at time O.



= =bC _1
(e} 1If D(fannodun).T. = D(Ikhqn(twl)dun) = 5 . Then produce at level
172 at time t .
then produce at level 2/3 (tle

(£) If the condition of (e) is not satisfied at t ,
of the static

output level corresponding to the unique non-cooperative equilibrium

market <Kn'un”yn'D>)'

By induction on t,qnt = 172 for all
n and t . Therefore condition (b) is satisfied with q, = 1/2 for all t .

Condition {(c) is also satisfied, since D{jk,q;tduw) = 1/2 while firms have

[>]
zero marginal cost. Condition (a) is equivalent to the statement, proved below
as lemma 1, that for all firms to follow the strategy defined by (d), (e}, and

(£) is a non~cooperative equilibrium of M. Q-E.D.

Lemma 1l: For all firms to employ the strategy defined by (d), (e), and

(€£) above is a non-cooperative equilibrium of the dynamic market Mn .

Proof: Intuitively, each firm makes a strategic threat to the others.
It announses: "Initially, we will participate in a cartel in vhich all firms
produce eyuzl shares of the monopoly output n/2 . We will do cur part to
maintain this cartel, as long as there is reciprocity. However, if at any time
a lowering of the market price indicates that another firm is exceeding its
production limit, we will thereafter protect curselves by acting as static
Cournot oligopolists.”

Consider the prospects of a potential deviant firm, if all other firms
make this threat. Suppose that it were to adopt a strategy which would lead
it, in this enviromment, to select an output sequence <rt>teN . It will be

shown that r,_ = 1/2 for all t is optimal. Because the strategy (d), (e),

t
(£f) produces this sequence if all other firms follow (d), (e), (f), part (a)
of the definition of non-cooperative equilibrium for a dynamic market is

gatisfied.
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To show this, consider first an output seguence <rt>teN with r. # 1/2
for some t . Let t = min{tlrt'¢ 1/2} . 1If other firm's outputs are
determined by (d), (e), and (f), then the market price at time t
is

f1/2 for t<t

(12) D(thqntdun) = {(ntl-2r.)/2n for t=t_ .
(n+2~3rt)/3n for to<t

Since the outputs of other f£irms are the same for all sequences <ré>t€N

which satisfy to = min{t‘réfl/Z} v Ty must be the output level which maximizes

returns at time t for togp . I.e., by (12),

(13) ¥, (n+1-~2rt )/Zn-f(rt } = max r(n+l-2x)/2n=-£(r) , and

) o o r€R+

(14) rt(n+2~3rt)/3n-f(rt) = max r(n+2-3r)/3n-£(r) for t <t .
rER

wle
o

Solving equations (13) and (14) vields t, = 2/3 for all ti%o . Thus

digcountcd profits are

@5) T 0.9z, 00/ q du) - £zl < I (0.9)51(1/2) (1/2)-01

teN n <t
t t
+ (0.9) °[(2/3) (1/2)-01 + I (0,9) [(2/3)(1/3)-0]
£ <t
[o}

i to

= (1 0.95 74+ (0.9) “(7/3)
t<to

On the other hand, if ré = 1/2 for all t and Iif <q£t>teN is the

gequence of supply veclors which are realized when the firm in question



supplies <ré>teN , then the firm's discounted profits are

t. . ’ - 7 - t -
Q6 T 0.9 U o) £ = £ (0.9 01/2) (1/2)-0]

teN t<to
t to
+ T (0.9)t[1/2)(1/2)—0] = (¥ (0.9))/4 + (0.92) "(5/2) .
t °_<__t t<to

Together, (15) and (16) establish the optimality of the supply Sequince

r£<ré>tem for the firm. Thus part

(a) of the definition of non-cooperative equilibrium is established. To
show that part (b) of the defianition holds, two cases must be considered
at any future time in question. One possibility is that the market price
has always been 1/2 previously; In this case, the f£irm faces the sane
decision problem as it did in the initial period, so the earlier part of
the pres. .3 still relevant. The other possibility is that the firm has
received information that some previous price has been other than 1/2
(N.B. hithough this possibility will not be realized in equilibrium, it
must be considered for the reason explained in footnote 4). Then, since
other firms will have this information also, they will always produce the
Cournot output 2/3 in the future. Thus it is optimal for the firm under
consideration to produce this output in response. Q.E.D.

In a non-atomic market, the cutput decision of a single firm does not
affect the price. Thus a f£irm cannot threaten its competitors by naking
its future actions contingent on the present price, because each competitor
takes the price to be exogenous to its decision. Another description of

this situation is that, if enforcement of a cartel is based only on price



13.

information, any firm can be a free rider on the cartel without being discovered.
However, £irms may be capable of observing the output levels of their competitors
directly. Even in a large market, this output information might be supplied by
a trade association or by the government. If the information is available, the

limit principle may not hold.

Theorem 4: There exists a non-atomic dynamic market in which, if firms
observe the output levels of their competitors directly, there is a non-

cooperative equilibrium which is not a price taking equilibrium.

Proof: Let the market be the non-atomic representation of the seqgz:ace
in theorem 3, and let each firm produce 1/2 unit of output as long as no
competitor exceeds that output, but 2/3 unit if some competitor has produced
more than 1/2 unit at some previous time. The proofs of theorem 3 and lemma
1 extend straightforwardly to show that these strategies are in nen-cooperative
equilibrivm, but that each firm will produce 1/2 unit in every period, while

prine %+ firms would produce 2/3 unit. 0.E.D.

4. An i.:lusion theorem for ¥speated games

The examples presented in the last section show that some justification
is needed for applying static inclusion and limit theorems to actual markets.
The question of when those results may legitimately be applied is the topic
of this section and of the next. In these two sections, conditions will be
given which insure that the opportunities for repeated trade in a ;arge dynamic
economy will be irrelevant to the decisions taken by agents at any particular
time. Under these conditions, all dynamic non-cocperative equilibria will be
sequences of static equilibria. Therefore, facts about a static market will be

true of the corresponding dynamic market as well.
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These conditions will be studied in an abstract game theoretic context.
This approach has three virtues. First, it makes it easy to deal with issues
about agent's information (which have already appeared in pheorem 4). S&cond,
at no extra cost it yields results which extend most of the literature on
static price taking behavior to dynamic situations. For instance, the condi-
tion under which the dynamic inclusion principle holds is one already imposed
by Mas Colell in his theorem. Third, because the issues raised here are relevant
whenever agents repeatedly face situations with "prisoner's dilewpma" character-
istics, the game theoretic results are of general interest. The theory of
repeated games to be used heré will now be presented. Then, the intexpretation
of a dynamic market as a repeated game will be explained.

Intuitively, a repeated game is simply a game which is replayed countably

many times. A repeated game is defined in terms of three underlying spaces. The
players are specified by a measure space <K,u> . The measure § will always be‘
normalized to be a probability measure. For economy of notation, the J-algebra
on which u is defined will not be referred to explicitly.

The actions available to a player are elements of a set A. A’though it is
assumed here that all players have the same set of feasible actions, this re-
striction could easily be removed.

The possible outcomes of the game at any time form a set X. An element of
X specifies the information shared by all players about the results of a play of
the game. For instance, in an economy the elements of X might be price vectors.
It is important to note that this use of the term "outcome" is slightly different
from the usual one, which is that an outcome completely specifies the result of a
play (e.g., in an economy, X would be the set of feasible allocations) including
aspects which may be unobservable to some of the players (e.g., other players'’
components of the allocation vector).

Throughout the paper, A and X will be assumed to be complete separable
metric spaces, and mappings into these spaces from measurable spaces will be

assumed to be Borel measurable.
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Each player k is characterized by a return function 1ﬁéAXX + R, and

a discount factoxr Bke(opl). A player attempts to maximize the discounted value
of his returns from repeated plays of the game.é/

A play 49 of the game is a measurable assignment of aciions to pﬂayera.zjzfi
will denote the set of plays. The outcome of a play is determined by the outcome
function F:AK -+ X.

A strategy s is a rule by which a player determines an action to tzke at
each time, based on his knowledge at that time of the outcomes of past plays, and
of his own past actions. If each past action has been generated as a detorminis-
tic function of prior outcomes and actions, the player can recover the L?fﬂxmé—
tion about his past actions recursively from his memory of past outcomes (this is
easily proven by recursion on t ). If the successive plays of the game are
indexed by the natural numbers, a player's information at time t about prior
history is specified by an element of Xt . Thus, s may be representad by a
sequence <s

where SOEA , and :Xt + A for t€N+ . The space of

>
t ten ' S

t
strategies is then A x T.a¥ , which will be denoted by S .

tent
A strategy vector is an assignment <sk>kEK of strategies :n plavers such
. k k
that = <g >
at, if s st teN then

k. - .
{a) s, isa meagsurable function of k , and

k . .
{b) for Koo X €X, St(xo""’xt~l) is a measurable function of k.

“t-1

These conditions insure that players' strategies determine recursively a sequence
of plays and outcomes. The initial play 9, is the vector <s];>keK of initial
actions specified by the strategies. The initial outcome is x, = F(qo). The
next play is q, = <s};(xo)>kEK , and Xy = F(ql), and so forth. This process de-
fines an infinite sequence <<c1t',xt>>tEN of plays and outcomes, called the
history generated by the strategy vector. The segquence <xt>teN determined by the
history is called the path.

The interpretation of dynamic markets as repeated games is straightforward.
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outcomes are prices. The return function of firm k specifies its profit as a
function of its output level and the price. I.e., if f is the total cost
function of firm k, uk(a,x) = wa - £(2). The market discount rate £ is Bk
for each firm. The outcome function is F(q) = D(ngdu).

Now it is possible to make precise the informal definition of non-coopera-
tive equilibrium which was given in section 2. Let S denote the space of
strategies of the game. I.e., S=2a X I Axt. Also, let y:K°R

t
specify the characteristics of players. Il.e., y{k) = <uk'6k>' Three related

(Axx)x (0,1)

concepts will now be defined. A static non~-cooperative equilibrium is a play
which is a Nash equilibrium of the simple (non-repeated) game. A dynamic quasi-

equilibrium is a strategy vector which satisfies the definingrcondition of Nash

equilibrium with respect toudi :oﬁﬁtgd ceturns at the initial time. A dynamic

non-cooperative equilibrium is rfect;linfpbevsensevof footnote 4) dynamic

quasi-equilibrium.

Definition: A static non-cooperative ééﬁiiibrium of the repeated game

AR

<K,A,X,F,U,y> is a play q*eAF suchuthét;?fdr any other quK, the Follcwing
implication holds for almost all ke¥: If yik) = <u,R> and qfi) = g*(i)

for all ik, then
SaTiulae) B l@) < ulgt ) Flgh)).

. . (3 4ot rrm 4 e X
A dynsmic guasi-equilibuivm is a strategy vector v*e8 . such thet, for

almost all keX, the fallowing_iggiigation holds for all ves<: If

y(k) = <u,B>,v(i) = v*(i) for ali Ji#k, and <<qt,x >>

MLPPTANS LS

>
£ Tten 2T

the histories generated by v :nd v* respesctively, then
Y i Y

t t
(18) I Bulg, (k),z.) < I B ulgflk),xf) .
teN e © 7 ten t ®

A dynamic non-cooperative eguilibrium is a strategy vector v* such that

(a) v* is a dynawic quasi-equilibrium, and (b) 4if t€N+, and x;,...,xg_laK,

and for each player - k a new strategy is defined by

(19) s, = sgixg,.;.,x;_l)
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and, for r€N+,

- % %*
(20) s, (x_,---,%,_4) st+r(xo,...,x;ml,...,xo,,,,,xrnlj,

then the vector of these new strategies is also a dynamic quasi-eqpilibriuﬁ.
It was asserted at the end of section 3 that an inclusion theorem holds
for dynamic markets in which firms cannot discern changes in the output level
of individual competitors. For this condition to be realized in a non-atomic
market it is sufficient for the publicly observable outcome of the operation
of the market to depend only on the distribution of fimm's output level. This

property of the outcome function can be generalized to abgtract games.

Definition: Denote the set of probability measures on A by M(a).
Let m: AKQM(A) map plays to the distribution of actions which they determine
: K
as random variables. I.e., for geA  and Bid, ~  (m(q)) B)=u{{k|q(k)eB]) .. game
with outcome function F is anonymous if F(g) depends on q only through

m(q) (i.e., if there is a function G: M(A) = X which makes the diagram

M (a)
(21) A —X x

¥
Eqmmute.

The preceding definitions make it easy to state and prove the result
described at the beginning of this section, relating static and dynamic non-
cooperative equilibria. The inclusion theorem for dynamic markets with price

information is an immediate corollary of this result.

Theorem 5: If v*eS. is a dynamic non-cooperative equilibrium of the apony-

mous Yepeated game<k,A,X,F,l,y>,U is non-atomic, and <<g;X;>>t€N is *he histery



1s.

generated by v*, then every qg is a static nop-cooperative equilibrium of the
game.

Proof: It will be shown that, if some q; is not a static NCE, then v*
is not a dynamic NCE, If q; is not a static NCE, there is a subset BEX with
U(B) > 0, such that for cvery keB (with y(k) = < u,B>) there exists a play
qeak with, q(i) = q*(1) for i#k, such that (17) fails to hold. I.e.,
u(q;(k).F(q*)) < ulg(kx),F(g)). Now, for some arbitrary player xeB, define
a new strategy as follows. Let his initial action Se ba the initial action
q;(k) specified by v*(k), if 1#0, but let it be(qo(k)if r = 0. Foxr every
t>0, the function C will be a constant function. Everywhere on its domain
#% , the function will take the value gt (k) if tgr, or q(k) if t=r.
Define the strategy vector vesK by v(k) = '{stxfem and v(i) = v*(i) for
i#k. It is claimed that (18) fails to hold for v and v¥*, and that v* is
therefore not a dynamic NCE because this failure of (18) can be exhibited
anywhere on the set Bwhich has positive measure. This claim is substantiated
by noting that, if (xt>t€N is the path generated by v, X, = xg (this
fact is proved below as lemma 2). By construction of v(k), g (k} = qf (k)
except for t=r. Therefore, for tgr, the tth sumands of the left and righﬁ
hand sides of (18) are identical. Consequently, (18) holds only if

u(qr(k).xr) g_u(q;(k),x;). But this last inequality is equivalent to (17),

which fails by assumption. Q.E.D.

K
Lemma 2: Let F be anonymous, v¥e§ <¢f>

£ ten be the path generated

by v*, reN, and aeA. For some kéK with p{k} = 0, define the strategy
“St”ten as follows: Define s = q*(k) if Ofr, but g =a if g = r.
For t>p, define S to be the constant function on xt which is equal
everywhere to qg(k) if t#r, but to a if t = r. Define VQSK by

vik) = <s, > and v(i) = v*{i) for yxk. Let <x.> be the path

t feN t
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generated by v. Then for all teN, ier~{k}, qt(i) = qg(i) and X, = x;.

Proof: By induction on t. For t = 0, qt(i) is determined directly by v*(i)

for all izk since u({k}h) = o, mig) = mlgh), so x, = x*

o)

because F is anonymous. Now suppose that the lemma holds for 0,...,t. Then for
Ak - -
igk, if v*(i) '<St teN

(i) = K re e Xy ) = t+l(x reeerXf)= q*t+1(i) .

Qe1 ST

As in the case t=0, m(qt+l) = m(q§+l), 80 X4 T xt 1 This completes

the inductien. Q.E.D.

Theorem 5 is an inclusion theorem, if this term is interpreted broadly
to mean a charagterization of the equilibria of non-atomic games. It
describes the dynamic non-cooperative equilibria of a non-atomic anonymous
iterated game in terms of the equilibria of the static game which is iterated.
If the equilibria of the static game have some property, thebtem 5 entails
that the equilibria of the iterated game inherit the property. Thus, the
theorem proved by Mas Colell in [5] extends immediately to dynamic economies.
Theorem 1 of the present paper extends in a similar way.

Suppose that firms in a non-atomic dynamic market receive only price
information about the operation of the market. Because price is a function of
mean supply, the market is an anonymous game. By theorem 3, if <<qt'xt>>teN
is a dynamic NCE of the market, every a9 is a static NCE. By theorem 1, then,
every qt'is a price taking equilibrium of the static_market.- It
is evident frcm the definition of price taking equilibrium that the

sequence - <qt?t€N is therefore a price taking equilibrium of the

dynamic market. This proves the inclusionatheore@ﬂigxmdgnamic



markets with price information only. In fact, the theorem continues to hold
if firms receive other information about market aggregates (e.g., the variance
of output levels in the market). The significance of this observation will

be considered in section 6.

5. A limit theorem for anonymous xegeated<g§mes with random outcomes.

Although the inclusion principle is valid for dynamic markets under ine
hypothesis of anonymity, the limit principle remains invalid. This fact i=
evident from the counter-example given in the proof of theorem 3. The r ="tn
why the implications of anonymity ave different for the two principlés is
obvious. In a non-atomic market, anonymity guarantees that no firm can have
any effect at all on the information which its competitors receive about the
market. If inverse demand is strictly downward sloping, though, a unilsteral
change of output level by a firm in a finite market must have a percepiille
effect on the market price. Although the magnitude of this price chanve
becomes small in large replica markets, the change remains percepti™.=. The
limit principle fails because the individual firm's effect on pri-.: infcrmation
does not diminish in large markets, although its effect on the price level
shrinks. In order for the limit principle to be valid for a dynamic mrrket,

a situction must occur in which price information about supply is unreliabla.

One such situation is the existence of random {1uetuations, not directly
observed by firms, in consumers' demand schedules. .u;pose that firms in
this situation attempt to maintain a strategic ncn-coonorative equilibrium
like that described in lemma 1. When the market price f£alls, each firm must
decide whether the decline reflects a spontaneous downward shift of the inverae

demand function, or whether it was caused by a competitor having exceeded his
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output quota. In a large market where the scale of an individual firm is
insignificant relative to aggregate demand uncertainty, price information
cannot provide evidence about the firm's level of output. dJust as in the non-
atomic market, the firm has incentive to break the cartel agreement.

In this section, a limit theorem will be provem which applies to the
situation just discussed. The theorem applies only to equilibria of the
type studied in lemma 1, rather than to all dynamic non-cocperative equilibria.
This is a preliminary theorem. A much more general one should be provable.

The limit theorem will be stated for anonymous repeated games with random
outcomes. A game with random outcomes is one for which, at each play, the out-
come is a random vector taking values in X, rather than a determinate value xcX.
The random vector which is the outcome depends only on the current play. Players'
return functions are now interpreted as von Neumann-Morgenstern utility functions,
and players are assumed to maximize expected discounted returns.

The definitions of a repeated game with random outcomes and of an anonymous
game with random outcomes are the same as those given in the last section, except
that now F:AKQM(X) and G:M(a)-»M(X). When plays have random outcomes, a
strategy vector will not generate a unique path in X . Rather, it will deter-
mine a probability distributiecn over'paths. If B& X,xo,...,xt_lex '

k ; . k
<s >keK is a strategy vector, ¢ is the play defined by q(k) = st(xo,...,xt_l),

and v = F(q) , then v(B) is the probability that x €B conditional on the
outcomes of the first t plays having been K reeerBe g - In order for this
conditional probability to be well defined, V(B) must be a measurable function
of Eoerre-Xe 5 - A sufficient condition for measurability of this function

in the case of an anonyﬁous game is that (a) G is continuous when M(A) and

M(X) are endowed with the weak and total variation norm§/ topologies, respect-

ively, and (b) m(g) is measurable as a function of X rever®i 10 when M(A) has

the weak topology. These conditions will be incorporated in the definitions of

anonymity and of strategy vector.
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Definition: A repeated game with random outcomes <K,A,X,F,U,y> is defined

. X K
exactly as was a repeated game in section 4, except that F:A =M(X). The

shorter term repeated random game will be used synonymously with this. A

random game is anonymous if the diagram analogous to that which defines an
anonymous determistic game (but with.M(X) instead of X) commutes, and if G is
a continuous function from M(A) under the weak topology into M(X) under the
total variation norm topology. A strategy for a repeated random game is defined

as in the deterministic case. BAn assignment <sk> of strategies to players

keK

is a stritegy vector for a repeated random game if it satisfies the conditions

specified in the detexrministic case and if, in addition, when for teN+ the

function Gt:Xt+M(A) is defined by
(22) 8. (x X, L) = m(<sk(x %, .)> )
t ol T -1 t ettt e~ ke

each Gt is measurable (M(A) having the weak topology).

Let SK denote the set of strategy vectors. To define the random path
generated by a vector vesK, let Q= XN and let Eﬁ be the Borel ¢-field
generated by the product topology on . Define the projection functions

% :0°%X for teN by X (<xo,x1,...,xt,...>) = X

£ Let [, be the smallest

£

c-field with respect to which x ,...,x, are all measurable m.B. o< &,

e= D
~ » a s : +

and :Eat is isomorphic as an algebra to the Borel o-field on x© l, by (71,p.6)
Recall that, for a probability measure w defined on jﬁ, a regular

conditional probability relative tovgit is a function Pt:IEXQ+[O,1] such that

(a) for fixed wel, Pt(-fw) is a probability measure defined on Q.

3

(b) for fixed BL {, Pt(B[') is !? ~-measurable, and

t

(¢) for all Be and cgﬁ%t,

(23) m(ByC) = S Pt(B]w)dw(w)
C
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For every probability measure W defined on jg, and every teN , a
regular conditional probability relative tofﬁét exists, and any two of these
differ only on a set of T measure zZexro (i = , if P and P’ are regular
conditional probabilities relative to }it, then ﬂ({wlﬁBEY%(P(BIw) # P’(B]w)}) = 0).
(171, p. 147.) Thus, regular conditional probabilities may be used unambiguously
to define random paths.

Definition: Let Q,/3, X, RByr and P, be as above. Let ves™ , where

k k

k
v = <g > = <35, > . i
S >rek and s Se”reN The random path generated by v 18 the

probability space <Q, k™ , which satisfies, for every Borel subset B of X ,‘
(24) m(x_(w)eB) = V(B),
where Vv = F(<sk> }, and for teN, .,
o keK +
(25) Pt(ggt(w)eB\w) = v(B),

where Vv = F(<st(§o(w),...,§t_l(w))>k€K) , for all & belonging to some Ctelﬁt—l
where ﬂ(Ct) = 1.

It is proven in the appendix that the random path generated by a strategy
vector exists and is unique. Definitions of static and dynamic NCE for a random
game differ from the definitions in the deterministic case only in that expecta-
tions must be taken with respect to distributions of random outcomes and paths.

nginit§9§: A gtatic non-cooperative equilibrium of the repeated game

<K,A,X,F,U,y> with random outcomes is defined as for a deterministic game, ex-

cept that (17) becomes 2/

(26) EF(q)u(q(k),X) f_EF(q*)u(q*(k),x).

The definition of a dynamic gquasi-equilibrium is the same as in the

deterministic case, except that now the random paths <§,)%,m> and <Q, V2, >

of v and v* , respectively, are treated rather than histories in the
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deterministic case. Equation (18) is changed to

k B IR N
teN,

k t k
< % *
Eﬂ*(u(s 0,50) + & Bufs t(§o'°"’§t-l)'§t))'
teN,

The d¢finition of a dynamic non-cooperative equilibrium is exactly the

same as in the deterministic case.

An explicit definition is now given of the type of dynamic non-cooperative
equilibrium which was studied in lemma 1. Recall that in that type of
equilibrium, there is a play 9, to which players are committed at each
repetition of the game. This commitment is enforced by mutual threats that,
if there is evidence that some player Xk has not taken action qo(k), then the
other players will thereafter take the actions prescribed by another play dy-
This threat is self-enforcing, because a4 is a static non-cooperative
equilibrium. Evidence that a player has departed from g consists of an
outcome which lies outside some subset BQZ x. That is, the players agree to
play 9, as long as outcomes in B have been observed in the past, but always

to play 94y if some outcome outside of B has occurred in the past.

pefinition: A strategic non-cooperative equilibrium of the game

<K,A,X,F,|,y> with random outcomes is a dynamic NCE ve:sK such that, for
some triple <q0,ql,B>sARXAKXZX, the following conditions are satisfied for

every keK (with v(k) = S en’ ¢
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(a) 94 is a static NCE.

(b) a, = qo(k)

(¢} If, for any t€N+, xo,...,xt_IEB, then st(xo,..;,xt_l) = qo(k)
and

{(d) 1£, for any t€N+ and r<t, xr¢B, then St(xb""‘gr""'xt—l)

= ql(k) for all xo”'"'gr_l'xr+l"”'xtélex .

By abuse of notation, the strategy vector defined by (b) - (d) above will
also be referred to as <qo,ql,B>.

There is a condition which, if the expectations referred to in its
statement are well-defined, is necessary and sufficient for a strategy vector
<qo,ql,B> to be a strategic NCE. Some notation is introduced now to facilitate
the statement of this condition. Let keX be fixed. For atcA, define q, to
be the play which results from 95 when the action of k is changed to a. I.e.,
q, (k) = a, and q (i) = q (i) for i#k. Define Vj = F(qj) for j = 1,2, and
v, = F(qa) for all aea, and let Ej and E, be the expectation operators (on

functions defined over X) with respect to vj and va’ respectively.

Lemma J: Let qo,qleAK, let ql be a static NCE, and suppose that for
all ker (with y(k) = <u,B>), Eou(ql(k),x) is finite and Eau(a;x) is finite

for every acsA. Let BegX, and define
(28) Vk(a) = [Eau(a.x) + B(l~B)-l(1‘Va(B))Elu(ql(k),x)]/[l-BVa(B)],

for all-aea.- Then‘<q°,qIfBZ» is a strategic NCE if _and only.if, for almost

all keK, .
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(29) Vk(qo(k)) = maka (a).
ach

Proof: By definition, <qo,ql,B> is a strategic NCE if and only if it
is a dynamic NCE. Furthermore, by the reasoning explained in lemma 1, the
fact that q is a static NCE entails that <qo,ql,B> is a dynamic NCE if and only
if it is a dynamic quasi-equilibrium. Thus, it is sufficient to prove that (27)
holds with v* = <q_,q, ;B> for all other ves® with v(i)-= v*(i) for i#k, if and
only if (29) holds.This proof-consists of -two.parts. First, it is—argied that
one need only consider (27) with xespect to v* and strategy vectors
v = <qa,ql,B> for acA. Second, a dynamic programming argument is used to
evaluate the expected discounted returns in (27) for paths generated by these
strategy vectors.

Both of these arguments are transparent when it is'realized that the
decision problem of player k is equivalent to a very simple Markov dynamic
programming problem. In this equivalent problem there are two states: either
all previous outcomes of the game have peen in B (state 0), or some outcome
" has not been in B (state 1). In state O, taking an action a€A yields a
present return (the‘expected return Eau(a,x) from the play qa) and incurs
a risk (the probability l-va(B) of producing an outcome not in B) of causing
a change to state 1 in the next period. State 1 is an absorbing state, and
in that state the player's best action is ql(k) which yields return Elu(ql(k),x).
A basic theorem of dynamic programming states that, if any optimal control
rule exists for this problem, there is an optimal rule which specifies a fixed
action acA to be taken as long as state O persists. If player k follows this
rule while other playexrs use the strategies assigned by <q°,q1,B> the strategy
‘vector <qa,ql,B> results. Thus, if any strategy of k leads to a violation of

(27), the equation fails to hold for some strategy vector of this special form.
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It remains to calculate the expected discounted returns to player k from
paths of strategy vectors <qa,ql,B> (4.B. If a=q°(k), then <qa'q1:B>
= <qo,ql,B>). Denote his expected discounted returan from the path of <qa.q1,B>
by Vk(a). With this interpretation of Vk(a), (29) holds if and only if
<qo,ql.B> is a dynamic guasi-equilibrium. Thus it is only necessary to verify
th&t (28) is true under this interpretation, in order to complete the proof.
To do this, note that Vk(a) must egual the expected discounted return
in the equivalent dynamic program under the control rule: perform action a
in state O, and action ql(k) in state 1. From the first time that state 1
occurs, the expected discounted return is (1—B)~1Elu(ql(k),x)- Thug, if
W:{0,1}> R is the value function of the control rule, Vk(a) = W(0) and

(l°8)—lE1u(ql(k),x) = W(1). wW(0) is defined by the functional equation

(30) W(0) = E_ ula,x) + B[P (the state next period will again be 0) *w(0)

+ P(the state next period will change to 1)- w(l)l.

Given that the transition probabilities are va(B) and (1—va(B)),
respectively, (30) is equivalent to (28). Q.E.D.

Lemma 3 will be used to prove a limit theorem for anonymous repeated
games with random outcomes. To state this theorem, a sequence of replica
repeated games must be defined. This definition is a straightforward

generalization of that of a sequence of replica dynamic markets.

Definition: ILet H = <K,A,X,F,l,y> be an anonymous repeated game with

random outcomes. In particular, let the diagram

" P G
(31) a¥ —'——F—&«x(x)

commute. Suppose that K is a finite set. Then, a seguence of replica repeated
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games <Hn>nsN with random outcomes is defined as follows: For every

neN, H = <K _,A,X,F /U,y >, vhere K = xx{0,...n}, U, is determined by

un({<k,r>}) = u({k})/(n+1) for all <k,r>€Kh, and yn(<k,r>) = y(k) for all
K
<k,r>eKn. It remains to define the outcome function Fn' Let mifA n+M(A)

map plays of Hn to the distributions of actions which they determine as random
K
variables on <K_,ll_>. Then define F_:A "#M(X) by F_(q) = G(m_(q)) for all
X n''n n n n

n : :
geA . Define the non-atomic representation H, of the sequence analogously,

where K =kx[0,1], and, for BaK_, 1,(®) = I u({k})-A({refo,11|<k,x>eB].
keK
The limit theorem to be proved here states that, under appropriate

hypotheses, the limit of strategic non-cooperative equilibria is trivial in
the sense that the "collusive" play supported in the limit must itself be a

static non-cooperative equilibrium. Fermally, if <H—n>n is a sequence of

EN

. . . n S
replica ¥epeafed games with random outcomes, if <qo,q§,Bn> is a strategic

NCE of ; n A o w
c Ay for each n, and if <<y ,q ,q4;>% <y ,q.,q;> in distribution,

[++]
then qo is a static NCE of H,



The statement and proof of the limit theorem are now given.

Theorem 6 (limit theorem for anonymous repeated games with random
outcomes) :

Suppose that <Hn>n€N is a sequence of replica repeated games with random
outcomes, having H_ as non-atomic representation. Let H = <K,A,X,P,H,y>, and
let G make (31) commute. Suppose that <q2,q§,8n> is a strategic NCE of H

for every neN, and that the following hypotheses are satisfied.

(a) The countable subset D A is dense in A.

(b) If y(k) = <u,B> for some keK, then E u(a,x) is a finite-

G(n)
valued, continuous function on AxM(2) , where M(A) has the weak topology.
n n
1 ; <<y >> ~ i i ion.
{c) ?ﬁg sequence Y t9rdy ney Converges in distribution

Then there is a random vector <ym,q:,q;3 defined on R such that
n n [~ 2 ]
(32) <<yn’qo’ql>>nsN - <ym,qo,ql>

in diftdibution, and qz’ is a static NCE of #_,

Proof: The two ideas behind this proof are that the analogue (with
expected utilities) of theorem 5 must be true for non-atomic games with
random outcomes, and thét the functions Vk defined by (28) are continuous
in the actions and measures involved in their definition. If q: is not a
static NCE of H_, the first assertion entails that <q:,qi,sm> cannot
be a dynamic quasi-equilibrium for any B £X. Therefore (29) cannot be
satisfied almost everywhere for H_by any‘ﬁq:,qf,3&>." By the second asgertion,

neither can (29) hold almost everywherc on Kh' for the near-by games Hn and stx

n n .
eqy vectors <q°,qi,Bn> when n is large.
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Formally, the limiting random vector <ym,qo,ql>

exists by Skorokhod's theorem

[en]
({41, p.50). S uppose that 9, is not a static NCE. Then there is a set

JEK,, with U _(J)>0, on which (26) does not hold for all necessary q when

o«

g* = 4, - Because K is finite, for some k€K (N.B. k will refer throughout

the proof to this fixed element of K), U, (Tl {k}x[0,11))>0. wWithout loss
of generality, it may be assumed that Jz{kl}x(o,11.
Because H_ is non-atomic and anonymous, and because D is dense in A,
the failure of (26) is equivalent by (b) to the existence of some deD such that
(33) B | Oou(q:(<k,r>),x) < E o uld,x).

Fm(q& Fola,)

As above, the countability of D permits (33) to be assumed without loss of

generality to hold everywhere on J for some fixed action 4 of D (M.B. 4d

also be held fixed throughout the proof). sgimilarly, by the separability of

3;' it may be assumed that a stronger version

[+
(34) E  _u(d,x) - E o B{a, (<k,x>) ,x)>§
Ew(qo) Fm(qo)
of (33) holds uniformly on J for some §>C, and that by (b),

e
(35) |E, (q:)u(ql (<k, x>y ,x) |<e

holds uniformly on J for some &£>0.

By (b), (34) and (35), for each r with <k,r>cJ, there exist open sets

(<)
U*orrU* S A and W, W, S H(A) with q‘;f’(<k,r>)au*jr and m,, (q)eW, = for

3=0,1, which satisfy

(36) EG(n)u(d,x) - EG(S)u(a,x)>5
for n,eewor and asU*or, and

(37) IEG(n)u(a,x) [<e

and *
for newlr acgu ir

3o.
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There are open Ujr for j = 0,1 and <k,r>cJ, such that q;(<k,r>D€Ujr
U * o i o = } .
and Ujﬁgp jr (N.B. U is the closure of U). Let T <k§k>€J(Uoer1r)
By (a) and Lindelof's theorem (I11, p. 12) there is a countable subset
¥<c[0,1] such that {UorXUlrIrsY} is a cover of T. Since u_(3)>0 and

© ” .
J$i<kvr>l<qo(<k,r>),q:(<k,r>)>ef} » and since Y is countable, there is some

U =Uoer1r such that
(38) um({<k,r>]<q:(<k,r>),q§<<k,r>)>su})>o.

By [71, p. 4, there is a continuous function f£:axa+[0,1]

having support in U* (where U* = Ugr X Uir for the same r which defines

U) such that f£=1 on U . By (38).
o0 o}
(39) f[O'llf(<qo(<k,r>),ql(<k,r>)>)dk(r)>0.

It is evident from (c) and the definition of convergence in distribution
that asymptotically (i.e., for all sufficiently large neN) there exist

rnfp for which

(40) <q)(<k,z,>) ,q] (<k,z_>)>e0

For neN, define a?=q?(<k,rn>) for 3j=0,1. Also define (as in lemma 4)
qg to be the play of Hn which results when <k,rn> deviates from qg by
taking action 4. I.e., qg(<k,rn>) =d and q(<k’,x'>)= a <k’ ,x’>)  if

k'#k or r'#rn . Define n? = mn(q§) for 3j=0,1,4. By (¢),
n (9]

(41) <nj>n€N*mw(qj)

for 4=0,1, and

42) <> sm (gD
(42) 3" nen oo L
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Thus asymptotically ng,nrdlewor and n?ewlr, so that (38), (37) and (40) imply

that for sufficiently large n,

(43) EG(ng)u(d,x) G(n )u(a ,X)>6
and
(44) [E n)u(a?,x)l<e .

Equations (43) and (45) will be used now to establish that (29) fails
asymptotically for q, —q ; 8o that <q ,ql,B > cannot be a strategic NCE of H .

Define vj = G(nj) and let Ej’ be expectation with respect to vj for j=0,1,d.

It will be shown that asymptotically

(45) [E’;ucag,x)ars(l-s)'l(1—v§(an))s‘;u(a;‘,x)1/[1—sv2(sn>1
<(EQu@,x)+8 (1B -] (B )P @ 1 1/ 1182 e ))

By (28), (45) is equivalent for H_ to v <k > (O (SR )< kxS0

so that (45) contradicts (29) for Hn. Thus the theorem will hold by lemma 3,

Multiplying both sides of (45) by [1—v§(an)] yields
(46) ® u(a ,x)+B(l-B) l—v (B ))F a(a $X)
n n n ~1 n n n
<f (1-8\)0 (Bn))/(l--B\)d (Bn))] [Edu (d,x)+B{(1~B) (l-\Jd (Bn)) Elu (al,x)] .

o] ‘ .
For each £>0 there is an open WEEM(A), with mw(qo)ewg, which

satisfies

(47) sup|1-{[1-B(c(M)) (B)1/[1-B(c(8)) (B)11|<E
B&X

for n,GeWg « By (41), (42) and (47), (46) holds agymptotically if




n n n -1-n,. . n n n
(48) Eou(ao,x)—Edu(d,x)+B(1-B) [vd(Bn)-vo(Bn)lElu(gl,x).< 0

asymptotically. By (d), (41) and (42), 1im[vg(Bn)~v2(Bn)] = 0, so by (44),

n->ee
(48) holds asymptotically if
(49) TimiE u(a®,x) - % (d,x)1<0.
psoo © of a ' i
This completes the proof, because (43) implies (49). Q.E.D.

From theorems 2 and 6, it is evident that the paths of strategic
non-cooperative equilibria of a sequence of replica dynamic markets with
unobserved random demand fluctuations converge to a price-taking equilibrium
of the non-atomic representation of the sequence. One difficulty arises
in the application of theorem 6 here. That is, that hypothesis (d) fails
if firms have unbounded production sets. However, if marginal costs
become sufficiently high as cutput levels rise, this difficulty may be handlédﬁ
by imposing prior bounds, uniform in n, on the output levels which firms
would consider. Hypothesis (d) is satisfied in the resulting sequence of
Yreplica markets because inverse demand is continuous and production sets

are compact.

© . Concluding Remarks

The results which have been presented here concern the extent to which
price~téking behaviox charaqterizes the non~cooperative equilibria of large
economies. Theorems 1 and 2 of the present paper exemplify the positive
results for this question which hold under the simplifying assumption that
trade in each market occurs only once, during a single, initial trading period
in which all markets clear simultaneously. Theorems 3 and 4 show that the
validity of these results for actual markets, which continue to be active oner
time cannot be taken for granted. Finally, theorems 5 and 6 describe the extent
to which results for static markets can legitimately be applied to temporal trade.

In this section, the practical significance of these results will be examined.
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Most economists are in rough agreement ahout which actual markets are
paradigm cases which corroborate the static theory of competitive behavior in
large markets, and which markets are accounted for less successfully by the
theory. Theorems 5 and 6 justify the application of the static theory to
the paradigm cases, and they also clarify the status of some of the marginal
cases. Theorem 5 asserts (in conjunction with theorem 3) that, if firms in
a market literally have no effect on the price, then the market must be
competitive unless firms have access to extremely disaggregated information
about their competitors. Theorem 6 states that, in the presence of imperfec~
tions which may reasonably be thought to exist in the price system, the assumpil'
tion in theorem -5 that individual firms do not influence the price may be
taken as a good approximation of the situztijon in large finite markets. Thus,
when a market contains many un-coordinated sellers, the static theory may
legitimately be used to predict that the market will be competitive,

Problems typically arise in deciding what the words "many” and "un-
coordinated” mean, when the applicability of the theory of large markets to a
particular market is in question. Thus one class of marginal cases for the
static theory consists of moderately concentrated industries (typically
having fewer than a dozen major suppliers), and another class consists of
markets in which the actions of a trade or professional association might
affect the behavior of sellers. One school of thought in the economics
profession holds that collusive agreements of even the smallest size are very
unstable and that non-cooperative equilibria converge rapidly to price-~taking
as the number of sellers is increased, so that there is a strong presumption
that markets in both of these classes are competitive. an apparently

conflicting view is held by a number of economists who have. been” persuaded of
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the monopolistic effects of professional associations in medicine, law, and so
forth, on the basis of evidence which for the most part has been rather
impressionistic.

Fach of these views presupposes a set of beliefs about what determines
whether firms in an industry would be able to detect and punish a competitor
which attempted to violate a cartel agreement. It has long been recognized
in the informal literature on industrial organization that this question, more
than the question of how concentrated the industry is according to the
usual quantitative measures, is important in assessing the competitiveness of
an industry with restricted entry. By stating precise, formal criteria for
cartel organization in an industry to be enforceable, theorems 5 and 6 point
the way toward an embodiment of this informal tradition in a rigorous,
empirically satisfactory theorygi%;ndustry studies based on such a theory
would help to resclve long~standing empirical disputes about the extent of
cartel organization, and Might contribute to gpe determination of anti-trust

rolicy on a more rational bagis.
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Appendix: Existence and uniqueness of a random path

k X k k .
= <g > = > .

Let v s kEKES' where s <st e for each t. It will be proven
that there is a unique Borel measure on ) = xN which satisfies the definition
of a random path of v of an anonymous repeated random game.

Lemma 4: To prove the existence and uniqueness of a random path, it is

sufficient to prove that there is a unique sequence <ﬂ+>t€N such that

(a) T, 1is a measure defined on zjt for each t,

< 7 s . .
(b) 4if t < t’ , then T, 1is the restriction of Ter to Z}t ’

(c) the equation

k

(50) m, = F(<s°> )

kek

holds, and

(d) 4if teN+ and Pz is regular conditional probability for ﬁt relative to

jﬁt—l' then for every Borel subset B of ¥x,
(51) P§(§t(w)€Bfw) = v(B),

— k » P 3
where v = F(<st(§o(w),,..,xt_l(w))>k€K), for all w belonging to some

~

cte]Bt_l where (C) = 1.

Ty
Proof: By the Kolmogorov consistency theorem ([7], p. 139), for any
Sequence satisfying (a) - (d) there is a unique Borel measure T on - such
that Wt is the restriction of 7 to Eit, for every t. Thus (50) and (51)
are equivalent to (24) and (25), so <Q,F,m> is a random path generated by wv.

If <Q,B,w'> is any random path generated by v, and if 7' ig the restriction

t
of 7' to f}t, then <w€>t€N satisfies (a)- (d). By the uniqueness of the
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Kolmogorov extension, <7rt>tEN # <wé>teN if w# 7' . Thus, uniqueness of the

sequence satisfying (a) ~ (d) is sufficient for the uniqueness of the random

path. Q.E.D.

Lemma 5: A unique sequence <w. >

£ teN exists which satisfies (a) - (d) of

lemma 4.

Proof: A sequence satisfying (a) - (d) will be constructed recursively.
At each stage the measure chosen will be determined uniquely. To begin with,
has been chosen, condition (d) will be

; . . . , t+2
used to uniquely define Trt+l on 'Et+l’ Define a block in X to be a

(50) defines T, - Supposing that U

product set CxB, where Cg Btﬁ'énd B is a Borel subset of X. Define

ﬂ*:!§tXJ§O+[O,1} by

( {w)eB fm)d.ﬂt (@),

41 Fea1

(52) m*(CcxB) = [ p*
c

where equation (51) is taken as the definition of Pg. [N.B. The measurabilify

of P*i:+i§t+l€Bi‘) with respect to B, is guaranteed by the /
definitions of strategy vector and anonymous game.] Now define 3 * < Bt +1 to
be the class of finite unions of disjoint blocks. ;f\? * is a Boolean algebra
([11, p. 185), and 7* determines a finitely additive measure on 2*. 1In

4
fact, it is evident from Lebesque's monotone convergence theorem that T* is

countably additive on 13 *. By the Caratheodory-Hahn extension theorem([1])p.136) ,7%

extends uniquely to a measure on the smallest o-field containing )5*. By

[71, p. 6, this o-field is -Et+l' Let the extension measure be LA

Conditions (a) and (b) are trivially verified, and it follows from (23) that

P; +1 defined by (51) agrees almost surely with regular conditional probability

for B e}f:*, s6 that 7 satisfies (d) and is the unique extension of m, which

t+1 t

does so, This completes the induction. Q.E.D.
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The existence and unigueness of the random path of v is an immediate

consequence of lemmas 4 and 5:

Theorem 7: If H is an anonymous repeated game with random outcomes and

v is a strategy vector for H, then v generates a unigque random path

<Q, 3, m>.
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ggotnotes

The standard reference for this theory is Hildenbrand [4].

The bibliography of [5] contains further references in this area. William
Thomson has presented (in [11]) a counter example to the non-cooperative

limit principle for a stati& exchange economy.

The present formulation of dynamic markets is restrictive. For instance, it
does not allow for the holding of inventories. The inclusion theorem
(Theorem 5) to be proved here generalizes straightforwardly to apply to richer

models. I am confident that the limit theorem (Theorem 6) is also robust.

Clause (b) insures that a firm will not base its initial output decision on
an expectation that, at a later time, it will produce at a level which from
the perspective of that time will seem suboptimal. In the next section,
equilibria will be ztvdied in wnich firms in a market maintain collusion by
means of mutual strategic threats. Balthough these threats will not be
exercised in equilibrium, they will not have a deterrent effect unless it
would be in the firms' interest to exercise them in the event that deviation
from the cartel did occur. This explains why (a) must hold even conditional
on firms having received information which they in fact will not receive in
equilibrium. Condition (b} was introduced (in [10]) by Selten, whose concept

of perfect Nash equilibrium is equivalent to the dynamic NCE defined here.

Let Z be a metric space. A sequence <nn> of probability measures

nen

converges weakly to a probability measure 7 1if, for every bounded

continuous function f£:Z+R, iizfzfdﬂn?fzfdﬂ- If <R u> . isa

sequence of probability spaces and <{,1> is a probability space, and if

zn:Qn+Z for every n, then <zn>n€N+z:Q+z in distribution if, when the

measures n, are defined by nn(B)=un({zneB}) for all Borel sets B C %

(and n is defined analogously for z), then <nn>+n weakly.
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It is assumed that the discounted sum of optimal returns converges. 1In
applications, this assumption typically is satisfied in equilibrium. If
necessary, the assumption could be avoided by using a discounted overtaking

criterion.

It might be suggested that all (not necessarily measurable) functions from

K to A ought to be included in the set of plays and that an outcome of

the game should be assigned to every such function. Such a change would

not significantly affect the results of this paper. In the case of the
limit theorem (Theorem 6), plays of the finite-player games are trivially
measurable, and the measurability of the limiting play is proven in the
theorem. The inclusion theorem (Theorem 5) would continue to hold as stated,
if the definition of anonymity wused there were replaced by: a game is
anonymous if any two plays differing only in the action of a single player‘

have the same outcome.

If 3‘?15 a 0-field and £:1R>R is a countably additive set function, then the
total variation norm of f ig defined by

[£] = sup{ I ]f(BnH?<Bn>nEN is a sequence of disjoint elements of 7} .

neN

Since this norm induces a stronger topology than the weak topology, the
continuity of G is not automatic. However, if the range of G is any
of the usual parametrized families of distribution (e.g., normal, if X=R")
and does not contain any degenerate (e.g., singular covariance normal) dis-
tributions, then weak continuity of tha parameter as a function of the

distribution of actions is sufficient to guarantee continuity of G.

The functions u(qg(k),x) and u(sz(xo,,..,x x are random variables on

~t"'l g ~t)

X and § in equations (26) and (27), respectively.
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In particular, equation (29) suggests how the hypothesis that there

is collusion in a particular industry might be tested on the basis of

a time series of prices and market shares for that industry. Evidence
from such a test would be more persuasive than that from cross-industry
comparisons on which current attempts to measure the extent of collusion

are based.

In this proof, By will indicate both the Borel subsets of x°'+ and

the smallest subfield of XN with respect to which xo,...,xt are

Borel measurable, The intended reference will be clear from context.
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