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Introduction

Strictly competitive games (i.e., games equivalent to 2-person
O-sum games) can always be solved; it is always clear what each player
should do, and the outcome is strictly determined. As is well known,
this ceases to be true when we drop the assumption of strict competition.
However, there are certain two-person games which still retain this
(somewhat vague) property, although they are not strictly competitive.
Examples are games that are cbtained from strictly competitive games by
the addition of strictly dominated strategies (e.g., the prisoner's
dilemma), and certain games of perfect information, which we can "solve"
by working our way backward from the final move. We wish to give a
characterization of such games.

Roughly, we want to examine a class of games—we will call them

almost strictly competitive (a.s.c.)—in which it is possible to define a

unigue value and a set of "good" strategies for each player, so that a
palr of good strategies yields the value. We also want a structural
theorem of the following kind: Suppose a game G in extensive form

decomposes at a move X (cf.[1]) and that the subgame GX is a.s.c.;

suppose further that we define the difference game GD by stipulating

that the payoff at the terminal X of GD is the value of GX , and

that we assume GD to be a.s.c., as well. Then it should follow that

the original game G 1is a.s.c., and that the composition .of "good"
strategies in GD and GX yvields a "good" strategy in G . Such a
theorem is very important in applications which involve complicated games

in extensive form; it is also not unreasonable as a theoretical demand.



1. The Definition

The definition of strict competition is that for each player,
helping himself and hurting his opponent are equivalent. Our basic idea
is to "weaken" this condition while retaining its spirit.

Recall the definition of an equilibrium point [3]: it is a

pair of strategies at which neither player can increase his payoff by

a unilateral change in strategy.l Iet us now define a twisted equili-

brium point to be a pair of strategies at which neither player can
decrease the other player's payoff by a unilateral change in strategy-.
Twisted equilibrium points are the same as equilibrium poiants, except
that now the object of each player is to hurt his opponent, rather than

to help himself. We will call a game almost strictly competitive if

i) +these two notians are equivalent from the point of view of their
outcomes, i.e., if the set of payoff vectors to equilibrium points is
equal to the set of payoff vectors to twisted equilibrium points; and
ii) if the set of equilibrium pecints and the set of twisted equilibrium
points intersect.

An alternative way of looking at a.s.c. games is the following:
For a given game G , define the twisted game &% 1o be the same as G
except that the obqect of each player is to minimize his opponent's
payoff rather than to maximize his own; formally, the strategy spaces
in G*¥ are the same as those in G , and if the payoff to a given
strategy pair in G is (hl’hg) , then the payoff to the same pair in

¢* is (-h.,-h

227 l>

thless otherwise specified, the word "strategy"” will be used
throughout the paper in the sense of mixed strategy (which may in particu-
lar be pure).



Then the twisted equilibrium points of (& are precisely the equilibrium
points of G¥ , and G is a.s.c. if and only if i) the equilibrium pay-
offs of G* can be cbtained from those of & by "twisting” them (i.e.,
substituting ('hg"hl) for (hl’hg))3 and ii) ¢ and G¥ have some
equilibrium points in common.

The prisoner’s dilemma
P

bW 0,5

5,0 | 1,1

is an example of an a.s.c. game.

2. Theorems

Theorem A. In an a.s.c. game, there is a unique equilibrium pay-

of f (vl,vz) ; a fortiori this is also the unique twisted equilibrium
payoff.

The unique equilibrium payoff will be called the value. We
will alsc refer to a particular player's value or the value of the game

to him; this is simply his component of the value.

Theorem B. Tn an a.s.c. game, each player has a strategy which

simultaneously guarantees that a) he will obtain at least his own

value; and b) the other player will obtain at most the other player’s

value.

Such a strategy will be called good.

Theorem C. In an a.s.c. game, a pair of good strategies is both

an ordinary and a twisted equilibrium point; and conversely, any point




which is both an ordinary and a twisted equilibrium point is a pair of

good strategies.

This is the interchangeability property for points that are

both ordinary and twisted equilibrium points.

Theorem D. Iet & be a 2-person extensive game which decomposes

at a move X , and let GX be a.s.c. Let GD be the difference game,

where the payoff to GD at X 1is the value of GX ; assume that GD

is a.s.c. as well. Then & is a.s.c., v(03) =‘V(GD) , and the compo-

sition of good strategies in GX and GD yields a good strategy in &.

This is the theorem that enables us to build up complicated
a.s.c. games from simple ones, and to "solve" the complicated games.

We mention that the question of deciding whether a given
game is a.s.c. or not can be answered by using the algorithm of
Vorobyev [6], which gives a method for calculating all the equilibriﬁﬁ

points of a given two-person game.

5. Discussion
a) Theorem B is the analogue of the minimax theorem; it may

be restated in saddle-point form as follows: There is a pair of strate-

e}

2) , such that for all s 385 5 WE have

gies (s°,s
1’ 1

(e} o O (e}
hl(sl’52> S hl(sljse) _<_ hl(sl)sg)

(3.1) and
o . o © o]
hg(sl)sg) an(sl)SE) ->'h2<sl’52) 3
where hl and h2 are the payoff functions. A consequence is the

following minimax statement:



min, max, hl(sl’SE) = max, min_ hl(sl’82> =V
and 2 1 1 2

min_  max hg(sl,sg) = max_ min, hl(s =v

»S,)
1 D o 1 e

2
The minimax statement is not as strong as the saddle-point statement,

because it does not provide for the existence of a strategy for (say)

player 1 that simultaneously guarantees that he will obtain vy and that

player 2 will not cbtain more than v Neither statement assures almost

2

strict competitiveness, as is demonstrated by the example

(3.2) 1,1 |0,0

0,0 | 0,0

b) The definition of almost strict competitiveness may be
applied without change to games with infinite pure strategy sets.

Theorems A, B, and C also remain true in this context; the proofs go
through without change. As far as Theorem D is concerned, in principle
there is nothing to prevent this, too, from applying to the broader con-
text of infinite games. However, both the statement and the proof of
Theorem D-depend on extensive game theory, and the elements of this theory
of which we make use are avallable only for the finite case. Presumsbly
an appropriate theory for at least some infinite games can be deveioped
without too much difficulty, but we do not propose to do this here.

c) Although the theory of a.s.c. games is basicallylnonw
cooperative in its viewpoint, it has some applications to bargaining
models for two-person cooperative games. The chief work in this area is
that of Nash [2,4] and Raiffa [5]. We will not attempt here to summarize
it, but merely recall some of the terminology. Given a two-person coopera-

tive game C to be treated cooperatively, Nash [L4] breaks it up into a



threat game and a demand game. The pure strategies of the threat game are
threats to use mixed strategies of the original game C ; the payoffs for
the threat game depend on how the demand game is treated. Nash shows that
if the demand game is treated by the method of [2], then the threat game

has a saddle point in pure strategies (in the sense of (3.1)). Raiffa

[5,p.372] generalizes this by showing that the same result holds if any
one of a large class of different schemes—including Nash'®s—is used for

solving the demand game (we shall call these demand schemes). The solu-

tion of the threat game will depend on which demand scheme is used, but
it always yields a payoff that is pareto optimal in the prospect space of
c .

Our first remark is that the threat game is always a.s.c., no
matter which demand scheme is used. This is a special case of the follow-
ing theorem: Let G be a game which is "strictly competitive in pure

1

strategies,” i.e., if h and h¥* are the payoffs to two pairs of pure

strategies, and if hl > hl* , then h2 < hg* . Assume further that one
of the payoff functions (and hence also the other) has a pure strategy
saddle-point. Then G is a.s.c. The proof is easily given. To apply
this theorem to the threat game we need only verify that the threat game
is "strictly competitive in pure strategies." This follows from the fact
that the outcomes are all pareto optimal.

Our second remark is of a completely different nature. Optimal
behavior in the threat game usually depends strongly on the demand scheme
being used. It is of great interest to know under what conditions this

optimal behavior will be independent of the demand scheme, since cooper-

ative games must often be played without a clear and fixed formal notion



of which demand scheme is being used. A sufficient condition is that the
original game C be a.s.c. This condition is not necessary; the neces-
sary and sufficient condition is that our condition (ii) be satisfied,
i.e., that the set of ordinary and the set of twisted equilibrium points
meet. This is equivalent to the existence of a saddle-point in the sense
of formula (3.1). The reader should note, however, that this only assures
invariance of the optimal strategies, not of the payoffs.

d) We investigated a number of other possible definitions that
are similar in spirit to the one given. For example, motivated by the
discussion in the previous subsection, we might consider dropping condition
(1) of our definition entirely. The remaining condition (ii) is equiva-
lent to the saddle-point formulation (3.1). Theorem A would fail, as is
shown by example (3.2); but we could redefine value to be the unique
saddle-point payoff, and the remaining theorems go through (the proof of
Theorem D becomes much easier, but on the other hand the conclusion of
the theorem would be less significant).

Another possibility is to retain condition (i) and drop condi-

tion (1i). Theorem A would remain true, but Theorems B and C would fail.

FPor example, in the game

(3.3) 0,0 | -2,-112,-1

0,0 | 1,-2 1,2

player 1 can guarantee himself at least O by playing the bottom strate-
gy and can guarantee that player 2 won't obtain more than 0O by playing
the top strategy, but there is no strategy that will guarantee both (I am
indebted to Dr. L. S. Shapley for this example). Theorem D can be made

to go through if "good" is appropriately redefined.



Finally, we could strengthen the definition by demanding that
the set of ordinary and the set of twisted equilibrium points (rather
than the payoffs) coincide. In this case Theorem D would fail; in fact
the extensive game

player 1's move

/ = player 2°'s move

(3,1) (2,0) (0,2)

does not satisfy this strengthened definition, though GX and GD do

satisfy it.

4. Proofs

Proof of Theorem A: Tet s and t be equilibrium points. Iet

t* be a twisted equilibrium point such that h(t) = h(t*) ; by the
definitions of equilibrium point and twisted equilibrium point,

* *) = i mi .
hy(s) >h, (8 %,5,) >h (t%) =h(t) . Similarly, b, (t) >hi(s) ;

hence hl(t) = hl(s) . The proof is similar for b, -

Proof of Theorem B: Any component of a twisted equilibrium point

will assure a), and any component of an equilibrium point will assure
b). By condition ii) of the definition of a.s.c. games, some points

are both; this completes the proof.

Proof of Theorem C: The first statement follows at once from the

definition of good strategies, and the converse from the proof of

Theorem B.



Proof of Theorem D: ILet s be an equilibrium point in G .  Denote

by SX and sD the strategy pair s restricted to GX and GD respec-

tively; subscripts will dencte components.
Iemma 1. If X occurs with positive probability when s is played,
then sX is an equilibrium point in GX .

Proof Suppose that player 1 can improve his payoff in GX by play-

ing t% instead of s% , while player 2 plays sé . Then he can also
improve his payoff in G by playing a strategy composed of s? and

ti ; while player 2 plays Sy
Temma 2. sD is an equilibrium point in GD .
Proof Suppose player 1 can improve his payoff in GD by playing

t? instead of s? < Denote by G; the game in which we attach to X

the outcome of GX if the players play SX (rather than attaching the
value of GX)' If X occurs with positive probability when s is

played, then SX is an equilibrium point in GX , and hence its payoff

X

is the value of GX ; Thus G-S = GD . Hence by composing tE with Sl R

D
player 1 can improve his payoff in G , contrary to the assumption that
s 1s an equilibrium point. If X occurs with probability O when s
is played, then the payoff té s in GD is the same as that in G;
(since the two games differ at most in their payoff at X ). By assump-

tion, player 1 can improve his payoff in G. ; hence if he plays a

good strategy in GX and tD in GD » he will obtain in G at least

1
what he obtains in GD by playing t? - But this is more than the
payoff to s? in GD » which is the same as the payoff to s? in

@ » which is the same as the payoff to s, in G (cf.[l], Theorem 2).

D

S0 s is not an equilibrium point in G , contrary to assumption.

1
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Terma. 3. Iet the value of GD be v . Then every equilibrium point

in G has payoff v .

Proof Follows at once from Lemmas 1 and 2.

Corollary 4. Condition i) of the definition of a.s.c. games 1s
satisfied by G .

Proof We can apply ILemma 3 to the game G¥% , obtaining v¥
(= (—Vg,—Vl)) for payoffs to equilibrium points in G¥* ; hence twisted
equilibrium points in G have payoff v .

Ierma,. 5. The composition of equilibrium points in GX and uD

yields an equilibrium point in G .

Proof Let SX and SD be the respective equilibrium points. The

payoff to sX is the value of GX ; hence G; = GD . Hence sD is an
equilibrium point in G% . The result now follows from Theorem 3 of [1].

To complete the proof of Theorem D, apply lemma 5 to G¥ , and
deduce a result corresponding to Lemma 5 for twisted equilibrium points.
Now let sX and sD be strategy pairs in GX and GD respectively,
that are both ordinary and twisted equilibrium points. Iet s be a
strategy pair in G that decomposes into sX and SD o By ILemma 5 s
is an equilibrium point; and by the corresponding result for twisted
equllibrium points, s 1is also a twisted equilibrium point. Hence
condition ii) of the definition of a.s.c. games is satisfied, and

hence G 1is a.s.c. (because of Corollary 4). Finally, suppose good

to be given; choose good strategies SX and

strategies sX and SD o

1 1
D

S5 - Then sX and sD are both ordinary and twisted equilibrium

points, and therefore thelr composition s also is. Hence (by Theorem

c) s, 1is good.
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