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1. INTRODUCTION

The ideﬁtification problem in the linear simultaneous equation model
is concerned with the possibility of uniquely determining certain char-
acteristics of the model from prior restrictions and the distribution of
the endogenous variables. In their seminal work on the subject, Koopmans
and Rubin [ 6] and later Fisher [2], examined the identifiability of the
coefficients of a single equation, subject to linear constraints on these
same coefficients. More recently Wegge [13] and Rothenberg [10] have
extended the analysis to the identifiability of the complete system sub-
ject to linear constraints across equations.

If the complete model or at least some equation of the model is not
identifiable, one might be tempted to discard the model. As Hurwicz [3]
recognized at an early point, however, certain interesting characteristics
of the model may still be identifiable. This fact was emphasized by
Wald [12], who examined conditions under which a single coefficient of
the linear simultaneous equation model is locally identifiable. Rothenberg
[10] has developed conditions under which a single parameter is (globally)
identifiable both when there are linear restrictions only on a single
equation and also across equations.

Of ‘course, we are often interested in characteristics of linear models
other than specific parameters or vectors of parameters, and would like

to know whether or not that characteristic is identifiable. Kadane [4]
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has suggested that in most cases such characteristics may be conveniently
represented as a function of the model parameters. The concept of identi-
fiability of parametrie functions is a generalization of the identifiability
of a specific parameter, the coefficients of a single equation, or the
complete model, since in each case we have a function (possibly vector-
valued) of the model parameters. Other parametric functions that have

been studied, in the context of the linear model, are linear combinations
of coefficients by Richmond [8] and in a limited fashion ratios of co-
efficients by Kelly [5].

The purpose of this paper is to systematically examine the identifi-
ability of parametric functions in the linear simultaneous equation model
when the coefficients are subject to linear restrictions. After pre~
senting the model and the basic concepts of identifiability in the next
section, I will develop conditions under which a general parametric
function is identifiable in the third section. These conditions will
serve, in the fourth section, as a convenient basis for deriving certain
previously known results on the identifiability of linear combinations of
coefficients. These conditions will be further employed, in the fifth and
sixth sections, to study the role of alternative normalization rules
when the linear restrictions are homogeneous and apply only to single
equations. In the final section, the conditions will be applied to
examine the identifiability of ratios of coefficients when the linear

restrictions are homogeneous.



2. BASIC CONCEPTS

Consider the system of linear structural relations

Byt + th = u, t=1, 2, ..., T

where Ve is an M x 1 vector of endogenous variables, X, isaKx1
vector of exogenous variables, u, is an M x 1 vector of structural dis-

turbances, B is an M x M nonsingular matrix of coefficients, and ' is

an M x K coefficient matrix.1 The disturbance vectors ut (t 1, 2, ..., T)
are assumed to be identically and independently distributed multivariate
normal with mean vector 0 and positive definite covariance 2.2 The
parameter space of the model consists of the (M + K)M elements of

(B, T, I) such that B is nonsigular and I is positive definite.

Nonsingularity of B implies the existence of the reduced form relations

-1 -1
= - +
Ve B th B ut
=TI -
T %
where II = -B_lF is anMxKmatrix of reduced form coefficients and vt is

an Mx1 vector of reduced form disturbances. The structural disturbances

u, (t=1, 2, ..., T) are assumed to be independent of the predetermined

variables X, (t=1, 2, ..., T). Thus Y, given x_, B, T, and Z

t’
(t=1, 2, ..., T) are distributed multivariate normal with mean vector

1ypi=l.

th = —B_lI‘xt and positive definite covariance Q = B~
Let A = (B:T) denote the M x (M+K) matrix whose typical row a;

represents the coefficients of the i-th equation. Thus we can represent

all of coefficients in the system by the 1 x M(MHK) vector a' = (ai aé .o uﬁ).

The coefficients are known to satisfy R linear restrictions which



may be written
a'y = !

where V¥ is a M(M+K) x R matrix of known numbers, and A' is 1 x R vector
of known values. Aside from the requirements that B be nonsingular and I
positive definite these are the only prior restrictions on the parameter
space.

By definition, there is a unique distribution of (yl, y2, erey yT)
for each point (B, I', Z) in the restricted parameter space. A point

(Bl, Pl, Zl) is said to be observationally equivalent to another point

(B2, Pz, 22) if both points yield the same distribution of (yl, Yos ees yT).

Now the multivariate normal distribution is completely characterized by

its mean vector and variance-covariance matrix. So (Bl, Fl, Zl) and
(B2, Pz, 22) yield the same distribution of (yl, Yoo vees yT) if and only
if Hlxt = Hzxt fort =1, 2, ..., T and Ql = Qz. Suppose that X' = (xl, Xys

has full row rank K, then we have the following result:

LEMMA 2.1: The point (Bl, Fl, Zl) is observationally equivalent to

(Bz, Fz, 22), write (Bl, Fl, Zl) ~ (B2, Pz, 22), if and only if Hl = H2

and Ql = 92.

At some point (B;, Fa, Z°) a characteristic of the model is said to
be identifiable if the prior restrictions and the distribution of
(yl, Yos +ees yT) at (B°, r°, £°) imply that the model exhibits that
property. Usually the characteristics of interest can be represented
as values of functions defined on the structural parameters. Let g(-)
be a vector-valued function defined on the restricted parameter space,

then at (B°, I'°, £°) the function g(:) is identifiable if and only if

g(B, T, &) takes on the same value for all (B, T, Z) ~ (B°, T°, £°)

that satisfy the prior restrictions.
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Now the prior restriction on (B, I', I) are |B| # 0, a'¥ = 1A', and =

positive definite. While (B, T, I) ~ (B°, I'°, 5°) if —B—lF = II° and

858! = 0° which means BI® - T = AW® = 0 and % = B2°B' where W°' =
(H°':Ik). But Q° is positive definite so £ will be positive definite
when |B| # 0, and AW® = 0 can be written in stacked form a'(IM ¥ W) = C.
Combining the restrictions we see that (B, I', I) ~ (B°, I'°, £°) and

satisfies the prior restriction if and only if IBI # 0, © = BQ°B', and

0t'(IM ® W°:¥) = (0, A'), whereupon we have

LEMMA 2.2:  The parametric function g(+) is identifiable at
(B°, T°, £°) if and only if g(B, I', BQ°B') = g(B°, T°, £°) when IBI #0

and 0L'(IM ®We:y) = (0, A").

The above definition and lemma assume that g(.) is defined for all
(B, I', £) ~ (B°, T°, £°) and satisfying the prior restrictions. It is
possible, however, that certain functionsg such as ratios of parameters,
may not be defined for all such points. Accordingly, we say that g(-)

is domain identifiable at (B°, I'°, Z°) if and only if g(B, ', &) takes

on the same value where defined for all (B, T, ) ° (B°, I'°, £°) that

satisfy the prior restrictions. The distinction between the two defini-
tions is non-trivial and has been largely overlooked in the limited

literature on the identification of parametric functions.
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3. IDENTIFIABILITY OF PARAMETRIC FUNCTIONS

Assume that the S x 1 vector-valued parametric function g(-) is
defined and continuously differentiable on the subspace defined by
(B, T, £) ~ (8%, T°, 1°) satisfying the prior restrictions. By Lemma 2.2,
we may consider g(+) to be a function only of the coefficients, A = (B:T)

or a, on this subspace, Correspondingly, we may define

_ og(a
G (a) —-%0{'.—)-

as the § x MM + K) Jacobian matrix of g(-).

In order to simplify notation let

Q® = (I, @ W:¥)

and

-
|

= (0, A").

Then o satisfies the prior restrictions and observational equivalence
if and only if |B(a)| # 0 and @'Q® = r'., Without loss of generality,

we may partition a'Q° = r' as

? L — ]
(ag, @) Qp  Qy | = (], 1

where Q.. is a square nonsingular matrix with p(Q,y) = p(Q = q. Solving
11 11

for al_in terms of a,, we find 'Q® = r' if and only if

v‘l 0!
¢y Q; “(r=Qye,

Q
[3+]
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Define, accordingly, the M(M+K) x 1 vector of affine functions

1'1 Nt
e = | 1 (r17Q919,)
2

b

which has the constant Jacobian matrix

' -1 []
20 () Q;
P= =g -
2
T (14K —q

ot = : 1 ] = - . : 1 ]
Now Q°'P 0 since (Qll Q21)P 0 by definition and the rows of (le sz)
are spanned by the rows of (Q]'_1 Qél)' And p(Q°) + p(P) = M(MHK) since
p(P) = MM+K)-q and p(Q°) = q. Thus Q°' spans the null space or column
kernel of P.

With these assumptions and definitions we can now derive our basic

theorem.

THEOREM 3.1: The parametric function g(+) is identifiable at

(B°, T°, £°) if and only if

(3.1) p('.l'.M @ W:¥:G'"(a) = p(IM @ We:v)

for all o satisfying a'(IM®W°:\P) = (0, A").

PROOF: (Sufficiency). Suppose p(Q°:G'(a)) = p(Q°) for all a'Q°=r'.

Then G(p(az)) lies in the row space of Q°' for any a, and
0= G(P(az))P

ag(p(a,))

2

o0
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since Q°' spans the null space of P. But this means that g(p(az)) is constant
for all a, or g(a) is constant for all o satisfying a'Q® = r', whereupon
g(+) is identifiable at (B°, T°, £°).

(Necessity). Suppose p(Q°:G"(a)) > p(Q°) for some 2'Q° = r' or

equivalently p(Q°:G'(p(a2)) >p(Q°) for some o Then the rows of

9
G(p(az)) are not spanned by the rows of Q°' or the null space of P and

G(p(az))P # 0 for some a It follows there exists a point, a% say, such

9
that a*'Q° = r' while g(p(a%)) # g(a*), since g(p(az)) = g(a®) for all

a, would imply

38(p(a,))

aaé

G (p(a,))e.

By continuity of g(+) and p(+) there exists a neighborhood about a§ such that

g(p(az)) # g(a®) for all o, in the neighborhood. Now IB(p(az))l is a

polynomial in the elements of az and nonzero for o, = a;, hence

2
IB(p(az))I # 0 for all o, except a set of measure zero. Thus we can

find a, in a neighborhood of a§ such that |B(p(a2))| # 0 and g(p(az)) #
g(a®). But this means that g(a) # g(a®) for some o satisfying a'Q® = r'

and ]B(a)] # 0, whereupon g(+) is not identifiable at (B°, r°, 1°).

END OF PROOF.

In applying Theorem 3.1 we must evaluate p(Q°:G'(p(a2)) globally

in order to verify that (3.1) holds for all a'Q° = r'.

Suppose g(-)
and hence G(+) are analytic in oy then the elements of (Q’:G'(p(az))
are anal&tic in a, and the matrix achieves maximal rank for all a,

except on a set of measure zero.3 This means that (Q°:G'(p(a2) must

achieve maximal rank somewhere in any neighborhood of aE. And we need
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only verify that p(Q°:G'(p(a2)) = 0(Q°) locally for all @, to guarantee

that the condition holds globally for all aye Specifically, we have:

COROLLARY 3.1: Suppose that g(-) is analytic, then g(+) is identifiable
at (B°, T'°, £°) if and only if (3.1) holds locally for a satisfying

a'(IM®W°:‘1’) = (0, A").

In actual practice, even this local search is probably unneeded.

The matrix (Q°:G'(p(a2)) is said to have a regular point at aE if its

rank is constant in some neighborhood of a Fisher [2] has shown, when

o
2
the elements of a matrix are analytic, the set of points that are not

(-]

regular is of measure zero. Thus for any (B°, T'°, Z°) and hence o,

we are almost certain that (Q°:G'(p(a2)) has constant rank in some
neighborhood of ag. And we can be almost certain that p(Q°:G'(a®)) =
p(Q°) is a necessary and sufficient condition for the identifiability
of g(-).

An important special case of the model occurs when the linear
restrictions apply only to coefficients of the same equation. That is, ¥
is block diagonal and a'¥Y = A' may be written uiwi = Ai fori=1, 2, ..., M,
If the parametric function g(+) is a function only of the coefficients

of equation i, then for i = 1, say,

WO0...0]y 0...0 | 6 (4
Wesy:G' = 0 °

(Gy ®W°:y:6"(a)) w...olo ¥y 0

0
|

Yy |

where
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28(%)

G;(a;) =
ivVvi 1
aai

We immediately have the following result, since the numbering of equations

is arbitrary.

COROLLARY 3.2: With no across equation restrictions glay) is

identifiable at (B®, T°, £°) if and only if
O(WO:\PitGi(ai)) = p(W° :‘yi)

locally for ay satisfying ui(w°;wi) = (0, Ai)‘
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4. IDENTIFICATION OF LINEAR COMBINATIONS OF COEFFICIENTS

Sometimes economic meaning can be attached to certain linear com-
binations of coefficients. It follows that the identifiability of such
functions can become important when some or all of the coefficients are
unidentifiable. Moreover, any results on the identifiability of linear
functions of coefficients include the identifiability of single coefficients
and all coefficients as special cases. Consequently, the identifiability
of linear combinations of coefficients has been well-studied in the past.,
While none of the results of this section are new, they are presented
nonetheless for the sake of completeness, since Theorem 3.1 has such a
simple form in this case.

Let g(a) = o't where t is an M(M+K) x 1 vector of known weights, then

G'(a) = t is constant and we have the following condition first found by

Richmond [ 8].

THEOREM 4.1: The linear function o't is identifiable at (B°, r°, r°)

if and only if

p(IM®W°:‘1‘:t) = p(I]\;I @ Wo:Y¥).

Define di as the M x 1 vector with unity in position i and zero

elsewhere and ey as the (M+K) x 1 vector that is zero everywhere but

position j, where it is one. Then .., a'(d; @ ej) is recognized as
1]
linear and we immediately have Richmond's [ 8] result on the identification

of a single coefficient.

CORROLLARY 4.1: The jth coefficient of the ith equation, aij’ is

identifiable at (B°, T°, ©°) if and only if

p(IM®W°:‘{’:di® ej) = p(IM®W°:‘~P).
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The complete coefficient vector is indentifiable if and only if this con-
dition holds for all i = 1, 2, ..., M and j=1, 2, ...,MK. But this
occurs if and only if p(Q°:ﬁn(M+K))==p(Q°) and we have the condition

first derived by Rothenberg [10].

COROLLARY 4.2: All the coefficients, o, are identifiable at (B°, re, 9

if and only if (IM(2>W°:W) has full row rank M(M+K).

The corrsponding results for the case when the linear restrictions
apply only to coefficients of single equations are obvious. Such results
will be needed for later reference, however, and this case is the most
frequently occurring form of the model. Thus, the following conditions
involving linear combinations of the coefficients of the ith equation are

presented despite their redundancy. The notation is the same as before. \

THEOREM 4.1: With no across equation restrictions, the linear

function o}t is identifiable at (B°, I'°, I°) if and only if
ii
o, . = o,
o (W .Wi.ti) o (W .Wi).

COROLLARY 4.3: With no across equation restrictions, the jth coefficient

of the ith equation is identifiable at (B°, I'°, 1°) if and only if

°. . = o,
p(W .Wi.ej) o (W .Wi).

COROLLARY 4.4: With no across equation restriction, the coefficients
.th .
of the 1™ equation, oy, are identifiable at (B°, T°, £°) if and only

if (W°:Wi) has full row rank M+K.
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The above conditions, which require the construction of the It matrix,
are needlessly complex, since they can be recast so as to display the
structural coefficients directly. Now (IM ® A°) (IM ® W°) = 0 and p(IM ® A°) +
p(IM ® W°) = M(M+K), thus (]:M ® W°) spans the null space of (IM ® W°).
Let D by any M‘(M+K) row matrix, then (IM ® A°)(IM ® W°:D) has rank equal
to the number of columns of D that are independent and also independent

of (IM ®W®), or

p((Iy ® A®)D) p (L, ®W:D) - P (L, @ W)

]

p(IM @)W°:D) -~ MK.

Applying this result to Theorem 4.1 we obtain an equivalent condition

in terms of structural coefficients.

THEOREM 4.3: The linear function o't is identifiable at (B°, T'°, :°)

if and only if
P ((Ty ® A°) (¥:£)) = p((T, ® A)Y).

And by the same argument we have the corresponding corollaries first given

by Rothenberg [10] and Wegge [12], respectively.

COROLLARY 4.5: The ™ coefficient of the 1tP equation is identi-

fiable at (B°, T°, £°) if and only if
p((Iy ® A®)¥:d, ®A°ej) = p((I; ® A%)Y¥).

COROLLARY 4.6: The entire coefficient vector, o, is identifiable

at (B°, T°, £°) if and only if ((IMt:)A°)W) has full row rank M2.
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5. HOMOGENEOUS RESTRICTIONS AND LINEAR NORMALIZATTIONS

A well-studied case of the model occurs when the linear restrictions
on the coefficients are homogeneous and apply only to the coefficients of
single equations. The restrictions on the coefficients of the typical

equation i may now be written

where @i is an (M+K) x Ri matrix of known weights. In this case o, will
satisfy the prior restrictions and observational equivalence at some

point (B®, T°, I°) if and only if ai@ = 0, ]B(a)l # 0 and aiw° = 0, If

i
oy meets these conditions, however, so will any scalar multiple and the
need arises for a '"normalization'" rule in order to establish a scale

for each such vector. It is of interest to study the role of alternmative
normalization procedures in the identification problem.

The most common approach to the choice of scale problem is to apply

a linear normalization rule by requiring o, to satisfy

where Hy is an (M+K) x 1 vector of constants and § is a nonzero scalar.
We assume that this normalizatibn rule is consistent with the homogeneous
restrictions and observational equivalence, so_there is at least one
solution to ui(W°:¢i:ui) = (0, 0, 8). In order to study the identifi-
cation of the parametric function g(ai) under this normalization rule,

we need merely define

¥y o= (@5tuy)

and
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Ai = (0,96)
and apply Corollary 3.2 to obtain

THEOREM 5.1: Under the normalization aiui = g, g(ai) is identifi-

able at (B°, T°, £°) if and only if
Oud .1 .ot = o,
p(W .@i.ui.G (ai)) p(W .@i)

locally for all oy satisfying ai(W°:¢i:ui) = (0, 0,6).

A problem arises, however, in that this normalization procedure is
not necessarily '"neutral," since it may restrict the direction as well
as the scale of ay. Specifically, we may sometimes find o which satisfy

all the prior restrictions and observational equivalence but o = 0.

i
In this case the imposition of the restriction aiui = § would eliminate
such o from consideration, thereby doing more than just establishing a
écale for each direction vector.5 Accordingly, it is important to estab-
lish when a linear normalization is neutral and does not restrict the
direction of .

The normalization aiui = & is neutral if and only if aiui # 0 for
all o such that |B(oz)| # 0 and a:;(W°:<I>j) = 0 where j =1, 2, ..., M. Let
ci(a) denote the (M+K) x 1 vector whose first M elements are the co-
factors of the ith row of B(a) and last K elements are zero. Then ci(u)

is a function only of aj for j # i and [B(a)l = aici(a), whereupon we

can derive the following result.

THEOREM 5.2: The linear normalization aiui = § is neutral at

(B°, F°,.Z°) if and only if

p(W°:@i:ui:ci(a)) =p(W°:0 )

1My

for all o satisfying a&(W°:¢j) =0 for j # 1.
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PROOF: (Sufficiency). Suppose p(W°:¢i:ui:ci(a)) = p(w°:®i:ui)
for all o satisfying ag(W°;¢j) = 0 where j # 1i. Then aici(a) = IB(a)l =0
when aiui = 0 and ai(W°:@i) = 0, since ci(a) is a linear combination
of the columns of (W°:®i:ui). Thus aiui # 0 for any a such that [B(a)| # 0
and aj(W°:@j) = 0 where j =1, 2, ..., M, which implies the linear normali-

zation is neutral.

(Necessity). Assume p(W°:¢i:ui:ci(a)) > p(w°:®i:ui) for some o
satisfying aé(w°:®j) for j # 0. Then ci(a) is independent of the columns
of (W°:¢i:ui) and we can find ay such that aici(u) = ]B(u)l # 0 while
ai(w°:¢i:ui) = 0. Thus aiui = 0 for some a satisfying lB(a)l # 0 and
aj(W°:®j) =0(=1,2, ..., M), and the linear normalization is not

neutral. END OF PROOF,

The above theorem, which requires that we evaluate (5.1) for all o
satisfying ag(W°:®j) = 0 where j # i, might prove difficult to verify.
By the arguments of section 3., however, we need only show that (5.1)
holds locally for all o satisfying the linear restrictions. Specifically

we have

COROLLARY 5.1: The linear normalization aiui = § is neutral at
(B°, T°, £°) if and only if (5.1) holds locally for all a satisfying

ag(w°:¢j) = 0 where j # 1i.

If, as is usually the case, p(W°:¢i:ui:ci(a)) is constant for all o
in the restricted neighborhood of a®, then we need only evaluate (5.1)

at 0° to check neutrality.

The form of Theorem 5.2 suggests that the neutrality of linear

normalizations is closely related to the identifiability of |B(a)|.
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Suppose each equation is subjected to a linear normalization, then all
normalizations are neutral if and only if Theorem 5.2 holds for i =

1, 2, ..., M. Define

Wl 0...0
¥ =

0 Wz... 0

0 O L IR q’M

and A' = (Ai, Ay e, Aﬁ) where as above Wi = (@i:ui) and Ai = (0, 1).

Let g(a) = |B(a)|, then
) =28 = (el (@), ej(@), ..., ).

and a necessary condition for every normalization to be neutral is that
p(IM Q@ We:¥:G'(a)) = p(IM ® W°:¥) for all o satisfying oc'(IM ® We:y) =
(0, A"). But, by Theorem 3.1, this condition implies that g(a) =

lB(a)| is identifiable at (B°, I'°, £°) and we have the following remark-

able relationship.

COROLLARY 5.2: At (B®°, T'°, I°) the linear normalizations aiui =8

for a = 1, 2. ..., M are all neutral only if |B(a)| is identifiable when

these normalizations are imposed.



~18-

6. HOMOGENEQUS RESTRICTIONS AND QUADRATIC NORMALIZATIONS
A less restrictive approach to normalization is to impose the quadratic

restriction

where D is a known (M+K) x (M+K) positive definite matrix and § a nonzero
scalor constant.6 Since D is positive definite then ai D o, # 0 for any
nontrivial a, - Thus setting ai D a; = § only restricts the scale of and
not the direction of s whereupon the normalization is neutral, It is
of interest to examine the identifiability of the parametric function
g(ai) when such a normalization rule is applied in the case of homo-
geneous restrictions.

Without loss of generality, we can simplify the analysis by setting
§ = 1, since we can always rescale D such that the restriction is un-
changed. Now g(a.) for o. satisfying o D a, = 1 and g((a! D a.)_l/Z o)

i i i i i i i

for a, unrestricted except to be nontrivial have the same range. Thus
at (B°, re°, z°), g(ai) is constant or identifiable under the normalization
ai D a, = 1 if and only if g((ai D ai)-l/zai) is constant or identifiable
without the imposition of any normalization rule. We need only apply

Corollary 3.2 to obtain the following result.

THEOREM 6.1: Under the normalization ai Da, =1, g(ai) is

identifiable at (B°, T'°, 1I°) if and only if
o, R _ 1 ' = o,
p (W .@i.G (ui) D e, o G (ai)) o (W .@i)

. . 1 (0. = ' =
locally for all a, satisfying ai(w .@i) 0 and oy D o, 1.
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PROOF: Define ai = (ai D ai)_l/z @, as the normalized vector,

then we may consider g*(ai) = g(ag) to be a composite function in a

with

ag# (ai)

%o
i

G*(ai)

% *
_ Bg(ai) aai
= *l [
aai aai

il

(o) D ai)‘l/z G @D - G(o}) of at' D).

Let Wi = @i, then by Corollary 3.2 g*(ai) is identifiable if and only

if p(W°:®i:G*'(ai)) = p(W°:®i) for all ay yielding ai(w°:®) = 0,

Eliminating the scale factor (ai D ai)_l/z, we find that g*(ai) = g(ai)

is identifiable if and only if p(W°:¢i:G'(a§) -D a% a?' G'(ai)) = p(W°:¢i)
for all oy such that ai(W°:®i) = 0 or equivalently all ai yielding

a%*'(W°:4.) = 0 and o* D o* = 1. END OF PROOF,
i i i i

This condition for identifiability can be somewhat simplified.
Without loss of generality, we can restrict our attention to the case where
g(+) is a scalar function, whereupon G'(ai) = Vg(ai) and the condition

. * 27 o, . - 1 - o,
for identifiability becomes p(W .@i. Vg(ai) ' D a; o Vg(ai)) p (W .@i)
for all oy yvielding ai(W°:@i) = 0 and ai D a, = 1. Now this condition
is equivalent to the existence of a vector z such that (W°:¢i)z + (Vg(ai)
- ' = o, —~a ! = i

Dai ay Vg(ai)) 0 or (W .@i)z + ( af Vg(ai)) D oy + Vg(ai) 0. But this

means that g(+) is identifiable if and only if Vg(ai) is a linear combina-

o, . o, . . = o, . i
tion of the columns of (W .@i.D ai) or p(W .@i.D ai.Vg(ai)) p(W .@i. D ai)
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for all a; giving ai(W°:¢i) = 0. If g(-) is a vector-valued function

then we have

COROLLARY 6.1: Under the normalization rule ai D a, = 1, then

g(+) is identifiable at (B°, T'°, £°) if and only if

o, . Tt = o, .
p(W .@i.D ai.G (ai)) p(W .@i.Da i)

locally for alla, satisfying a!(W°:9.) = 0 and o' Da. = 1.
i i i i i

To examine the identifiability of all the coefficients in the
equation we may set g(ai) =0y whereupon G(ai) = IM+K' By Corollary
. . e~ .~ : o, . -
6.1, then oy will be identifiable if and only if p(W .@i.D ai'IM+K)
= °.5 . °.g . = 1 (170 . = ' =
o (W :0,:D ai) or p(W $0,:D ai) MHK for o (W .@i) 0 and a; D oy 1.
But D oy is independent of the columns of (W°:®i) when ai D a, = 1 thus,

we have the following familiar result.

COROLLARY 6.2: Under the normalization rule ai D ai = 1 the
coefficients of the ith equation, a,, are identifiable at (B®, T°, £°)

if and only if (W°:¢i) = M+K - 1.

Consider the linear function ait where a;t # 0, then by Corollary
6.1 ait is identifiable if and 6nly if p(W°:¢i:D ai:t) = p(w°:¢i:D ai)
for all ai(w°:©i) = 0 and ai D a; = 1. Since a;t # 0 while a;(w°:¢i) = 0,
then t is independent of the columns of (W°:®i) and the identifiability
condition becomes p(W°:®i:t:D ai) = p(W°:¢i:t) for all ai(W°:¢i) = 0 and
ai D a; = 1. Now the quadratic restriction ui D o, = 1 will only rescale
any nontrivial oy and not change p(W°:®i:t:D ui) hence p(w°:¢i:t:D ai)
= p(w°:§i:t) for oy # 0 satisfying ai(W°:®i) = 0 in an equivalent

condition. Let Pi be a matrix such that Pi(w°:®i) = 0 and
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p(Pi) + p(W°:®i) = M+K, then Pi spans the null space of (W°:¢i) and any

a; such that ai(W°:®i) = (0 is spanned by the columns of P Thus

i
°, ot = o, N 1 o, = . .

p (W .Qi.t.D ai) p (W .@i.t) for ai(W .@i) 0 if and only if
s ote = °.5 - °.5 . = o4

o(W .@i.t.DPi) p(W .@i.t). But p(W .@i.DPi) M+K, so ait is

identifiable if and only if p(W°:¢i:t) = M+K, which is equivalent

to

COROLLARY 6 .3: Supposea;'t # 0, then ait is identifiable at (B®, T'°, Z°)
under the quadratic normalization ai D a; = 1 if and only if p(w°:¢i) =
M+K.

This condition means that a nonzero linear function of the coefficients
of a single equation cannot be identifiable under a quadratic normalization
unless all the coefficients of the equation are identifiable. In order
to identify a linear combination of coefficients of a single equation we
must instead use a linear normalization rule. But, as was pointed out
above, a linear normalization is not necessarily neutral since it can
restrict the direction as well as scale of o, . Thus, if we are interested
in identifying linear functions of coefficients, the analysis of when a
linear normalization is neutral, which was conducted in the previous

section, is important.
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7. IDENTIFIABILITY OF RATIOS OF COEFFICIENTS

Suppose we are interested in the relative effects of certain variables
in the ith equation. Then the identifiability of the rati§ of the
corresponding coefficients, say aij/aik’ becomes important when the
first equation is unidentifiable. Assume, as in the previous sections,
that the linear coefficient restrictions are homogeneous and apply only

to single equations. Then a, is identifiable at (B®°, I'°, £°) if
i

37941
and only if aij/aik is defined and constant for every oy satisfying
ai(W°:®i) = 0, IB(a)| # 0, and the normalization rule (if any).

Using a somewhat different approach to that given below, Kelly [5]
purports to have developed a sufficient (but not necessary) condition
for the identifiability of aij/aik'

A complication that has been overlooked by Kelly, however, is the
possibility that Oy = 0 for some oy satisfying observational equivalence
and the prior restrictions. In this case aij/aik is not defined for
all Gy satisfying ai(w°:®i) = 0, IB(a)] # 0 and the normalization rule
and hence is not (globally) identifiable. The best we can hope for is
that aij/aik is constant where defined for oy satisfying observational

equivalence and the prior restrictions, whereupon o, is domain

j/“ik

identifiable. This concept is not empty, for if o, is domain

37941
identifiable, then we know that the ratio will be (globally) identifiable
if we are willing to impose the additional prior restriction ST # 0.
Of course, when SN # 0 for all oy in the relevant parameter space
then global and domain identifiability are the same.

Suppose that we impose the normalization rule ai D a, = 1, then
a.,/aik'is domain identifiable at (B°, T'°, £°) if and only if aij/aik =

1]
° ° . . 1 (170 . = ' =
aij/aik for all oy satisfying ai(w .@i) 0, aici(a) IB(a)I # 0,
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1 = = 1 ! ©. =
oy D ay 1, and P # 0. Now when oy satisfies ay W .@.) o,

1 l(oc) # 0, and ale # 0 then so will any nonzero scalar multiple of o,
while ay /u is homogeneous of degree zero and hence constant for any

scalar multlple of oy when Ol # 0. Thus the choice of scale for o

i

is superfluous to the domain identifiability of o, /a and the ratio

ig domain identifiable at (B°, T'°, £°) if and only if a../a. = u;j/a;k
for every ay satisfying o (W° ) ) 0, ay e (a) # 0, and o' ek = a;k. But

this means that o /a is domain identifiable, with or without a neutral
normalization, if and only if aij is (globally) identifiable under the

- -]
normalization aiek LR

g(a, ) = g, eJ, then we can apply Theorem 5.1 to obtain.

= . ' = °
Let W €] .ek), A. (o, aik)’ and

THEOREM 7.1: Let a # 0 then ay /a is ‘domain identifiable at

(B°, T'°, £°) if and only if

p (W :¢i:ek:ej) = p(W :@i:ek).

Now oy /a Will be (globally) identifiable if and only if it is
domain identifiable and % # 0 for all’ai(w°:¢i) = 0 and |B(a)| # 0 or
equivalently the linear normalization aiek = a;k is a neutral normalization
if and only if p(W°:% i e’ i(a)) = p(W°:0,:e ) locally for all o satisfy-
ing |B(a)| # O and az(w°:®2) =0 (2=2,3,...,M). Combining the
condition for domain identifiability of aij/aik and the condition for

i K ;k to be neutral yields the following corollary.
COROLLARY 7.1: Suppose a # 0, then ay /aik is (globally) identifi-
able at (B°, I'°, £°) if and only if

(7.1) p(W°:©l:ek:ej:ci(a)) = p(W°:¢i:ek)

locally for all o, yielding ué(W°:¢£) = 0 where 2 # 1.
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Suppose that (W°:¢i:ek:ej:ci(a)) has constant rank for all o locally
satisfying aé(w°:¢z) = 0 where 2 # i, It follows immediately that aij/aik
is (globally) identifiable if and only if (7.1) holds for o = o°.

Now, as we argued in the third section, almost all points in the restricted
parameter space will satisfy this condition of regularity. Thus, unless ¢°
is a pathological point in the restricted parameter space, a necessary and

sufficient condition for ozij/ocik to be identifiable is that (7.1) be met

at a°.

Since a;'ci(a°) = |B(a®)| # O then at least one element of a;, say
a;k, is nonzero. Applying Corollary 7.1, we find that the ratios of all
coefficients in the vector to aik, namely L ays is identifiable if and

a
ik
3 o, . . .. - o, - 1
only if p(W .@i.ek.IM+K.ci(a)) o (W .@i.ek) for the appropriate a.

Thus El— oy is identifiable at (B®°, I'°, 1°) if and only if p(W°:®i:ek)
ik
M+K. Since a;ek # 0, then e, is independent of the columns of (W°:¢i)

and we obtain a variation of Corollary 6.2 wherein no normalization rule

is imposed.

COROLLARY 7.2: The coefficients of the first equation, a,, are

identifiable up to a scalar multiple if and only if p(w°:¢i) =M+ - 1.

FOOTNOTES

lWe need only assume that x,_ is a vector of predetermined variables to
derive the results of this paper, however, the presentation is somewhat
simpler with this stronger assumption.

2The assumption of normality is overly restrictive. If all we know
about u_ is that it has mean zero given any x, and positive definite
covarianice, then the same results apply.

3To see this we need only look at the largest-order square submatrix
that achieves full rank. The determinant of this matrix is a polynomial in
its elements and hence analytic in a. Since this determinant is nonzero
for some values of o, it is nonzero for all values except on a set of
measure zero.

4The most frequently used normalization procedure is to set one
coefficient of each equation, say o, ., to unity. But this can be written
aij = aiej = 1 which is recognizableqas a linear normalization.

5Another problem that might arise is that the linear normalization

is not consistent with the homogeneous restrictions and observational
equivalence. That is, o'y, = 0 whenever a. satisfies a!(W°:9.) = 0.
But the normalization a!ﬁ = § will not be neutral in siich an'event, so
we need not treat this %roblem separately.

6A closely related normalization is to set BiPB. = 1 where P an
MM positive definite matrix. Since |B| # 0 thedl 8, # 0 and this
Procedure will only rescale the vector. Of course we can define
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