ISSUES IN CONTROLLABILITY AND THE

THEORY OF ECONOMIC POLICY

Willem H. Buiter
Mark Gersovitz

Econometric Research Program
Research Memorandum No. 232

September 1978

Econometric Research Program
Princeton University
207 Dickinson Hall
Princeton, New Jersey



ISSUES IN CONTROLLABILITY AND THE THEORY OF

ECONOMIC POLICY

Willem H. Buiter
Mark Gersovitz

Princeton University

ABSTRACT

The paper demonstrates that the.concepts of dynamic controllability
are useful for the theory of»economic policy by establishing four proposi-
tions. First, dynamic controllability is a central concept in stabili-
zation policy. Second, the ability to achieve a target state, even if
it cannot be maintained, may be of economic interest. Third, dynamic
controllability is of special interest for "historical" models. Fourth,
the conditions for any notion of dynamic controllability are distinct

-from and weaker than those for Tinbergen static controllability.
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1. Introduction

A considerable volume of research on extending the theory of economic
policy to dynamic models has been summarized in a recent paper
by Nyberg and Viotti [1978] (henceforth N-V). 1t is the purpose of
our paper to emphasize ceftain issues not generally discussed in this
literature, thereby supplementing and extending the discussion summarized
in N;V. In particulér, we focus on an assessment of the N-V conclusion
that "the concept of [dynamic] controllability. . . is of limited interest

." We find four important reasons

for the theory of economic policy.
for qualifying this statement.
First, dynamic controllability provides a convenient sufficient
criterion for determining whether the policy authority has the ability
to steer the economy toward an equilibrium state. The consequent im-
portance of controllability for stabilization policy is discussed in
Section 2. Second, controllability can be relevant for policy even 1if
the state to which the economy is moved cannot be maintained. We pro-
vide examples in Section 3. Third, controllability is especially inter-
esting for models exhibiting hysteresis i.e. models for which the
equilibrium depends on the initial conditions. An example of such a

historical model is given in Section 4. Finally, N-V have inferred an

overly strict requirement for a system to be perfectly controllable which
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has led them to an incorrect generalization of Tinbergen's static con-
trollability condition to dynamic systems. This issue is discussed in
Section 5. Before proceeding to Sections 2 to 5, we establish some
terminological conventions and recall some important theorems on dynamic

systems. :

Dynamic Point Controllabilityi/

Consider a linear system with constant coefficients:

A 1s an nxn matrix'and B is an nxr matrix of constants. x is an n-vector
of state variables and u is an r-vector of instruments or controls. What
N-V call controllability or dynamic controllabilityIWe call dynamic

point controllability.

The system of (1) is dynamically point controllable iff there exists
a path for the controls capable of moving the state vector from any
initial state in the state space and from any initial time to any other
terminal or target state in pre-assigned finite time. The necessary and
sufficient condition for the system (1) to be dynamically point control-

lable is that the n x nr matrix ¢ have rank n where

(2) 4= [B, AB, A%B . . . A™1lpp 2/
Dynamic Path Controllability ’ s
What N-V refer to as perfect controllability;é/ we call dynamic R

path controllability. The system (1) is dynamically path controllable

iff there exists a path for the controls capable of moving the state

vector from any initial state and from any initial time along any pre-
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assigned (target) trajectory for any pre-assigned finite time interval.
The necessary and sufficient condition for (1) to be dynamically path

controllable is that the n2 X (2n-1)r matrix ¥ have rank n2 where

4/
(3) B AB X ) . . P
0 B -
y = X o . .
0 0 B A" 1p
N _

In what follows, A and B will be assumed to be of full rank,

Static Controllability

An equilibrium of the system (1) is any X* guch that
(4) 0 = Ax* + Bu

for constant u. The equilibrium of system (1) is statically controllable
iff there exists a u such that 0 = Ax* + Bu for all x*, If A is of

full rank (n), the equilibrium of (4) is statically controllable iff

the rank of B = n, 1.e. there should be as many linearly independent

instruments as there are linearly independent targets;él

2. Dynamic Point Controllability of Target States that are Equilibria

N-V emphasize that if the target state is not an equilibrium of
the system, dynamic point controllability only ensures that there 1s an

adjustment path that will make the system pass through the target state
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at a pre-assigned point in time (T). Thus this concept does not indicate
whether it is possible to keep the system at the target state beyond T.
However, if the state is an equilibrium of the system, it is clearly
possible to keep the system there.

From the viewpoint of stabilization policy, dynamic point control-
lability is therefore a more important property of the system than
stability. If the system is stable, it returns to an equilibrium
after a perturbation with the policy authority rigidly adhering to
whatever fixed values of its controls are consistent with the original
equilibrium. Stability analysis therefore assumes u is fixed and con-
siders only the eigenvalues of the matrix A. Dynamic point control-
lability, by contrast, implies that there exists a trajectory for the u
capable of returning the system to an equilibrium after a perturbation.éj
Consequently, we consider dynamic point controllability to bé a better
characterization of the policy options potentially available to the policy
authority. This interpretation is strengthened by the connection between

dynamic point controllability and the stabilizability of a system.

Stabilizability

A pair of matrices (A, B) is stabilizable if the range space of
[B, AB, ..., Ap—lB], i.e. the space spanned by its colums, contains
the subspace spanned by the eigenvectors of A with non-negative real
parts (Aoki [1973], p. 134). Intuitively, (A, B) are a stabilizable
pair if all sources of instability in A can be eliminated by a control
matrix B, as the following propositions, advanced without proof,l/

indicate.

Proposition 1 If the dynamic system (1) is dynamically point controllable,

(A, B) are a stabilizable pair.
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In other words, dynamic point controllability implies stabilizability.
Proposition 2 implies that a system which is stabilizable can always be

stabilized in a simple manner.

Proposition 2: 1If (A, B) is a stabilizable pair, there exists an (r x n)

matrix T such that A + BI' is a stable matrix, i.e. all eigenvalues of

A + BT have negative real parts.

Consequently, dynamic controllability implies that there always exists

a set of proportional feedback controls which stabilize the system, Pro-
portional feedback is equivalent to policy behavior characterized by
partial adjustment, the simplest and.most intuitive form of response to
disequilibrium. To know that any system that is dynamically point con-
trollable can be stabilized in so simple a manner is clearly of great

interest,

3. Dynamic Point Controllability of Disequilibrium States

The previous section focussed on the usefulness of the dynamic point
controllability concept with respect to equilibrium states. In this
section we briefly consider the usefulness of this concept when the state
which is reached at T is not an equilibrium and it is therefore not
possible to say, at least on the basis of point controllability [butb
see Section 5], whether the system can be made to stay in this state.

N-V dismiss the importance of reaching a state which cannot be main-
tained: "In economics, it is usually not sufficient to reach the desired
position; we muat also be able to stay there." While we are in general
agreement with this statement we wish to emphasize exceptions to this
position. For instance, models of the political business cycle empha-

size that governments may try to bring the economy to a point on, or
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just before, the election which ensures re-election, Problems of
sustainability after re-election may be of secondary importance, especially
if the favorable situation can be reconstructed by the next election.
Clearly, controllability is the natural analytical device for this pur-
pose. Other examples of the usefulness of point controllability may well
be developed by the consideration of other problems in political economy .
For instance, tariff retaliation could be formulated as a dynamic game
where the ability to reach a state in which one's opponent capitulates

may be important.

4. Dynamic Point Controllability of Historical Systems

Hysteresis is the dependence of‘an equilibrium on the initial state
and the path the economy experiences towards the equilibrium. Consider
the system (1) when A is not of full rank., In this situation, A—1 does
not exist and the equilibrium of the system is not uniquely determined,
for any given fixed u, by (4). Instead, if A has no roots with positive real
parts,§/ it will move from any particular initial state to an equilibrium
determined by that initial state, the disequilibrium path of u and the final
value of u. If the system 1is dynamically point controllable, the equilibrium
values of the instruments can be used to control the equilibrium values of
those state variables that are statically controllable; the initial values
of the instruments and their values during the adjustment towards equilibrium
can be used to control the equilibrium values of the remaining state vari-
ables.

A potentially important example of a historical model in which "the
time path to equilibrium partially shapes that equilibrium'" is mentioned

in Phelps' Inflation Policy and Unemployment Theory (77-80, 256). 1If

a temporary boom has permanent effects on the attitudes and or aptitudes
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of workers, i.e. if a departure from equilibrium produces effects which
persist after the return to equilibrium, the natural or equilibrium rate
of unemployment is not invariant to the expected inflation rate.

The following macrodynamic model provides an example of the role
of point controllability in the analysis of a historical system. Let p
denote the price level, I the expected rate of inflation, y real income,
r the real interest rate, M the nominal stock of outside money and G
real public spending on final goods and services and m = M-p the real
money stock. All variables are measured in natural logarithms.

The structural equations are

(5a) P = aly-y*) + T a> 0

(5)  f = n(p-m | n> 0

(5¢) Yy = Br+yG B<Qvy>0
(54d) m= 8r + gy § <0, e >0
(5e) M=1

Equation (5a) is an expectations-augmented price Phillips curve or a
Phelps-Friedman-Lucas supply function. Equation (5b) gives the adaptive
expectations mechanism governing inflation expectations. The IS curve
is given by (5¢), the IM curve by (5d). The government is assumed to
pPay interest on its monetary debt at a rate equal to the expected rate

of inflation.gj The real interest rate is therefore the appropriate
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argument in the money demand function. Equation (5e) states that interest
on the stock of money is paid for by running the government printing
press. Any remaining public sector deficit or surplus is financed by
borrowing. Government bonds are not perceived as net worth and play no
further part in the model.

It is convenient to rewrite the model as

(6a) m = 8r + gy
(6b) y = Br + vG
(6c) m = -a(y-y*)
(6d) 1= na(y-y*)
(6e) P = aly-y*) + I

Equations (6a - ¢) can be solved for the entire trajectories of m,

y and r, given an initial value for m (i.e. for M and for p) and given

the path of the policy instrument G. With the path of y given by the
solution of (6a - c), and given an initial value for I, equations (6d)

can be solved for II. Given the paths of y and 1, egquation (6e) determines
ﬁ at each point in time. An initial condition for p then determines the
entire trajectory for p.

The equilibrium equations are

(7a) y = y*



(7v) r = (y* - vyG)/B
(7¢) m= [(8§ + eB)y* ~ §yG]/B
(7d) m= ﬁ = constant

The steady state rate of inflation (actual and expected) cannot be deter-
mined from the steady state conditions alone. Neither can the price level
path or the path of the nominal stock of money. It is apparent from

(7c) that the real stock of money 1is constant and well defined.

The state space representation of the system is, in terms of deviations

from the steady state (m*, IT*, G*) ,

r."‘ r -1 F T - .
(8) m ~oB/ (8+eB) 0 m-m* -ay8/ (8+eB)

+ [G-G*]

_ﬁJ | na/ (8+eB) 0| _H—H*J nuya/(aﬂs)J

The rank deficiency of the state matrix is a reflection of the
hysteresis property of the model; the steady state equations (7c¢) and
(7d) cannot by themselves determine the equilibrium rate of inflation.
Consequently, the target vector (m, II) is not statically controllable.
Only a one dimensional subspace of the state space (i.e. only m) is
statically controllable. Given an initial condition for I, however,
any solution of (8) which converges to a steady state will generate a
well-defined equilibrium rate of inflation. As the path of m is inde-
pendent of that of NI, a different initial condition for I will generate
a different solution trajectory for T and a different steady state rate

of inflation.
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If the system (8) is dynamically point controllable, the policy-
maker can indeed choose any initial condition for the state vector. By
varying this initial condition, the government can alter the steady
state rate of inflation. The steady state value of m is, however, in-
dependent of the initial conditions and depends only on the steady state %
value of G. Thus, while the Tinbergen static controllability criterion
states that only m is statically controllable, dynamic point control-
lability implies that the policy authority can control the steady state
value of both m and I. The latter, however, can be controlled only by
leaving the steady state temporarily and taking advantage of the hysteresis
property of the model by choosing a different initial condition.

The system in (8) will be dynamically point controllable if the rank

of the matrix O is two.

p— —

9) _ ady azexd
Be+§ 2 .
(Bet+s)
Q=
noys nzazsxé
Be4+§ (B€+5)2

It is readily seen that, except by accident, Q will indeed be of full

rank.

5. Dynamic Path Controllability

The necessary and sufficient condition for the system X = Ax + Bu
to be dynamically path controllable is that the matrix ¥ of (3) have
rank nz. N-V state that for a system to be dynamically path control-
lable, "it turns out that the number of instruments must be at least
as many as the number of targets, i.e., the Tinbergen rule is exactly

carried over to the general dynamic case." (Nyberg and Viotti [1978,
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P. 78]). In this section we show that dynamic path controllability
is possible when the number of linearly independent instruments is less
than the number of linearly independent targats.

The source of N-V's error is a ﬁisinterpretation by Aoki of Corollary
2 of his Proposiﬁion 1, stating the necessary and sqfficieﬁt conditions
for dynamic path controllability (Aoki [1975, p. 295]). The corollary
correctly states that the system (1) is dynamically path controllable

only if
10  as<@-br

Aoki then interprets this condition erroneously as "only if the number
of target variables is less than or equal to the number of instru-
ment variables" (Aoki [1975, p. 295]).

If n=1, the system is indeed only controllable if r 3 1. For n=2,
(10) implies r> 4/3 which, with only integer numbers of controls admiss-
able, requires r > 2, When n=3, the condition is r > 9/5 which is satis-
fied by r=2. .In the limit, as n + «, the necessary condition is n< 2r,
i.e. the number of instruments must not be less than half the number of tar-
gets.‘ This condition is clearly ﬁuch weaker than the Tinbergen condition
for static controllability and does not justify the N-V statement quoted
above.

First, we note that the Tinbergen condition is sufficient for dynamic

- <

path controllability. Inspection of (3) shows that ¥ has rank n2 if B
has rank n. Furthermore if A is the identity matrix, it is clear that
B must have rank n for Y to have rank nz. The question is, are there
weaker conditions that are still sufficient? We have not been able to

state a general condition, but it is possible to find numerical examples
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for which n > r and yet rank ¥ = n2. As the discussion above implies,

the lowest value of n for which this search could be successful is three.
Given the result about A equal to the identity matrix, it is clear

that an A matrix which fulfills the Y condition is not likely to be

sparse. This conjecture is economically intuitive: without n instruments,

it seems clear that the instruments ought to affect the states not only

directly through the B matrix but also indirectly through the A matrix.

A pair of A and B matrices, both of full rank, for which rank ¥ = 9 is

— h r 7
-3 -4 9 1 0
(11) A= -17 2 7 B = 0 1
-20 -6 -4 0 0

b J — —

The counterexample demonstrates that the mathematical proposition
"dynamic path controllability requires the number of linearly independent
instruments to equal the number of linearly independent target variables"
is incorrect. However, the behavior of the controls required in order
to achieve dynamic path controilability with fewer independent instru-
ments than targets may violate unstated physical or economic constraints,
even if it does not violate the simple linear structure to which our
mathematical path controllability proposition refers. 1In addition, in
a discrete time formulation, both the number of periods until the system
must follow the target trajectory and the number of periods for which
the system is to remain on the target trajectory further restrict the

scope for path controllability. Consider (12).
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(12) x, = Ax__; + Bu_

X, is an nxl vector of state variables, u, an rxl vector of controls.
The discrete time model given in (12) is dynamically path controllable
if, after attainment of a given point x, = xg, xt given, the model can

remain on a given trajectory x = xk o x*

t4p t4p £4p given forp =10, 1, 2, ...,

P-1.
A necessary and sufficient condition for dynamic path controllability
is (Uebe [1977]) that the rank of the nP x (t+P-1)r matrix ¥' given

in (13) has rank nP

AT 1y AT 25 . ... B B 0. /. .
(13) A'B ATls L L. A% AB B. . ..
' = y'(A, B,P, T) = . .
—2+ - P P-1_ P-2
AR SN s S S S G S A

Note that in the discrete time formulation of the problem, time enters in
three ways: dinitial time, t = 0; the start of the control period, t = T

the end of the control period, t = 1+P-1. Common sense suggests that the
sooner one is to get the economy on track, from a given initial positionm X s
the harder it is to satisfy the dynamic path controllability condition. This
result is indeed true. We know that rank ¥ < min(nP, (+P-1)r). A neces-

sary condition for dynamic path controllability is therefore that

(14) PEZ-11+1g+
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The smaller T, i.e. the earlier the start of the control period, the harder
it is to satisfy (15). 1In the limit, if we require the economy to get on
target immediately (t=1), it is necessary to have at least as many instru-
ments as controls. It is in this context that the N-V claim is correct.
Note also that (12) is less likely to be satisfied the larger P or n and
the smaller r.

Dynamic path controllability for the continuous time model is akin to
dynamic path controllability for the discrete time model-~in the sense
that the rank condition on ¥ in (3) is equivalent to the rank condition on
¥' in (13)--when P = 1 = n. In the continuous time model, the controls
can be varied continuously;thus the influence of the initial condition X
can be undone in an arbitrarily short interval even if the system is merely
dynamically point controllable. In the discrete time case, it may take
many periods to "purge" the influence of the initial state. If the dynamic
path controllability condition is satisfied for the continuous time model,
the economy can track a given target trajectory of arbitrary length. With
the discrete time model, the dynamic path controllability condition becomes
harder to satisfy, the longer the control period (the larger P). Even
with the discrete time model, however, the condition that the rank of B be
equal to n, 1s not always necessary for dynamic path controllability. By
inspection it is clear that, for all T and P, equality between the numbers
of linearly independent targets and instruments is sufficient for dynamic
path controllability. (Tinbergen static controllability can be viewed as
the special case P = 1 = 1.) Provided the system has sufficient time to
get '"on track" (tr is not too small) and provided the control period is not
too long (P is not too large), dynamic path controllability may be achieved
with fewer indepéndent instruments than targets even with the discrete time

model.
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Conclusion

The aim of this paper has been to demonstrate the usefulness of dynamic
controllability concepts for the theory of ecnomic policy. To make our case
we established four propositions: >1) dynamic controllability is a central
concept in stabilization policy; 2) the ability to achieve a target state,
even if it cannot be maintained, may be of economic interest; 3) dynamic
controllability is of special interest for historical models; 4) the con-
ditions for any notion of dynamic controllability are distinct from and
weaker than those for Tinbergen static controllability. On the basis
of these results, we believe that the two notions of dynamic control-
lability will play a growing role in the dynamic extensions of the theory

of economic policy.



FOOTNOTES
The authérs have benefited from discussions with Gregory Chow.

lThe definition given here is for dynamic point controllability of the
state vector x. This is sometimes contrasted with dynamic point control-

lability of the output vector ¥y, when the complete dynamic system is given

by:
a" z = oz + Bu
am y = vz + 8u

y is an m- vector of output variables, z an n'-vector of state variables

and u and r-vector of controls. In fact, (1) is perfectly general. Use

the transformation é = Y. This permits us to rewrite (1') and @a" as
x=Ax+Bu, withx=|z|,A=|a 0|, B-= 8 |,

q Y 0 §

i.e. x is an (n' + m) = n vector, A is an (n' + m) x (n' + m) matrix and
B is an (n' + m) x r matrix. The necessary and sufficient condition for
dynamic output point controllability of the system (1", (1'") reduces to
the requirement that the rank of the m x (r+l)n matrix [&, vB, YaB, YGZB,

ceveuve™ 18] be m (Aoki [1976], p. 89.).

2See e.g. Preston [1974], Buiter [1975], Gersovitz [1975] and Aoki

[1976].

3The literature also refers to it as functional reproducibility;

Brockett and Mesarovic [1965], Basile and Marro [1971].

4See Aoki [1975, 1976]. For the criterion for dynamic path control-
lability of the output vector y when y = Cx + Du; X = Ax + Bu, see foot-

note 1.

[N



5See e.g. Tinbergen [1955].

6Because all trajectories are considered feasible, dynamic control-
lability may overstate the options available since there may be outside

constraints on the path of the u, for instance, inequality constraints.

7For Proofs see Wonham [1967] and Heymann [1968]. See also Aoki

[1973, 1976].

81f A is singular, there is at least one zero elgenvalue. (1) is

therefore either unstable (there is at least one root with a positive

real part) or neutral: all non-zero roots have negative real parts.

9This policy rule is not meant to be descriptive. We chose it because
it generates the hysteresis property in a particularly transparent manner.
A possible interpretation is that monetary authority is prohibited from
levying an "inflation tax." If inflation occurs nevertheless, the monetary

authority is compelled to compensate holders of money balances.
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