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1. INTRODUCTION

Two conflicting statistical criteria have been proposed for choosing
among alternative models. One is the information criterion suggested by
H. Akaike (1973, 1974). The second is the posterior probability criterion
adopted by Bayesian statisticians including H. Jeffreys (1961), M. S.
Geisel (1975), A. Zellner (1971), G. Schwarz (1978) and E. Leamer (1978),
just to cite a few. These two criteria have led to different practical
procedures to be used for selecting models which have different numbers of
parameters. According to the information criterion estimated by Akaike
(1973, 1974), given a set of sample observations, one should choose the
model for which the maximum value of the log-likelihood function minus the
number of its parameters is the highest. By the posterior probability cri-
terion estimated by Schwarz (1978), one should choose the model for which
the maximum value of the log-likelihood minus the number of its parameters
times half the natural logarithm of the sample size is the highest. The
purpose of this paper is to explain the logic of these two criteria, point
out why they lead to different procedures, and suggest which criterion should
be used in practice. A by-product of this paper is to clarify the role of
a diffuse prior density function of the parameters in the selection of models
by the posterior probability criterion.

In order to make clear the essential arguments of this paper, it is
necessary to provide a brief restatement of each criterion in sections 2 and

3 before providing the f£inal resolution in section 4.



2. THE INFORMATION CRITERION

Not to duplicate the expositions of the information criterion by
Akaike (1973, 1974) and by T. Sawa (1978), I will merely state three

key propositions to make clear the logicvof this approach.

(P1) Assuming that g(y) is the true probability density of a random
vector of interest, and that a model f(y|6) with a given parameter vector
0 1is selected to approximate g(y) , we will measure the goodness of

the approximation by the information criterion

Ilg;E(-]0)1= E,llog g(y) - log f£(y[0)] = J [log g(y) - log £(y|6)1g(y)dy (1)

If and only if £(y|0) = g(y) almost everywhere (Kullback, 1959),
the above criterion will be zero; otherwise it is positive. The-information
measure was adopted by S. Kullback and R. A. Leibler (1951), used by L. J.

Savage (1954, pp. 50, 153, 235 f£f) and studied at length by S. Kullback

(1959).

(P2) Assuming that a sample of n observations (yl,...,yn) =Y is used
to provide an estimate @(Y) of 6 , we will measure the goodness of the

estimated model f£(-|8) by

Eé{IIg;f('|§)]} (2)

where @ is regarded as a constant when the expectation Ey is taken to
form I[g;f(-l@)] as defined in (Pl). Thus it is the mean of I[g;f(-le)]
over the sampling distribution of @ which we will use to judge a parti-

cular model.



(P3) Assuming that the true model is g(y) = f(y[@o) , that an
approximate model f(y|6) of k parameters is obtained by imposing
restrictions on 90 (such as specifying selected elements of 60 to be
zero), and that the estimate § is obtained by the method of maximum

8)1} as

likelihood, H. Akaike has obtained an estimate of - nEé{I[g;f('

- nE’é{I[g;f(- 1} = - nE_ log g(y) + log L(Y,B) - k (3)

where L(Y,0) is the likelihood function for the approximate model f(y]e) .
Hence Akaike recommends choosing among several alternative models

fl,fz,...,f the one which has the highest value of the maximum log-

J
likelihood minus the number k of its parameters. Akaike (1974) has noted
that his estimate (3) could be improved upon. For the selection of linear
regression models, for example, Sawa (1978) has tried to improve upon the
estimate (3).

To state clearly the situation appropriate for the application of the
information criterion (estimated by Akaike's estimate (3) or another reason-
able estimate), it is assumed that a researcher has specified several models
fl(ylel),...,fJ(yIGJ) to explain a random vector, that a sample of n obser-
vatlions (yl,...,yn) = Y has been obtained and that maximum likelihood esti-
mates @l""'éJ have been computed for the parameters of the models. The
guestion is which estimated model will best fit the true density gl(y) .

This question is answered by using these models to predict a future observa-
tion y not yet available. One could measure the goodness of fit of each
model by Ey(y—ﬁf)2 where §f denotes the prediction of y obtained from

the model f(y[@) . However, Akaike (1973) has advocated using a better

measure according to the information criterion, i.e., Ey[10g g(y)—logfj(ylej)]-



Although future observations are not yet available, we try to select a model

fj(yfej) which would do well, on the average, as judged by the information
criterion should the future observations become available. The method of

selection is provided by Akaike's estimate (3) or another reasonable esti-

mate of Eg{I[g;f(-l@)]} .

3. THE POSTERIOR PROBABILITY CRITERION

To state the Jeffreys-Bayes posterior probability criterion, let
p(Mj) be the prior probability for model Mj to be correct, and p(6|Mj)
be the prior density for the kj—dimensional parameter vector Bj condi-
tioned on Mj being correct. Assume that a random sample of n observa-

tions (yl,yz...yn) = Y is available. By Bayes' theorem the posterior

probability of the Jj-th model being correct is

p(Mj)p(Y[Mj) p(Mj)p(YIMj)

N = —3 4
B 01y [¥) 53 Sp M, )p (Y [M.) (4)
3 J J
where
P(Y|Mj) = J Lj (Y,e)p(ele)de (5)

with Lj(Y,Gj) denoting the likelihood function for the j-th model. Since
p(¥Y) in (4) is a common factor for all models, the model with the highest

posterior probability of being correct is the one with the maximum

M. Y(M.) = M. L. (Y, M.)d 6
P ()P | 5) = p04y) j 3¢ ,8)p (8] ;)46 (6)



If the prior probabilities p(Mj) are equal for the models, the one with
the highest p(Y|Mj) will be selected.

To demonstrate the application of this criterion, let us evaluate
p(Yle) for large samples. Apply a well-known theorem of Jeffreys (1961,
p. 193 ff), cited in Zellner (1977, pp. 31-33), on the posterior density

p(elY,Mj) of ej given model Mj=

o

L (¥, 0)p (0 m,) -5 3 - 56-8,7s0-8) -1
PTI) em  “ [s]" e [1+0(n  2)] (7)

p(elY,Mj) =

where éj is the maximum likelihood estimate of Gj and the inverse co-

variance matrix S = - (leog Lj/BGBG')a = nRj igs of order n . (A

rigorous proof of (7) is not our concern here since we are illustrating the
logic of the posterior probability criterion and trying to explain why it gives
a different answer.) Evaluating both sides of (7) at 0 = éj and taking

natural logarithms, we obtain

k. k,
- 8 y- _ L A 5
log p(Y|Mj) logL, (Y,ej) 5=log n 210g|Rj|+ 5~1og (2m)+1og p(ejlmj)+o(n ) (8)

-1
2
N k.
If we retain only the two leading terms 1log Lj(Y,ej) and - Eliog n from
(8), we obtain the formula of Schwarz (1978). By this formula, the model
is selected if it has the highest value for the maximum log-~likelihood minus
the number of parameters times half of the logarithm of the sample size.

Two questions arise. First, why does formula (8) give a different
procedure from formula (3) and which one should be used? Second, how should
one choose a prior density pj(ele) of the parameter vector for each model
Mj if formula (8) is to be used? These questions will be answered in the

next section.



4. A RESOLUTION OF THE CONFLICT

The reason why the posterior probability criterion, as exemplified
by (8), gives a different statistical procedure from the information criter-
ion as estimated by (3) is that it provides a solution to a different
problem. In the last paragraph of section 2, we have stated the problem
which the information criterion purports to solve. Inspection of formula
(5) reveals that the posterior probability criterion will answer the follow-
ing question. Given several models fl(y|61),...,fJ(y16J) , and given the
corresponding prior density functions pj(ele) , which is the best model
as judged by the evidence of the sample (yl,...,yn) = Y ? The answer is
provided by the posterior probability of each model given the data Y ,
which is proportional to the likelihood p(Yle) of the data given the model
under the assumption of equal prior p;obabilities p(Mj). Note the difference
between the definitions of the word "model" in the problems to be solved by
the two criteria. For the posterior-probability criterion, the word "model”
refers to fj(y|6j) together with the prior information pj(6|Mj) on its
parameter ej . For the information criterion, the "model" refers to
fj(ylaj) where éj is estimated by the sample data Y . Accordingly, the
former uses the sample data Y to select a model which is specified by
fj(yle) and pj(ele) prior to the sample, whereas the latter uses the
sample data Y  to estimate a model fj(yléj) and asks which estimated model
will best predict the future, yet unavailable observations. Thus using the
posterior-probability criterion, one has specified a set of "pre-sample"
models [fj(yle);Pj(ele)] and relies on the sample Y to select one among
them. Using the information criterion, one has not merely specified a set

of functions fj(y|6j) but also estimated ej by 6j using the sample Y ;



one now asks which of these estimated models fj(y|§j) will predict best
in the future.

It appears that the post-sample problem to be solved by the informa-
tion criterion is more frequently the relevant one in practice. Since one
has already observed the sample Y and bygones are bygone, why bother to
ask the historical question as to which of the old, pre-sample models was the
best? One probably cares more about the future. It is possible for a pre-
sample model 1 to be better than a pre-sample model 2, as judged by the data
Y , and for the post-sample model 1 to be worse for forecasting the future.
This possibility can occur when model 1 is a model having a smaller number of
parameters than model 2. With only a limited amount of pre-sample informa-
tion or data, model 1 could have been more accurately estimated than model 2
and it did better in explaining the current sample Y . Once Y is available
to estimate both models, the parameters of model 2 may now be sufficiently
accurate to give better predictions in the future.

The distinction between a pre-sample model and a post-sample model
has not been pointed out by the proponents of the posterior probability
criterion. For example, Jeffreys (1961), Geisel (1975), zZellner (1971,

Ch. 10) and Leamer (1978, Ch. 4) all implied that their method is designed
to select a model for future prediction even when models having different
numbers of parameters are involved. Schwarz (1978), in presenting his esti-
mate of the posterior probability of a model being correct for large samples,
stated that he was proposing an alternative formula to Akaike's for solving
the same problem. Akaike (1978) asserted that he and Schwarz were trying to
solve the same problem, and attempted to derive a formula close to his form-

ula (3) by using the posterior probability criterion. Thﬁs could be done, for

: - ., L

example, by choosing the prior density p(@j]Mj) = (2m) 2 Ine 2Rj 2 in (&)
k,

to make the entire adjustment factor equal to - kj instead of - El-log n.

The distinction between a pre-sample and a post-sample model becomes less impor-



tant, and thus the Bayesian method more useful, when the alternative models to

be selected have the same number of parameters.

Bayesian statisticians includiné Jeffreys (1961), Pratt (1975) and
Leamer (1978), among others, have recognized the difficult problem of
choosing a prior distribution pj(ele) for the parameters of each model
to be used to compute p(Yle) . The difficulty of this problem can be

seen from equation (7) , rewritten as

L. (Y,8.)p(6. |m.
3 ¥.85)p( JI 5)

(6. |¥,m.)
(0. il
P

p(Y|Mj)

~

J

2lnRj| (9)

N

1

L. (Y,8.)p(B. M) - (2
J( ej)p(elej) (2m)

Observe that, given Lj(Y'aj) and p(§j|Y,Mj), p(Y|Mj) is proportional
to p(éj[Mj) . Thus one can change p(Y]Mj) by a multiplicative factor
simply by changing p(éj[Mj) by that factor. If one wishes to use a dif-
fuse prior density b(6|Mj), many such densities are reasonable but they
can give very different results. To illustrate, let p(G[Mj) in (8) and
(9) be kjnvariate normal with mean éj (just for illustration) and covar-
iance matrix (eRj)—l . Equation (8) will become
-1
log p(YIM.) = log L.(Y,@.) - l-k. log &) + oln 2) (10)
] J ] 273 €

The adjustment factor suggested by the formula of Schwarz (1978) will be
changed from - %—kj logn to - %—kj log(%) . There is no reason why £
might not be 1, 2.3 or 4.1 , making the formula useless in practice.l

The reason for the difficulty in choosing a robust prior density
function p(G]Mj) for the model selection problem is that the "model" to
be judged by the sample data Y is precisely defined by this prior density

together with the function fj(yle) . Varying the function p(ele) will



vary significantly the "model" to be judged. Therefore, it does not make
sense to loock for a diffuse prior in this situation. One might be tempted

to resolve this dilemma by using a part Y of the sample Y = (Yl Y2) to

1
obtain a preliminary p(6|Yl,Mj) from a diffuse p(6|Mj) , and then using

the remaining data Y, to judge the "model" now specified by p(@IYl,Mj) to-

2
gether with the function fj(yle). This suggestion can certainly be carried

out, but it will answer the question whether the second "model" was good as
judged by the data Y2 , and not whether the original model with a diffuse

prior was good. Nor will it answer the more interesting quéstion whether the
model estimated by using all the data Y will be good.

In conclusion, we have observed that the information and posterior prob-
ability criteria, while both correct, are appropriate for answering different
questions because the "model" to be selected in each case is different. 1In
general, the concept of a "model" in a model selection problem cannot be use-
fully defined by the mathematical function alone, without specifying the amount
of information available. Both criteria have included an amount of information
in specifying the "models" to be selected, be it the sample data Y or the prior
density pj(ele). Consequently, it seems uninteresting to ask which of the func-
tions fj(ylej) is the correct one when ej include different numbers of para-
meters. For example, in the problem of selection from two linear regression

models, one with X, alone and the other with both Xl and X2 as explanatory

1
variables, the latter must be closer to the true function for practical applica-
tions in the social sciences. The former model includes the unreasonable assump-
tion that the coefficients 82 of X2 are exactly zero, or X2 have absolute-
ly no effect. The interesting question is not whether XlBl + X262 is closer
to the true regression function than XlBl , as we know it is; it is rather

which function, together with the limited data Y at our disposal, can be used

to construct a better model for predicting the future.
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Footnote

lLeamer (1978, pp. 111-112), in attempting to find a diffuse prior
pj(ele) to evaluate p(Y|Mj) for a linear regression model, obtained three
unreasonable answers (p. 111). These unreasonable answers are due to the
failure to specify a prior density pj(6|Mj) which is consistent with the
unitsvof measurement for the explanatory variables Xj . If we double all the
explanatory variables by changing their units, xéxj will become 4X§Xj; the
inverse covariance matrix N*j of the prior density for 0., should also be-
come 4N§ . To maintain the consistency in units, one should let N§=€~%X3Xj ’
which corresponds to the specification ERj as the inverse covariance matrix of
p(6|Mj) in our equations (8) and (9). This would rule out the unreasonable
answers of Leamer (p.lll). However, as we have just pointed ouf, an indeter-
minacy in épecifying a value for ¢ still remains. This indeterminacy cor-
responds to the indeterminacy of the constant c¢ in equation (4.16) of Leamer

(p. 112). By arbitrarily fixing ¢, one can make the answer come out anyway

one wishes, making Leamer's equation (4.16) useless in practice.
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