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EVALUATION OF ECONOMETRIC MODELS BY

DECOMPOSITION AND AGGREGATION

Gregory C. Chow”

1. Introduction

Is an econometric model too large, or not large enough? This is the
question which we hope to answer in this paper. This question is concerned
with the choice of alternative models differing in size. An answer could
conceivably come from a priori reasoning or theorizing, but the one suggested
here is based purely on statistical inference using the information contained
in a finite sample of n observations. We shall develop in Section 2 a sta-
tistical criterion for model selection, and derive in Section 3 explicit ex-
pressions based on this criterion for the selection of simultaneous-equation
models of different sizes.

We will define the "size" of an econometric model designed to explain a
given set of dependent variables by the number of functionally independent
parameters in the model. By this definition, the size of a macroeconomic model
consisting of a system of simultaneous stochastic equations will depend on whether
it can be decomposed or aggregated. Given the same set of dependent variables to
be explained, if a model is decomposable into submodels each capable of explain-
ing a subset of dependent variables, then the number of parameters required to
explain any subset would be smaller than in the case of a fully integrated sys-
tem of simultaneous equations. If the model is not decomposable but block~re-
cursive, the matrix of the Jacobian for transforming the random residuals into
the dependent variables will be block-triangular and the covariance matrix of
the residuals will be klock-diagonal, both leading to a smaller number of par-

ameters than in a completely interdependent system. By aggregating across



equations, one is also likely to reduce the number of parameters required to ex-
plain any subset of dependent variables, thus reducing the size of the model for
each subset. 1In Section 4, the statistical selection criterion will be applied
to decide whether a model should be made block-triangular and whether certain de-
pendent variables should be aggregated. Section 5 contains concluding remarks.
The basic viewpoint taken is that the better of two models is the one which,
by the method of its eonstruction, will on the average predict future observations
better. Here better predictions could be defined by a smaller expected sum of
squared deviations from the future observations. However, we will define better
predictions by a smaller expected sum of the log-likelihood ratios of the true
density of the future observations to the density specified by the model. Speci-
fically, let g(-.) be the true density of each of n independent future observa-
tions (§l,...,§n) =Y , and let £(-]|68) be the density specified by a possible

model. Better predictions by f(.|6) will be defined by a smaller expectation

n
(1.1) I [g:£(-]8) = E I [logg(y,) - logf(¥,|6)] > 0
n i=1 1 1

where the expectation is evaluated by the true density g(-) . The mean log~
likelihood ratio I[g;f(-[@)] = Elog[g(y)/f(y,@)] is also called the mean infor-
mation for discrimination between g(y) and f(yl@) , as discussed in Kullback
and Leibler (1951), Savage (1954, p. 50), and Kullback (1959, p. 5).

To illustrate the use of the mean log-likelihood E(logf(yle)] as a
measure of how well f approximates g , consider a univariate vy having a
normal distribution with mean U and variance v . If the approximate distri-

bution is normal with mean Bl and variance 62 ; its mean log-likelihocd is

(L.2) E[logf(y!@)] E{- %logZﬂ - %10992 - %4y-el)2/62}

1 1 1 2
Elog2Tr - Elogez - 5[v+(61-u) ]/62 .
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For any given 92 , the value of Gl which maximizes the mean log-likelihood
(1.2) is the true mean U itself. If 61 = U , the value of 62 which maxi-
mizes (1.2) is the true v itself. .This measure is better than the mean
squared prediction error for judging the goodness of fit for f . If we let

61 = U but 62 = 5v , the mean squared prediction error would be E(y—el)2 =v ,
the smallest attainable. However, the model £ may be a very POOX approxi-

mation of g because 62 is very different from the true v

Haying adopted better predictions, defined by the information measure (L.1L),
as the criterion for selecting alternative models, we would like to stress that
the correct model, even if it is known, is not necessarily the one to be sélect-
ed because it may contain too many unknown parameters. For example, let the

true regression model be linear in X and X with coefficient vectors Bl

1 2

and 62 . If 82 is fairly small, and if only a finite sample of n observa-

tions is available, the model linear in X. alone as estimated by the method

1

of least squares may yield better predictions than the model linear in both Xl

and X2 - The reason is that the larger model, though correctly specified, may

be more poorly estimated because of the. larger number of parameters. Larger
sampling errors in the estimates él and @2 may lead to larger prediction

errors for future observations. Thus if two different models fl(-le and

l)
f2(-562) are proposed for the prediction of the same dependent variable, one

should not merely ask how well fl and f2 would do when 61 and 62 can

be consistently estimated by an infinite sample, but how well the estimated

fl(» @l) and f2(’|§2) based on a finite sample would do, on the average,

)

allowing for the sampling distributions of @l and 62 . To predict n

future observations (§l,...,§n) =y ;, the model selection criterion is
) n ~ ~ ~
(1.3) EI (g;£(-]6)) EE{E. I [logg(¥,) - logf(y,[8)1}
6 6 v i=1

Akaike (1973; 1974) adopted the mean log-likelihood ratio (or information)



of a future observation for model selection and proposed an estimate of the

mean of E~[logf(§|§)] over the sampling distribution of the maximum likeli-

hood estimztor é . We will modify Akaike's derivation and correct an error

in his estimate of EAE~[logf(§I§)] , thus proposing an alternative informa-
Oy

tion criterion for model selection. We will also apply this criterion to the

selection of simultaneous-equations models.

2. Derivation of An Information Criterion

We assume that the true density g(+) equals f(-le°) and that an
approximate model results f£rOm imposing a set of r 1linear restrictions
H'G = -b on the parameters. The purpose of this section is to provide an
estimate of EAIn{g;f(-}é)] where é is the ﬁaximum likelihood estimator
of 0 subject to the restrictions H'’6 = -b imposed by the approximate model.
Our derivation consists of the following five steps.

First, assuming ©O to be given, we will approximate In[g;f(-

8)] by a

. . o . . . - .
quadratic form in 0-6° . The mean information for discrimination between

g(+) and f(-l@) using n future observations (§l,...,§n) =Y 1is

n
(2.1) I [g;£(-|8)] = E_ I [logg(y,) - logf(y,|6)]
o Y i=1 + +

E_[logL(¥;6°) - logL(Y;0)]

where L(Y;0) denotes the likelihood function. Expanding logL(g;e) in a
second-order Taylor series about 60 and substituting the result into (2.1),

we obtain,after using the fact E(BlogL(%;eo)/ae) =0,
(2.2) I _[giE(-|0)] = 2(6-6°)"3(8%,6%) (8-6°)

+ o
where 6 <6 < © and



2 i +
+t 59 = - 2 quL(Yie )
the parameter 6° of J(6+,60) being used to define the distribution of § .
o ,0 , . . , .

J(67;07) 4is Fisher's information matrix.

Second, given the linear restrictions H'0 + b = 0, we £find the best
approximate model by minimizing the information n—lIn[g;f(-le)] with respect
to O subject to H'® + b =0 . Using (2.2) for I, + we differentiate the

Lagrangian expression (suppressing the arguments of J )

(2.3) 53(8-6%) '3 (9-0°) = A’ (H'6+D)
to yield

nly oK g™ ‘0 176°
(2.4) . =

-H' 0 A b

the solution of which is

(2.5) 0" = 6%+ a7t , At o - 2wy e 4 b)

The vector 9* can be considered the parameter of the approximate model and
is called the pseudo-true parameter of the pseudo-true model in the language
of Sawa (1978).

Third, if é* is any estimate (not necessarily maximum likelihood) of 6*

~k . Ak * * o o
satisfying H'6 = -b , we substitute (6 -6 ) + (8 -07) for (6-687)

in (2.2) to obtain the information measure for the estimated model

*

8" -0%)"7(6%-0") + %(e*-eo) 787 -6%)

N+

~k
(2.6) I lg:i£(-[8)] =

Ak * *
where the cross-product (0 -6 )'J(8 —60) has vanished on account of (2.5)

*
and H'6 =H'G =-p . Parenthetically, the method of maximum likelihood



is justfied as it chooses 6 to minimize the information measure based on
the sample Y = (yl,...,yn) , i.e.,
n

n
I 10gf(y;16%) - I 10gf(y,]6)
i=1 i=1

The first term of (2.6) captures the discrepancy between the estimated model
and the best approximate model which is due to the sampling error in é*

The second term measures the discrepancy between the best approximate model
and the true model thch is the result of specification error. Reducing the
number of restrictions on 06 or increasing the number of linearly indepenaent
parameters will reduce the specification error while it raises the sampling
error of the parameter estimate. The remaining problem is to estimate the ex-
pectation of (2.6) over the sampling distribution of é* .

Fourth, given a sample Y = (yl,...,yn) of n observations, we will

estimate the second term of (2.6) as follows.

1,.* o, *¥ O * AN o) Nk
(2.7) 200 -07)73(0-67) = 1 19;£(-]67)] = Elogr(v;6°) - ElogL(¥:6%)
~ o *
= ElogL(¥;07) - 1ogL(Y;0 )
~ % ' ‘ *
where we have estimated ElogL(Y;® ) by its sample analogue logL(Y;6 ) .

Ak *
We will find the maximum likelihood estimate 8  and expand logL(Y;8 ) in

AKx AKX

a second-order Taylor series about 6 . 8 is found by differentiating
(2.8) n"llogL (¥;:0) + A’ (H’6+b)
to vield
Nk
(2.9)‘ n-l a_Ii._Q-g_____ge(Yie ) + HX =0 .

* Ak
Expanding  1logL(Y;® ) in (2.7) about 8 , we obtain



> (@]
ElogL(Y;67)

R

(2.10) -%(e*-e°>'J(e*-e°)

*
1. *_a* 3%10gL(¥i0 ) % a*

A%k
logL(Y;6 ) - 5%6 -6 ) 6557 (6 -6 )

* Ak ~k
where we have observed (6 -6 )'[3logL(Y;® )/36] = O on account of (2.9)
*A*,
and (6 -6 )'H = 0 .
*
If —82logL(Y;e ) /3636’ in (2.10) is replaced by its expectation

*
J (6 ,90) , and (2.10) is combined with (2.6), the result is

~%k ~ fo) Ak Ak * . * [o) Ak *
(2.11) In[g;f(' 6 )] = ElogL(Y;8 ) - logL(Y;0 ) + (6 -6 )'J(6 ,67)(8 -0 ) .

Since ElogL(g;Go) , though unknown, is constant among alternative modeis
obtained by specifying different sets of restrictions on 6 , it can be ignored
for the purpose of model selection.

Fifth, we arrive at a criterion for model selection by taking the expec-
tation of —In[g;f(-lé*)] given by (2.11) over the sampling distribution of

Ak

0 , (plus the above constant term), i.e.,
Nk ~ fo)
(2.12) - E,,I [g:£(-|0)] + Elog L(Y;0")
0

Ak * o Ak * ~k *
= logL(Y;® ) - tr{J(® ,0)E(® -6 )(B -6 )"}

The models will be ranked by (2.12),the one having the highest value to be

* 0O
selected. The remaining problem is to provide estimates of J(6 ,0 ) and
n~k * ~k *
BE(OG -0 )(© -6 ) .
Ak
To find the distribution of the maximum likelihood estimate O subject

*
to the restrictions HO = - b , we follow the work of Silvey (1959). Ex-

Ak *
panding 9logL(Y;6 )/36 in (2.9) about € , we get

* - 2 * -
-1 3logL(Y;6 ) -1 37 1logL (¥;0 A ~
(2.13) n —-—g—e————-— + i ggae(, ) 4 ooy 18%-6%1 + 8% = o




* -
Since 8 is obtained by minimizing n lIn[g;f(-|6)] as we did in (2.3),
cr alternatively by maximizing n_lElogL(Y;G) , subject to HO + b = 0 ,
we have

*
(2.14) nt aElggL(Y7e L v m <0 .

Subtraction of (2.14) from (2.13) yields

- 2 * .. —_ * *
-1 9 logL(Y;6 ) _ul A% _a* -1 3logL(Y;6 ) _ -1 3ElogL(Y;0.)
(2.15) |-n 6567 + o(1) H‘ 8 -6 n o —F——=-n 5
~ *
_ -’ 0] [A=A 0

Abbreviating L(Y;G*) by L* r Wwe observe that the asymptotic distribution
of n—llélogL*/BG— BElogL*/Bé] is normal by the central limit theorem and its
A
mean is zero by the law of large numbers. The covariance matrix of
1
n_ E[BlogL*/Be - 8ElogL*/86] is

- * * ' * *
_ ~1|.9logl . 3dlogL JElogL ., 3ElogL
(2.16) Vor T Fee T e T e 36"

- *
As n increases, the sample mean -n lleogL /9030’ approaches its expecta-

—- *
tion n lJ(S ,80) - Therefore, the solution of (2.15) yields an asymptotic
1 1

_ D Ak % A % . ) i
distribution for n" (8 -6 ) and nz(X—X ) which is normal with mean O and

covariance matrix
(2.17)

where



-1 * —
(2.18) P, 0, [nlow 6% At
0 o | _
Q. R , -H' 0
-0 6~
= [t -ng @ sty ot I Gl s
—(H'J_l y targt —n_l(H’J_lH)_l ]

This result was given by Silvey (1959, Lemma 1, p. 394).
In the important special case when the restrictions consist entirely
R * *
of zero restrictions on a subset of parameters, we write 0 = (61 0) ,

H' = [0 I] , and

* o, _ [ ,.* .0 * o.-
(2.19) J(® ,87) = Jll(e ,07) J12(6 ,07)
* 0O * o
J21(6 ,07) J22(6 ,07)
The matrix P _ from (2.18) becomes
B
- -1 .* o
2.20 P = |nJ 6 ,0 0
( ) 6* n ll( )
0 0

~k *
and the covariance matrix of (61—61) from (2.17) becomes

— * *-
-1,.* .0 dlogL = dlogL |_-
(2.21) Jll(6 ,07) F 861 aei _rJl

1l .* o
l(6 ,07)

* *
since OJElogL /861 = 0 as 61

ElogL(Y;Gl,O) with respect to el . Cembining (2.21) with (2.12), we have

is obtained by maximizing (differentiating)

the following model selection criterion in this case:

- * *
dlogL . dlogL

Ak _l * o
(2.22) logL(Y;8 ) -tr{E 38, 3. ._Jli(e L0} .
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Akaike (1973) was incorxrect in claiming that Jii(e*,e°) is the asymptotic
covariance matrix of é; , as we have shown in (2.21). If this claim were
valid, the trace term in (2.12) would become k , the number of unknown
parameters in 91 , and (2.12) would become Akaike's information criterion
which selects the model having the largest value for the maximum log-likeli-
hood minus the number of parameters to be estimated. The claim is incorrect

*
because only when the model is correctly specified, i.e., when 06 = 6° , do

- * * ~nk
we have Jli(e 8 ) as the asymptotic covariance matrix of 6 . In order
to apply our criterion (2.12) to simultaneous-equation models, we have to

Ak

* ~k * *
estimate J(8 ,6°) and E(8 -6 )(8 -6) as given by (2.17), or by (2.21) in
*
the special case of zero restrictions on 6 . This is our task in the next

section.

3. Estimation of the Information Criterion for Simultaneous-Equations Models

In this section, we will provide an estimate of the information criterion
for the selection of linear simultaneous-equations models, while leaving a
discussion of its econometric applications to the following section. Let the
true model be

-1

(3.1) v° + x8° = U EU'U = nZ° = nr°
where Y 1is an nXg matrix Qf endogenous variables, X is an nXk matrix
of exogenous variables, and selected elements of re and B° are zero be-

cause of the identification restrictions. Let the approximate model be

* * * *, % _
(3.2) YI' + XB = U EU U =nX = nR

* * *
where the elements of ' , B and I are subject to additional linear
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restrictions. The elements of these "pseudo-true" parameters are obtained

by a constrained maximization of

(3.3) Elegr(v;I',B,R) = E%{Log(ZTr) + giog[Rf + nloglfl

- %—tr{R.E(YT+XB)'(YT+XB)}

where the expectation E 1is evaluated by assuming that Y is generated by

the true model.

To evaluate the matrix VvV of (2.16), we need the derivatives of

*
e * * * . . .
log n(¥;I',B,R) evaluated at ' , B and L minus their expectations.

* * * * *
The derivatives are, with U = Y[ + XB = (ul...ug) ’

*
alogL _ ’ * %
(3.4) ) X'U R
3 *
* % *kr —
(3.5) Qlogh Y'U R + n(l' ) 1
ol
dlogl *
* *
(3.6a) —%QEE— =no,. - u, u,
r,. ij i 73
ij
dlogL 1, * *' %
(3.6b) —s-r—— = —2‘(n0ii—ui ui)
ii
Defining the true reduced-form to be
-1 o_l o o or—l o o_l
(3.7) Yy = - x8°7° 4+ ur = x1° + v EV'V = nQ° = nT 5T ,
we can write
* * * * % * *
(3.8) U =Y +xB =x(M°T +B)+ V[ =D + vl

where

* o * *
(3.9) D=EU =X(II'T +B ) .
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Therefore, the derivatives given by (3.4) and (3.5) minus their expectations

are
dlogL” logL” x
(3.10) _.fﬁﬂi_ - EQ_SQE_. = X'v[' R
oB oB
) * * * ok * * K * *
4
(3.11) —jéﬁgL— - Eaé%%g—- = -I°%x'VI'R - VDR - v'V['R + nQ°T R

The expectations of (3.6a) and (3.6b) are zero.

Since only the unknown elements of B* and T* are of concern, we de-
note by Bi and Y; respectively the column vectors consisting of only the
unknown elements in the i-th columns of B* and T* . Similarly, Xi and

Yi denote the matrices composed of those columns of X and Y which are

associated respectively with the unknown coefficients ia Bi and Y; - Also,
i . o ~0 * x_ %1 ~% *e o %
we will denote X[ by Y , XI = -« xB T by ¥ ,and T QT by W

for convenience. Using these notations together with (3.10) and (3.11), we

derive the required components of ny 5 as
8
9 log” logr,” kr %
I 4
(3.12) cov| “FgF— 2 = I = X!X, (r, Wr.)
i Bj R T R
* * ’ '
~O T~ * * * k %5 ~ ~ * kg _*
(3.13) Cov AEASgL Slgg%‘ l = Y?'Y?(r. wre.) + Q0T r.r. D'¥° + ¥ o xr.'T 0°
Yi Yj i "§74 3 i i 3 i i 3j
* * % k4 _*
+n00.r,. + 0 Trr T %
13 13 1 Jz 3
alogL* BlogL* Sor * Qofr* * ko,
. = Y. X, MrL) + {2 .7, DX,
(3.14) Cov in 3BT i J(rl rj) i rJ i ;
o’ . o o
wvhere Qi denotes a matrix composed of only those columns of - = (wij)

*
which are associated with the unknown elements of Yi , and sz denotes a

matrix extracted from QO whose rows correspond to the unknown elements of



- 13 -

* *
Yi and whose columns correspond to the unknown elements of Yj . The proof

of (3.13) has utilized the relation, for V = (Vl"'vg) '

EW!v,)) (viv) = n2w° w2+ nw’ w4 nw’® w°
ViVl W3Vl = 12%34 13%24 14%23

which implies

***,_I

BV VT ror. T vy = n2Q°T r "+ 00T e TR0 + n®. (e T 00T )
i3 J 1 i3 1 J

*
By contrast, the elements of J(6 ,GO) as derived from differentiating

(3.4) and (3.5) are

*
_ poologr, o, %
(3.15) E §ET§ET- = Xinrij
* ~ol~o * * (4 i(4) 7
(3.16) - E'aéggLﬁ— =v9 % . o+ n.r.. + nyj(l)yl(J)
Byiayj i 73745 ijTij
alogL* ~o' *
3.17 E =Y, X.r.,
( ) 3Y 38' Y, Xjrlj
where Yl(j) denotes a colunn vector consisting of those elements of the i-th
E - *
row of (') 1 which correspond to the unknown elements of Yj . Note that
* K % o _O _Oo . . L .
when (' ,B ,R) = (I",B,R") , i.e., when the approximate model coincides with

the true model, (3.12), (3.13) and (3.14) will reduce to (3.15), (3.16) and

. *y ok 07.0_0 . o *
(3.17) respectively, as r, Wr, = r, 2 r. will become r,. =r,., and D= 0 .
1 J 1 J 1] 1]

Weé next derive the expectations involving the derivatives of loglL with

respect to rij . Using (3.6) ‘'we obtain by straightforward manipulations,

*,O*
with ' QT =W-= (w,.) ,

*
dlogr, dlogr, - o *
(3.18a) E arij . arkg n[O kW 38 + G kw12 + (Oii-wik)wjk + (Ojﬁ_wjﬂ)wikj
d L* ol *
log ogL | _ * _
(3.180)  E 8r,, " Or,, = nl0wig (0w W]




* o
(3.18c) E alog”  logy = 2w (o - Yw.. ]
o, . 2 YikVYik ik ik’ ik

and the corresponding expressions

2 * x % * %
(3.19a) —E%—-l—O%L—-— = nl0,,0.+0. G ,]
rij rk&j ik j JKTiK
r\2 * -1
(3.19b) —E[Ol—OgL— = no.. 0
: or, . or ik“ig
i k%

2 *
L *
(3.19¢) —E%—lﬂg—r—— =852
1i%kk

Again, when the approximate model coincides with the true model, we have
* *
w=13°=35 = (0;5) + and (3.18) will be identical with (3.19).

As can be seen by differentiating (3.4) and (3.5), the expectations of

2 * *
9" logL /aBiarkl and  9°109L /9Y,9r, , are zero. Therefore, letting o de-

note a column vector composed of the unknown elements of Biveoo,B.,

1 g
Yl,...,Yg r ¥ denote a column vector consisting of rll,...,rlg ’ r22, T
r3l,...,rgg ; and 6’ denote (0’ r') , we can write

*
. x- Cov [@&%g&.} 0
0 - 0 Cov [ﬁ_ﬁﬁﬂi%
or

* *
where the elements of Cov(dlogL /da) and Cov(dlogL /dr) are given
by (3.12)-(3.14) and (3.18) respectively. These matrices, together with the
*
elements of J(0 ,60) given by (3.15)-(3.17) and (3.19), provide an explicit
~nk

expression for the asymptotic covariance matrix of 6 through (2.17) and also

* Nk
for the adjustment factor tr{J(8 ,GO)COV(G )} used in our model selection
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criterion (2.12). 1In actual applications, the parameters of the models (3.1)
0 * /\*
and (3.2) required to evaluate J(0 ,60) and Cov(8 ) are unknown, but can
be estimated by the method of maximum likelihood.
. . * * * .
In the important special case when B , T and 1 are obtained by
*
additional zero restrictions on the parameters of the model (3.1), I being

plock-diagonal, our model selection criterion becomes (2.22) with an adjustment

factor equal to

* * *
(3.21) tr{cOvééngLoJaj}e*,eo)} - tr{Cov(alggL )[—Eagégg? 171}
* 21 *
+ tr{Cov(alggL )[-Eaargi% ]_l}
where the four matrices on the right-hand side are given by (3.12) - (3.19).
To appreciate the result (3.21), consider the special case m° = F* =1
and Xi =X for (i1=1,...,9) , which is a model of g linear regressions.

If the approximate model has kl explanatory variables, (3.21) is reduced to

(3.22) kl

i MQ

BlogL*][‘ azlogL*l—l}

*, 0 *% *
(r,"Z7r;)/x, . + tricov|==%7 T ror’

i=1

For the case of a multiple regression model, with g = 1, (3.22) is

further reduced to

(o] O o]

(0] g (e]
11 %11 11
(3.23) R 2k + [2 o J
91 ‘n1 911

which is identical with the result of Sawa (1978, Theorem 3.2, p. 1280). When

*
the approximate regression model coincides with the true model, Oil =0yq i

the adjustment constant (3.23) becomes kl + 1 or the number of parameters, as

*

in Akaike's formula. In general, Oll > Oil when the approximate model differs

from the true model, and the adjustment factor will be smaller than the number
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of parameters. For example, let the true model have 8 parameters (7 coefficients
plus OO ) and the approximate model have only 6 coefficients, and let
OO = .90* . The adjustment constant for the approximate model is 5.4 +

11 11

6.39, smaller than 7 or the number of parameters. The difference between

.99
the two trace terms to be subtracted from the respective maximum likelihood func-
tions is 8 - 6.39 = 1.61, as compared with 8 - 7 = 1 by Akaike's formula. Thus
the rule (3.23) favors the small model more than Akaike's rule does. This example
suggests that, when the model already contains many parameters, our information
criterion is quite strict in allowing the addition Qf one more parameter. As

Sawa (1978, p. 1283) has shown, the information criterion based on (3.23) is
equivalent to a t test for an additional coefficient using a critical value

which can be larger than 2 when kl is large and n is small.

4. Should a Macromodel be Decomposed or Aggregated?

If one accepts the view that the "true" economic world is a very large and
interdependent system of simultaneous stochastic equations, as many economists
tend to accept, one is faced with the almost insurmountable problem of estimating
very large systems of simultaneous equations. After making significant contribu-
tions to the identification and estimation of simultaneous equations, T. C.
Koopmans (1950) asked, "When is an equation system complete for statistical pur-
poses?" He gave very strict statistical conditions which would permit one to
specify certain variables as exogenous and/or predetermined for the purpose of
explaining the remaining endogenous variables, thus reducing the size of the
model for the latter variables. One wonders when, if ever, these strict condi-
tions stated by Koopmans will be met. T. C. 'Liu (1955, 1960), being convinced
that the "true" world is a completely interdependent system of simultaneous equa-

tions, questioned how one could ever estimate the true parameters even if the
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sample were infinite; the necessary conditions for identification would not

be met since each equation contains too many variables. Franklin Fisher (1961),
coming to the rescue, argued that if the coefficients of the dependent vari-
ables in each structural equation, though numerous, are mostly very small, then
treating them as zero in order to satisfy the identification condition will

only lead to very small inconsistencies in the estimation of the remaining param-
eters. On the other extreme, Herman Wold (1952) argued that the world is re-
cursive anyway and there is no great statistical difficulty in estimating its
parameters.

While we grant that the true economic model might very well be a very large
and completely interdependent system of simultaneous equations, an econometrician
might wish to estimate not the true model but only an approximate model because the
sample is finite. Cne realizes that the conditions stated by Koopmans for de-
fining the exogenous and/or predetermined variables are never met, that the co-
efficients of many endogenous and exogenous variables in a structural equation
are not zero as Liu has pointed out, and that the true model for quarterly econ-
omic time series is not strictly recursive in the sense of Wold. However, one
might not wish to raise the question of F. M. Fisher, whether by making certain
assumptions necessary for identification, the remaining parameters in a true
model can be almost consistently estimated. One is seldom in a position to esti-
mate the parameters of the true model because the number of available observa-
tions is often smaller than the number of its parameters. One is mainly inter-
ested in the parameters 6* of the approximate models because they are the

models relevant for practical purposes. To illustrate, let the true model be

T ¥yt OWap F Opxpe F O3y e+ By g% L = ugy
9100716 T Yor T B102%1e * Oo3¥ae t oot + Ou00%gg ¢ T Ugg
where all parameters are small except 91, 82, 6101 and 9103 . This model is
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unidentifiable. Fisher points out that if 63 and 9102 are extremely small,
the remaining parameters can be estimted almost consistently. Our viewpoint is
that the approximate model £ with 61 ’ 92 , 8101 and 8103 as the only

non-zero coefficients to be estimated might be the best approximation according

to the information criterion when say 50 observations are available. Although

* * * *
the maximum likelihood estimators of Gl ’ 62 ’ 8101 and 8103 will not
. . -
cousistently estimate the true 91 ’ 62 ’ 8101 and 6103 , the model £ can

still be the best approximation for prediction purposes.

Furthermore, Fisher (1961) is concerned with the "cost of approximate speci-
fication in simultaneous equation estimation," implying that something is lost
by using an approximate model because of the inconsistencies in the estimation
of the true parameters. We wish to emphasize the "benefits" of an approximate
specification because specification errors are not necessarily bad. In equation
(2.6), the first term measures sampling errors in estimating 6* by é*, and
the second term measures specification errors in using f(yle*) to approximate
g(y) . Large specification errors from assigning zeros to coefficients may be
compensated by smaller sampling errors and may produce a better model for pre-
diction. One is less concerned, as Fisher was,about whether an extremely small
specification error would obtain if the sample were infinite. Rather, one is
more concerned with the total error, due to both specification and sampling, in
using an estimated model for forecasting, realizing that the specification error
will almost always be present. Even when one knows that a large model is more
nearly correctly specified than a small model, the latter can still be selected
by the information criterion. It is possible for the true world to be completely
interdependent, but for a block-recursive model, estimated from a finite sample,
to be a better approximation than an estimated simultaneous model. We will apply
the selection criterion of Section 3 to decide which of two models to use, one

being simultaneous and the other block-recursive, or one being disaggregated and

the other aggregated.
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First, consider the choice between a simultaneous model

(4.1) ¥, y.1T Tl o+ X[B, B,] = [U U,]

1 2 11 12 2 1 2

F21 1-|22

and a block-recursive model obtained by the restrictions FZl = 0 and
212 = %EUiUz = 0 . The information criterion (2.22) - (3.21) can be applied
to choose between them if they are both estimated by the method of (full-
information) maximum likelihood. A statistical criterion is thus provided to
decide whether a system of simultaneous econometric equations should be decompos-
ed into two recursive blocks. Equivalently, it can be used to decide whether a
general equilibrium or a partial equilibrium model should be selected. The lat-
ter model is represented by a block recursive system which treats y; as exog-
enous in the explanation of Y,

The second issué is whether one should aggregate across equations. For ex-

ample, real consumption expenditures Yo and You for two commodity groups

may satisfy

4.2 =
(4.2) Yie = O1¥5¢ * Opyy g 7 O3 gy
= +
Yor = %3¢ * O5Y5 ¢ * BgEy *uy
where Yyp may be disposable income and X9 and Xop relative prices. The
sum of these equations is
. + = + -; :

(4.3) Yie ¥ Yor T O1#8)vay + Opuvy o g F 05y g b B3x ) + Ok, + (up b,
Let = + i =

e Yt Yit Yor be aggregate consumption and let Xae WX + L be
an aggregate price index with constant weights. An aggregate equation for Yae

can be written as

(4.4) = + 0 + (93/w )x4t + u

Yar 773t 2Y4,t-1 1 at
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provided that

(4.5) 85 = 62 and 66 = 63(w2/wl) .

This example illustrates Fhat aggregation across equations can be expressed
as linear restrictions on the parameters of the disaggregate model. The
choice between a disaggregate model and an aggregate one can be made by the
information criterion. Three cases will be distinguished depending on the
common subset of endogenous variables which both models are supposed to ex-
rlain or predict.

In the first case, one is interested in predicting the individual compo-
nents Yie and Yyp as well as all other endogenous variables in the dis-
aggregate model. One should retain equations (4.2) for the true model, and
apply the information criterion to decide whether the restrictions (4.5) will
yield a better approximate model. This is done by estimating the model using
the method of maximum likelihood with and without these restrictions. The in-
formation criterion for the large model equals the maximum value of its log-
likelihood minus the number of parameters. For the restricted model, it equals
the maximum value of the log-likelihood minus an adjustment factor equal to
tr{J(G*,GO)(Cové*)} . Explicit expressions for J(G*,Go) and Cové* were
given in Section 3.

In the second case, one is interested in predicting the aggregate

Yar =

Yi¢ + Yor and all other endogenous variables in the model. One should then

retain equation (4.3) instead of (4.2) for the true model, treating (61+84) as
one parameter. The approximate model imposes the restrictions (4.5) on the
parameters of this equation.

In the third case, one is interested in predicting the aggregate Yar apd

a (possibly small) subset of other endogenous variables, including the inflation

rate and the unemployment rate, for example. The true model and the approximate
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model are as defined in the last paragraph. This case differs from the first
two cases since only a subset of endogenous variables are of concern. We will
have to consider the reduced-form equations for the subset in question. Two
solutions to this model selection problem can be given.

For the first solution, the reduced-form equations for each model are es-
timated by the method of least squares, or maximum likelihood without allowing
for the overidentifying restrictions from the structure. Here the two models
explaining the common subset of endogenous variables are treated simply as two
linear systems of regression equations. If the true model is written to in-

clude and x as its predetermined variables, the

Yg,e-1 7 Y2,t-1 7 %4t 2,t

approximate model - excludes and x . To estimate the expected infor-

Y2,t-1 2,t

mation for the approximate model, one can subtract the adjustment constant
given by (3.22) from the maximum likelihood of the reduced-form explaining the
subset of endogenous variables ¢f interest.

For the second solution, the estimates of the reduced-form parameters are
derived from the full-information maximum likelihood estimates of the parameters
of the corresponding structures. The expected information for the approximate
model can be estimated by evaluating the two terms given in (2.12). The first
term logL(Y;§*) is the log~likelihood of the reduced-form for the selected en-
dogenous variables evaluated at §*, which here denotes the above derived esti-
mates of the reduced-form parameters. The second term equals the trace of the
product of J(S*,eo) and Cov(é*) . —J(S*,Go) is the expectation of the
matrix of the second partials of the above log-likelihood with respect to the
elements of 6* . Explicit formulas for its elements are given by (3.15) and
(3.19). The remaining task is the estimation of Cov(§*) . The covariance

Ak Ak
matrix of the estimates « and rij of the structural parameters, from which

*
the reduced-form parameters @ are derived, can be obtained by using the



formulas given in Section 3. Given this covariance matrix, the covariance
matrix Cov(§*) of the estimates of the corresponding reduced-form parameters
can be estimated by the formula given in Dhrymes (1973, p. 122). This solu-
tion is applicable to the choice between any two linear simultaneous-equation
models for the purpose of explaining a common subset of endogenous variables,
provided that one can write down a general model as the true model and express
both models by suitable linear restrictions on the parameters of the true model.
One of the two models might serve as the true model if they are nested, as in

our discussion of aggregation.

5. Concluding Remarks

It is not difficult, at least in principle, to extend our result to the
selection of nonlinear simultaneous equations and of equations estimated by

methods other than full-information maximum likelihood. No matter whether the

Nk *
model is linear or not, provided that the estimate 6 of 6 is consistent

~k

and satisfies the restriction H'8 = -b and (8*—§*)'[BlogL(Y;§*)/86] is ap-
proximately zero, our information criterion (2.12) remains valid as it can be
seen by reviewing the five steps used in its derivation. To estimate (2.12),
one can easily evaluate logL(Y;é*) and approximate J(e*,eo) by taking

. . . 2 A* s
analytical or numerical derivativas for -3"logL(Y;0 )/0088’ . The more diffi-
Ak
cult problem is to estimate the covariance matrix of 6 when the approximate
*
mocel is incorrect, i.e., when 6° # 0 . If computational expenses are not an

*
issue, one can always apply Monte Carlo to find the covariarce matrix of

0
. . Ae)
under the assumption that the true parameter vector equals its estimate 6
nk
which is obtained by the same method as © is. It remains a problem to find
~k

a computationally less expensive way to estimate the covariance matrix of 6 .

An alternative approach to model selection is to rank a model by the
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Jeffreys-Bayes posterior probability for it to be true after the data Y are
observed. If L(Y;0) 1is the likelihood function specified by the model M ,
the posterior probability P(M|Y)_ for the model to be true equals the prior

probability P(M) for the model times
(
JL(Y;G)p(6|M)d6 = EgL(Y;0)

where p(9|M) is the prior density of the parameter of the model M . If P (M)
are equal for all models, the posterior probability criterion selects the model
having the highest logEeL(Y;G) where the expectation Ee is evaluated by the

prior density of 6 . By contrast, the information criterion selects the model
having the highest EAE~logL(§;§) wheze ; denotes future observaticons and the

0 Y
expectation E _ is evaluated by the sampling distribution of © based on the

0
data Y . The former criterion uses the data Y to judge a model specified ly
I.(-;0) and by the prior density p(6|M) . The latter criterion uses future
observations § to judge a model specified by L(-;é) where 6 has been esti-
mated by the sample data ¥ . Insofar as the econometric models to be selected
refer to models which have been estimated by the sample data for future predic-
tion, and not models which had been specified before the sample period together

with some prior density function p(@]M) of its parameter vector, the informa-

tion criterion appears to be more relevant.
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