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ON CLASSIFICATION PROBABILITIES FOR THE DISEQUILIBRIUM MODEL

Mark Gersovitz

In econometric models of markets in disequilibrium, the dependent variable
is generated by one of two regimes. Considerable attention has been given to
the estimation of these models (Maddala and Nelson, 1974 and Quandt, 1977). tit-
tle attention has, however, been directed to the classification of observations
into the two different regimes. Yet, this classification is often of consider-
able interest and can help to provide additional evidence on the plausibility
“of the model when additional information on the membership of different observa-
tions in the different regimes is available. For instance, in Eaton and Gersovitz(
(1978), the disequilibrium model was applied to credit rationing in internationai/
lending to poor countries, and individual countries were then classified as con-
strained or unconstrained.
This paper discusses two possible methods for classifying observations, in-
vestigates the relationship between these two procedures and presents a Monte
Carlo evaluation of one of these probability measures. A by-product of this

last part of the paper is some evidence on the small sample behavior of the es-

timators of the model.

1. Classification in the Disequilibrium Model

The simplest disequilibrium model is:

= } 4
(1) vy = By X + Uy,

= f 4
2) Yo = By Xy + U,

wWhere Bl and 62 are kIXI and kle coefficient vectors respectively and



-2 -

e and x2t are kIXI and k2x1 vectors of independent variables. For con-

venience, I assume that the normal errors, Ult and U2t’ are independently
distributed with variances Ui and Gg.

The crucial aspect of this model is that only vy is observed, vy and

Y, being unobserved. Define

-1

= X 1 2 i=
(4) £,y = =3 exp [202 (vg By %,.071 (i=1,2)
i i
(5) F ly,) = fytfi(yit)dyit (i=1,2)

It can be shown that the likelihood of Y is
(6) h(Yt) = fl(Yt) Fz(yt) + fz(Yt) Fl(yt)

(see Maddala and Nelson, 1974). Maximization of equation (6) yields estimates
of the parameters.

It is now possible to ask how an actual observation (yt, Xqpr X2t) can
be classified into the two regimes. 1In this context, two measures are of in-
terest. First, there is the probability that any observation with the given

independent variables X will come from regime 1l:

1t %ot

. 14 - ?
(By Xp¢ = By ¥3)/0
1 2
(7 P(llxlt, Xp ) = «—-PW exp (~v°/2) av

- 00

where 02 = Gi + og, a formula derived by Maddala and Nelson (1974, p. 1014j}.

Second, there is the likelihocod that the particular observation

(yt, Xlt' x2t) did come from regime 1:

(8) P(l!yt, Xyer Bpp) = £; F /(£ F, + £, F))

where the fi's and Fi's are defined in equations (4) and (5). This result



is easily proved by the manipulation of formulae for conditional probabilities,

and has the intuitive rationale of the fraction of the likelihood of the parti-

cular observation which was contributed by the first regime.

In general, these probabilities are different since equation (7) uses the

realization of the actual Y- There are a number of results which can be
proved about the relationship between these two probabilities.

Define
(9 u; = B X (i=1,2)
It is obvious from (1) that

p(l[xlt, Xop) > o5 CIEE W, > Yy

Tt is then of interest to show that a parallel result holds for
P(lIYt, Xygr X2t)’ but only under very restrictive assumptions.
Theorem: I > and 02 = 02
plu s By 7 Hyr 17 %

Then P(Llly.: Xyor X5e) > -5

. 1 - > R
proof:  P(lly,, X ., X)) > .5 iff £ F, £, Fy >0

Using the definitions of equations (4) and (5) this last condition holds

2 2
o -1 (t—ul)2 (y—u2)2 oy (Ey) (y-u;)
0o > fy exp [~§~{ 5= - 5 1 o= exp 5 — -—3" }1 ae
% % % %

2 sufficient condition for the above is

2 2 2 2
(t-ul) (y-uz) (t—uz) (y*ul)
== - 5= - == + 5 >0 gt >y
%1 % 9 9

Expanding and cancelling terms yields
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2 2 2 2 2
(02 - 01) (t™ = ¥7) = 2{t-y) (02 My = 03 uz)

G2
2

which is positive for Ui and ul < uz.

Consider the classification criterion that an observation is regarded as
coming from regime 1 if its probability of regime 1 exceeds one half. It would

not make any difference whether the conditional or unconditional probabilities

were used so long as oi = Gi. However, if Gi > 03 or ci < cg, cases can
occur where the two probabilities would imply different classifications. Both
situations can be discussed with the aid of Figure 1.
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FIGURE 1
For the ca 02 > 02 P(1] X X,,) exceeds .5 to the left of
or the case 0y > Oy Yer Xyer X3¢ : !

since £ > f, and F, < F_. Between Yy and Moy ¢ this probability declines

1 2 1 2
since dP/dyt= fi f2 - fé fl which is negative. The rate of decline can be
so steep that P(l{yt, Xlt’ th) < .5 for Ve < Uy One set of values which

produces this effect is: Ul = 0, U, = 1, Gl = 1.5, 0, = .25.

2
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2 2
On the other hand, for J, > Gl, P(llyt, Xlt’ XZt) can be less than .5 to

the left of Yy where it is now possible that f2 > fl and F,y < Fl. One set
of values which produces this effect is: Bo=0, U, = 1, g, =.25 and
0, = 1.75.

These examples point out the fact that these two probability measures will
only yield the same classification under very special circumstances. Each
measure is valid in response to its own guestion -- conditional or unconditional
classification. It is the purpose of the preceding discussion to emphasize the
need to enunciate this question explicitly before choosing one or the other
measure. In the next section I focus on the conditional probability measure
because it has not been previously discussed as a classification criterion and

because I believe the question it answers is of considerable interest in many

applied contexts.

2. Monte Carlo Studies of the Conditional Classification Probability

Because P(llyt, Xlt' X2t) must be evaluated using estimated values of
the parameters, I investigated the behavior of the estimator of P(llyt, Xlt' xzt)’
So long as estimates of the model are derived via maximum likelihood, the estimates
of this probability using the estimated parameters will be maximum likelihood.
This property follows because functions of maximum likelihbod estimators are
maximum likelihood estimators of the function. The estimates of P(llyt) have
the usual maximum likelihood properties. (From this point, I suppress the argu-
ments Xlt' Xth)

The purpose of this section is to go beyond the maximum likelihood characteri
zation' py investigating the small sample properties of these probability esti-
mators using Monte Carlo methods. In particular, two hypotheses are of gpecial

interest. First is that there may be systematic bias in the estimates of the

probability dependent on the true value of the probability. Low probabilities



-6 =

may be biased toward zero and high probabilities toward one. Hartigan (1975, p.
120) in investigating classification in a different but related model stated:
"Usually, the probabilities that each case belongs to various clusters are very
close to unity or zero, but this should not be taken as an indication of sharp-
ly defined clusters.” While Hartigan does not develop this observation, the
phenomenon clearly deserves investigation.

A second hypothesis is that while the probability estimators may be biased
or unbiased, they may have greater variance for values in the middle range. This
hypothesis is analogous to the result for the estimation of a simple population
probability m the variance of which 7(1-7)/n, is at a maximum for = = .5.

The form of the model used in the Monte Carlo experiments is

(102} yye = Byy + Byy Xpp + Upy

(10b) ¥y, = Byy + By, Xy Upy

(10c¢) Y, = min (ylt' th)

(104) o

2 =k

The additional constraint (10d) where k is a fixed constant known to the in-
vestigator, is added to ensure that the likelihood is bounded (see Quandt, 1977
for a discussion of this problem). Consequently, all replications are calcu-

lated optimizing (6) subject to (10d) where %k is the true ratio of 0. to

2
Ul' An alternative approach is to maximize the likelihood by searching for a
local maximua without imposing (10d). 2memiya and Sen (1977) show that there
exists a local maximum which yields consistent parameter estimates. In an
‘actual estimation situation where estimation need only be done once, this method

is feasible despite the care necessary to avoid initial conditions leading to

the global maximum. In a Monte Carlo situation, however, the number of



replications prohibits consideration of each individual maximization history
to ensure that the algorithm does not enter the unbounded region. To maintain
computational feasibility, I therefore imposed (10d).

A particular version of (10) requires a choice for the four Bij's, Oy

k¥ and the X X..'s. The X, ,'s and X.,'s were generated by a normal

1x’ 2t 1t 2t

distribution and were kept fixed in all replications except for t=1 as dis-
cussed below. A replication encompasses a random drawing of the Ult's and
UZt's for a sample size of T and the estimation of Bij's and 01 to yield
observations on the small sample estimators.

The errors, U, and U,, must be ccnstant if the true P(llyt) is to

be the same for each of the N replications. Consequently, I fixed Uppr

U2t for +t=1, allowing the other Ult and U2t

replications and then observed the statistics on P(l!yt, t=1) over the set of

to vary randomly over N

replications. To generate statistics on a different value of P(l[yt, t=1)

a new set of observations on X U for t=1 was drawn and

X 1’ Y2t

U

e’ 2t’

the N replications were repeated using the same values for the xlt' X2t,

Ult and U2t for t>1. Finally, the whole process was repeated for a differ-

U and U

Ler Yie 2t

ent value of k using the same values for the Xlt’
t=1 ... T. Prior to the examination of the small sample properties of ‘the
estimator of P(l]yt), I allowed the Uye and U, for t=1 to vary
randamly at each replication to investigate the small sample behavior of the
estimators of the Bij's and Oy - (These results are presented in Tables.1

and 2.)

The small sample properties of the estimators were examined with antithetic
variates. This method has the potential for considerable reduction in the num-
ber of replications necessary to achieve a given variance of the mean of the
estimator {see Hendry and Harrison, 1974). To implcment the antithetic variates
approach, consider the observation on the estimator g of a parameter obtained

on the ith replication, denoted ei. Replace the error terms U1t and U,y



Coefficient Biases:

TABLE 1

Sample Size

30

Experime

nt l:

Coefficient True Value Bias t-Statistic
811 0 .032 1.38
512 1 .0l4 1.66
821 0 .102 4.29
822 -1 -.030 4.46
o, 1 .096 5.25
o, 1

Experiment 2: 02 = .50

Coefficient True Value ‘ Biac t-gtatistic
811 0 .073 2.68
812 1 .026 2.77
621 0 .030 1.86
822 ~1 -.009 1.901
N 1 .049 2.41
G 05




TABLE 2

Coefficient Biases: Sample Size = 90

Experiment 1: a, =0y
t
. Coefficient True Value Bias t-Statistic
B11 0 .036 3.13
B12 1 .015 4.13
621 0 -.005 .35
622 -1 -.00L .26
% 1 -.031 2.92
0'2 1
Experiment 2: Oy = .501
t
Coefficient True Value Bias t-Statistic
i [DUPS R ———
i
811 0 011 .99
By 1 .005 1.31
Ba1 0 .002 .30
By -1 -.001 .58
gy 1 .003 .27
02 .5
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in (10) by their negatives and repeat the replication yielding an observation
Gi on the expected value of estimator 6. For the rroblem of (10)
E(Gi) = E(Qi) = E(6). Now take as the observation on 8 from the ith pair

of replications.
(11) ei = (Gi + Si)/z

Clearly E(@i) = E(6). Eurther if the ei and Gi are sufficiently negative-
ly correlated, the variance of 5; will be much less than the variance of Bi

and considerable gains in efficiency will be realized.

For the experiments which follow, the errors were generated using a multi
plicative congruential method to generate uniformly distributed errors. These
uniform variates were converted to normal variates using the method of Box and
Muller (1958). All calculations were done in double precision FORTRAN using
the IBM 360/91 at Princeton University. Estimation of the parameters for each
replication was done using the GRADX option of the GQOPT program hased on the
method of Goldfeld, Quandt and Trotter (1966). The number of replications was
'N=50 and the sample size for each experiment was either T=30 or T=90.

The true values of the Bij used in generating the 50 replications on

each of the four variants of (10) are shown in Table 1. The Xi were gener-

t

ated by drawing from a normal distribution with mean zero and standard devia-

tion 2.5 and were held constant across replications and experiments. The xlt

and th were modified to have a correlation coefficient of V.5. The U

1t

were generated by a standard normal. The U2t were norxmal deviates independent

of the U1t with standard deviation equal to or half that of the standard do-

viation of Ult as indicatéd in the Tables. Consequently, the implicit,

theoretical R2[ = 1-05/(0§+0i)] of each equation is between .85 and .95.
Tables 1 and 2 give the bias (the difference between the average 3;, the

antithetic estimate and the true value) for the experiments on the Bij‘ The
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t-statistic tests whether the bias is significantly different from zero using
the formula for the standard deviation of a mean, Ey/ﬁ' where o0 is the
standard deviation of the @;'s and N=50. The ratio to the standard devia-
tion of the Gi, the non-antithetic estimates (not shown), to the T was
between 2 and 5 to 1. Consequently, the precision of the antithetic variates
is equivalent to a non-antithetic¢: study using 200 to 1,250 replications. (This
equivalence is calculated using the formula for the standard deviation of the
mean of the estimates, G/fﬁ, and solving for the N required to offset the
larger, non-antithetic 0.) The biases exhibited in Table 1 are largely signi~-
ficant but are not severe in magnitude. These biases fall in both significance
and magnitude as the sample size is tripled (see Table 2).

Note that the bias for the regime 2 coefficients falls from experiment 1
to 2 in each table as 02 falls. The biases for the regime 2 coefficients
in Table 1 are more severe than the biases for the regime 1 coefficients. Aal-
though the true model is symmetric with respect to the two regimes, the parti-
cular Xit's which are kept constant from replication to replication, can
lead to this asymmetry with respect to relative biases. In practice, roughly
half the yt's belong to each regime, however.

Tables 3 and 4 give the results for P(l!yt) estimates corresponding to
Tables 1 and 2. The first column gives the true P(llyt, t=1) [li.e. calculated
using the true parameters of the model in equation (8)]. This value was held
constant for N replications as described previously. The next column gives
the average of the N antithetic observations on the estimator of the proba-
bility [i.e. calculated using the estimated parameters of the model in equation
(8)1. The bias records the difference between columns 1 and 2.

The standard deviation of the antithetic estimates of P(llyt) is given
by E}“ and 0§ gives the standard deviation of the Si estimates. The 0§‘s

are relevant to an assessment of the variability of the estimator of P(llyt)
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TABLE 3

Probability Estimators: Sample Size = 30

Experiment 1: 0, = ¢

1 2
True Probability| Antithetic| Bias t-Statistic o Oa
Estimated p
Probability
.0025 .0057 .0032 2.76 .0082 .0117
.085 .114 .029 3.27 .063 .130
.505 .532 .027 2.72 .070 .285
.540 .567 .027 1.97 . 097 .365
.754 .782 .028 2.36 .084 .189
.869 | .e18 -.051 3.68 .098 .195
.959 % .954 -.005 1.16 .030 . 065
| |
Experiment 2: 0 = .502
True Probability Antithetic| Bias é t-Statistic I Oa
Estimated E
Probability | %
3
- 00053 -00082 | 00036 | 1.59 .0016 . 0015
.045 .049 .004 .78 .033 .059
.575 .548 -.029 1.60 .128 .320
.744 .717 ~-.027 1.48 .129 .254
.826 .839 .013 1.08 .085 .139
.994 .968 -.026 3.91 .047 .083
.9998 .9989 { =.0009 2.36 .0027 .0044
!
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TABLE 4

Probability Estimators: Sample Size = 20
Experiment 1: = 02
True Probability Antithetic! Biag t-Statistic o qﬁ
Egtimated

Probability
.0025 . 0027 -.0002 .61 .0023 .0038
.085 . 082 -.003 .82 .026 . 059
.505 . 497 =.008 1.30 . 044 .149
.540 .522 -.018 1.90 .067 . 226
754 .751 -.003 .45 . 047 .115
.869 .834 { -.035 4.58 .054 127
.959 . 952 -.007 2.25 .022 .039

Experiment 2: = .502
True Probability Antithetic; Bias t-8tatistic o Uﬁ

Estimated

Probability
. 00053 . 00059 . 00006 .70 . 00061 . 00085
.045 . 044 -. 001 .60 .013 .024
.575 .571 -.004 .35 .071 .162
.744 741 -.003 .27 .073 .125
.826 .830 004 . .52 .053 .081
.994 .983 -.011 3.12 .025 .023
.9998 .9994 . 0002 .80 . 0018 .0011
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since in an actual estimation situation a ei rather than a 5; estimate is

formed. Again, the ratio of ¢ and 0§ indicates that, for most cases, the

gains in the precision of the estimate of the bias derived from the antithetic
approach are quite considerable.

The t-statistic gives the bias divided by its standard deviation o/VN.

The bias is consideral !  =zcwc pronounced for the small sample experiments of
Teble 1, but neither table exhibits extreme bias. Therxe is some tendency in the
small sample (T=30) case for low values of the probability to be oveiczstimated
and high values to be underestimated. This phenomenon contradicts the supposi-
tion, mentioned at the beginning of this section, that the probability estimates
might give a spuriously sharp separation of the sample by drifting toward zero
or one. The bias is generally larger in absolute magnitude for the inter-
mediate values of the true P(llyt).

The variability of the estimator, Oﬁ' is also large for intermediate
values of the true P(llyt). This result substantiates the heuristic argument
made above by analogy with the variance of the estimate of a population proba-
bility. For these intermediate values of P(llyt), 0§ can be disturbingly

large, suggesting rather erratic behavior.

3. Conclusions

This paper has distinguished between conditional and unconditional methods
of classifying observations in models where membership in either of two regimes
is determined by a minimum condition. The relation of the two measures to cach
other is discussed. 1In general, there is no necessary correspondence between
the two methods so that care must be taken in choosing the relevant one in any
application.

I then focused on the conditional classification probability because it

is important in many applied contexts to assign the observations used in
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estimation between the two regimes. Monte Carlo results indicated that

1. Dbias need not be serious in even relatively small samples and diminishes
rapidly as sample size increases. In small samples bias tends to be
largest for intermediate values of the true probability.

2, 1low values of the true probability tend to be overestimated while high

values are underestimated so that the partition of the sample does not
tend to be spuriously sharp.

3. the variability of the estimated probability is largest for inter-
‘mediate values of the true probability.

Consequently it appears that the estimated probabilities are most reliable,

both in terms of bias and variability, when they take extreme rather than

intermediate values.
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